Using Acceptance Tests to Validate Accessibility
Requirements in RIA

*
Willian Massami Watanabe , Renata P. M. Fortes and Ana Luiza Dias
Institute of Mathematical and Computer Sciences, University of Sdo Paulo
400, Trabalhador Sao-carlense Avenue - Centro
P.O.Box 668. 13560-970 - Sao Carlos/SP, Brazil

watanabe _willian@yahoo.com, {renata, anadias}@icmc.usp.br

ABSTRACT

Accessibility stands as a quality requirement for Web ap-
plications. However, current accessibility automatic eval-
uation tools are not capable of evaluating DOM dynamic
generated content that characterizes Ajax applications and
RIAs - Rich Internet Applications. In this context, this pa-
per describes an approach for testing accessibility require-
ments in RIA, by using acceptance tests. The authors had
implemented a set of assistive technology user scenarios in
the acceptance tests, in order to guarantee keyboard acces-
sibility in web applications. As the scenarios were imple-
mented as acceptance tests scenarios, they provide accessi-
bility analysis over all layers of the software, from server-side
to client-side implementations (JavaScript and dynamically
generated DOM elements) in RIA. The test scenarios are
automatically executed, and by doing so, fit the Continuous
Integration process of constant delivery of new functionali-
ties in Web projects.

Categories and Subject Descriptors

H.2.2 [Design Tools and Techniques|: User Interfaces;
H.5.4 [Hypertext/Hypermedia|: User issues

General Terms

Design, Human Factors

Keywords

Web accessibility, Continuous integration, Acceptance test-
ing

1. INTRODUCTION

Nowadays, the Web usage has been extended not only
for the technical persons on the Computer Sciences area of

*Software Engineer at Yahoo! Brazil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

W4A2012 - Technical, April 16-17, 2012, Lyon, France. Co-Located with
the 21st International World Wide Web Conference.

Copyright 2012 ACM 978-1-4503-1019-2 ...$5.00.

work, but for all the population. These new users introduced
the concept of the so called “Web 2.0”, in which content is
no longer proprietary and made available by specific stake-
holders but decided over people and communities virtually
present on the Web as users [21]. The communities brought
new requirements to the Web which led to the development
of Rich Internet Application - RIA, Social Web applications,
e-businesses, among other kinds of services. These services
have the potential to alleviate the world greatest tragedies,
such as poverty, hunger, disease, violence, corruption, low-
literacy; by providing people with an universally accessible
repository of data, information and knowledge [7].

The term “Web 2.0” implies the use of evolved patterns
into web applications development [14]. Its characteristics
include: user as part of the authoring process, greater inter-
activity than before and a desktop like experience [9]. The
greater interactivity and desktop like experience [24] are the
result of a new set of technologies (DHTML, CSS, XML-
HTTPRequest, DOM Events, among others) that allow the
deployment of complete applications on the web architec-
ture (RIA). As the interaction gets more complex, the user
interfaces are also becoming more rich and interactive [15].
However the growth in interactivity is pushing the limits
of assistive technologies. Changes and updates generated
by JavaScript are not always presented to users interacting
with the Web through assistive technologies. Traditional
assistive technologies presents information, considering that
the webpage follows a linearized structure. However, Ajax
web applications break this assumption by allowing the web-
page structure to be modified during the user interaction.

In order to address the accessibility issues presented by
RIA, the WAI (Web Accessibility Initiative) established the
ARIA (Accessible Rich Internet Applications [31]) specifica-
tion. The goal of ARIA is to add semantic data into HTML
elements to allow assistive technologies better present user
interface components and dynamic updates in the document
structure [15]. Although ARIA provides accessible solutions
for RIA, there is no guarantee that these solutions will be de-
signed in the final application [33]. Freire et al., for example,
conducted a survey about accessibility awareness of people
involved in Web development in Brazil [13] and web acces-
sibility state of Brazilian Municipalities websites [11]. Their
conclusions were that web accessibility is far from being ac-
tually considered in Brazil and that much work remains to
be done. Developers are not always aware of the guide-
lines and therefore require tools and evaluation methodolo-
gies that help them while integrating accessibility solutions

in their web applications.

These development issues are specially true considering
Continuous Integration development environments that make
use of automatic testing strategies for software requirements.
Current accessibility evaluation and repair tools present lim-
ited crawling capabilities (analysing solely static HTML con-
tent) and inability to analyse dynamically generated DOM
(Document Object Model) elements, necessary for evaluating
RIA accessibility [26]. In this context, this paper reports
on the development of an automatic accessibility evaluation
strategy for RIA, based on acceptance tests. The proposal
consist of a set of executable acceptance tests actions that
simulate keyboard navigation in web applications. These
actions are used to test the interface accordingly to the in-
teraction model that is used by disabled users, realizing basic
and standard navigation strategies (tabbing and arrow key
presses navigation) in RIA. The approach is in the begin-
ning of its development and do not evaluate all possibilities
of interaction scenarios for assistive technologies users.

Next sections describe previous work on automatic evalu-
ation approaches towards web accessibility (Section 2), the
proposal of the paper based on the use of acceptance tests to
evaluate accessibility requirements (Section 3), an approach
for testing focus management in web applications (Section
4), a case study for evaluating the paper proposal (Section
5) and final remarks (Section 6).

2. WEB ACCESSIBILITY METRICS AND
ARIA

The pre-eminent reference on web accessibility is the WCAG

(Web Content Accessibility Guidelines) [18, 12]. The WCAG
establishes a set of guidelines that address web accessibilities
issues and provide design solutions for them [28, 29]. The
current version of WCAG (2.0) was elaborated to be techno-
logically neutral, being applicable to technologies available
now and in the future [17]. The guidelines also provide ob-
jective testable criteria, that can be evaluated with a com-
bination of automatic testing (using automatic evaluation
tools, like Hera! and daSilva?, and authoring tools like Blue-
fish® and Dreamweaver!) and human evaluation [23, 29].

Once a website is deployed, keeping track of its accessi-
bility levels is of great importance. However, due to the
nature of frequent updates that characterizes web applica-
tions, monitoring the evolution of accessibility require accu-
rate metrics in order to avoid having an inaccessible appli-
cation deployed [27]. In terms of the software engineering
process, accessibility metrics may improve the accessibility
of products or can be used as a way of introducing accessi-
bility in early phases of the development [11]. Accessibility
metrics frequently relay on the use of guidelines, such as
WCAG, in order to calculate a quantitative value that rep-
resents the accessibility level of websites.

It is worth noticing that manual evaluations are costly in
development environments in which the software updated
and deployed frequently. Therefore, in these environments
accessibility testings would rely mostly in automatic test-
ing practices. Even though automated tests present ad-
vantages related to productivity and wide coverage of web

"http://www.sidar.org/hera/index.php.en
*http://www.dasilva.org.br/
3http://bluefish.openoffice.nl/
“http://www.adobe.com/products/dreamweaver/

pages, they rely on heuristics to determine violations of the
guidelines [5]. Automated tests are not capable either of
evaluating ARIA requirements imposed to “Web 2.0” ap-
plications, since they present limited crawling capabilities,
analysing solely static generated HTML content, and its in-
ability to verify dynamically generated DOM elements that
are critical to RIA [26].

While considering the use of guidelines as an accessibility
evaluation basis, some authors argue the validity of WCAG,
in regards to its clarity and objectivity. Brajnik et al.,
for instance, reported that expert accessibility evaluators
produced 20% false positive guideline conformance evalua-
tion and miss 32% of the true problems of a website [6].
Kelly et al. also highlights the use of generic language and
vague terms and definitions in the documentation that might
hinder the guidelines objective [17]. In this context, the
development process should consider the use of empirical
methods, like screening techniques and user testing [5].
However, real users can be difficult to recruit to test all as-
pects of an evolving design [22], which is specially true in
web applications development scenarios which require the
constant management of software re-design and its deploy-
ment.

3. ACCEPTANCETESTS FOR ACCESSIBIL-
ITY REQUIREMENTS

The high profile of Agile and eXtreme programming has
popularized the concepts of Test-Driven Development [3]
and Continuous Integration [10, 8]. These practices have
been used to deliver functionality in the early phases of the
Software Engineering process. Both concepts work towards
“Web 2.0” design goals associated to the perpetual beta de-
sign pattern [25], by leading developers into an iterative pro-
cess life-cycle based on feedback and re-design phases. In
order to guarantee the stability of the evolving design and
inclusion of new features, an automatic build is executed to
identify errors in the software as quickly as possible. The
execution of the automatic build characterizes Continuous
Integration processes, in which developers are lead to inte-
grate their work frequently, which implies in multiple inte-
grations activities been done in a single day [10].

The automatic test build can be composed by unit-tests,
integration tests, acceptance tests, among others [2]. For
“Web 2.0” applications, the test results impact directly in
the decision of whether a software should be deployed or
not. If a report identifies errors the application is classified
as unstable and the deployment is delayed until the build
is fixed. If a report identifies no errors then a production
deployment can be executed for delivering new functional-
ities to users. It is worth noticing, that these development
scenarios rely solely in automatic tests strategies, since one
iteration of this process can take less than one hour [20].

Accessibility is a quality attribute for web applications
which impacts in the interaction strategies of disabled users.
Since, users are responsible for the ultimate definition of
the accessibility attribute in the web applications [19], an
automatic accessibility evaluation tool could make use of
the end-user perspective, while analysing the software. This
statement led us into developing an automatic accessibility
evaluation tool that uses Acceptance Tests to analyse web-
sites accessibility.

Acceptance Tests are usually part of Continuous Integra-

tion automatic builds and are defined as a formal test to
determine if an application satisfies the acceptance crite-
ria or not, and allow the customer to determine whether a
software is acceptable or not [1]. Acceptance Tests oper-
ate in the highest layer of an application: the user interface
[2]. They consider the user view of the software in order
to verify quality attributes. Acceptance Tests compose the
last phase of the software development process, and if they
identify that the acceptance criteria are met, the software is
ready to be released [19].

In this work, we use a behaviour strategy for the Accep-
tance Tests (Behaviour Based Acceptance Tests [16]) which
examines the applications considering the external behaviour
of the system [19]. In this strategy, the test cases reflect user
requirements as User Stories [2]. It uses external interface
assertions, while executing actions that represent real user
interaction scenarios, that would be executed if the software
was in production.

In order to use Acceptance Tests for evaluating accessibil-
ity requirements, it is necessary to identify a set of disabled
users interaction actions frequently executed in web applica-
tions. These actions will compose acceptance test cases that
represent disabled users websites usage strategies. Then, the
test cases can be executed automatically to verify accessi-
bility requirements in the software. If a test case reports
a failure assertion, it means that the application is missing
the implementation of an accessibility feature. And if a test
case reports no failure assertions, it implies that the soft-
ware is accessible for individuals that make use of the same
interaction strategy that the test case represents.

As common disabled users interaction actions, we consid-
ered:

e Keyboard navigation using the TAB key, following fo-
cusable elements in the screen [30];

e Heading elements navigation for seeking content in a
web page [32];

e Landmarks based navigation [31];
e Sequential elements navigation using the arrow keys.

It is worth noticing that an automatic accessibility evalua-
tion approach based on Acceptance Tests, considers real us-
age scenarios and rely in the same interfaces and interactions
that users will be faced with. Therefore, Acceptance Tests
are capable of making test assertions on dynamic generated
and updated content of webpages (considering changes and
updates to the DOM structure, that characterizes RIA).
This evaluation approach is illustrated in Figure 1 in com-
parison with HTML static evaluation approaches, which are
not capable of analysing dynamic changes in the DOM struc-
ture of a webpage.

4. EVALUATING FOCUS MANAGEMENT

As an initial case study, we implemented a prototype tool
which is capable of generating test cases for TAB keyboard
navigation scenarios (navigating through focusable elements
in the screen). This scenario consists of testing focus man-
agement in web applications which is an essential accessibil-
ity requirement for RIA [31].

Blind users rely solely on the keyboard device as naviga-
tion mechanisms. These users do not benefit from visual

feedback, which is necessary for interacting with devices
such as the mouse. Therefore, they navigate through links,
input fields and other widgets using only the keyboard as
input device and a voice synthesizer software as an assistive
technology that reads text content inside webpages.

The focus event is generated in the DOM structure of
web applications in order to identify interactive elements.
In scenarios that users are not able of interact with the ele-
ments using the mouse, they must use the TAB key in order
to search for the interactive elements. Every time a user
presses the TAB key, a focus event is dispatched in an inter-
active element of the application. With that feature, users
that rely solely on the keyboard as input device can search
for interactive elements using the TAB key, and as soon they
find the element they want to interact with, they can press
the ENTER key to activate it (if the element is a link or
button) or use the keyboard to input text into a textbox
element.

When considering RIA, which is characterized by com-
plex interaction mechanisms in web applications, the focus
management requirement becomes even more critical, in or-
der to guarantee that widgets and interface components are
navigable by individuals that use the computer similarly to
the scenario previously described.

The prototype was implemented using the Pyccuracy ap-
plication®. Pyccuracy is a Behaviour-Driven Development
software that assists the development process by allowing
acceptance test cases to be written using natural language.
With this approach Pyccuracy improves the visibility of the
test cases, considering multi-disciplinary teams composed
by developers, designers, product managers, in a way that
every stackholder can understand the acceptance criteria by
reading the test cases. A Pyccuracy test case script is pre-
sented next:

Scenario 1 - Going to the Flickr webpage
Given
I go to ‘‘http://flickr.com/’’
When
I wait for the page to load
Then
I see ‘‘Welcome to Flickr...’’ title

Pyccuracy reads each natural language statement (defined
as an action) from the test case and executes it in a web
browser, in order to verify if the test case was successful
(with no failed assertions) or failed (with failed assertions).
The example test case previously specified (named Scenario
1 - Going to the Flickr webpage) represents a interaction sce-
nario where the user accesses the home page of Flickr. The
test case indicates that the user should insert the Flickr URL
in the address bar of the browser (I go to “http://flickr.com”
action). Next, the user should wait for the webpage to be
completely loaded (I wait for the page to load action). And,
finally, the user should verify that the title of the visited web
page is “Welcome to Flickr...” (I see “Welcome to Flickr...”
title action). It is worth noticing that the example test case
makes two assertions that might imply failure in the sce-
nario: the second action (I wait for the page to load) verifies
if the webpage is completely loaded in a specific time inter-
val (Pyccuracy standard interval is set to 30 seconds) and
the third action (I see “Welcome to Flickr...” title) asserts

®http://pyccuracy.org

static Rendered
Webpage

HTML
Validators

Eneel

Users
DOM

Structure

Docurenl +———— FINLDoomert

) —)
=

b B

[
HMLsrgrophemnt 'L/
[L—

Db Bre \|

HWlBert

CSS and JS Acceptance
tests ol
rendered | 1 User
S‘(I'Hnill’i() 1 - Searching for Tennis news "'—‘_-‘ Scenario
Given = =
I go to "http://news.yahoo.com"
When

I tab navigate to "Sports" element

vahdaung user access,‘b”jty And I tab navigate to "Tennis" element
. And I press enter
requirements Then

I wait for the page to load
- And I see "Tennis News..." title

Figure 1: Acceptance Tests evaluation approach in contrast to HTML static evaluation approaches.

whether the title string of the visited webpage corresponds
to “Welcome to Flickr...”. In this context, the example test
case would fail if the Flickr homepage did not load correctly
(considering the second action) or if the title of the Flickr
homepage does not match the string “Welcome to Flickr...”.
The first action (I go to “http://flickr.com”) establishes a
simulation action, which compose the real usage scenario
that the test represents.

In order to allow that Pyccuracy also analyses accessibil-
ity requirements that are associated to focus management
in web applications, among its standard set of actions, we
included two new ones. These new actions simulate disabled
users that use the TAB key to navigate through interactive
elements and make assertions about the website focus state,
as the interaction is conducted. These actions are described
next:

TAB key navigation : individuals who rely solely in the
keyboard as input device for computers use the TAB
key in order to search for interactive elements within
webpages. As the TAB key is pressed in the keyboard,
the focus of the application is moved between a set of
interactive elements available in the web application.
The TAB key navigation action implemented in Py-
ccuracy simulate the TAB ordering of elements® (ele-
ments in the DOM structure which havee TABINDEX
attribute equal or greater than 0), moving the focus
between these elements, respecting the order set by
the TABINDEX attribute. This action search for ele-
ments in the DOM structure that are interactive and
contain textual content or text alternative attributes
that match one string given as input to the action.
We present next the action usage inside a test case. In
the example, the action statement execution by Pyc-

Shttp://wiki.codetalks.org/wiki/index.php/Docs/
Keyboard_navigable_JS_widgets

curacy search for an interactive element that contains
the text “meme” using the TAB key navigation strat-
egy. It is worth notiging that the action execution
ignores elements in the DOM structure that are not
perceivable by users (considering non-textual context,
for instance), similarly to action execution by a dis-
abled individual who interacts in the Web via Assis-
tive Techonologies. The action execution asserts if a
web page contains an interactive element with textual
content that matches the inputed text (“meme”, in the
example). And if there is no interactive element with
the inputed text, the action will report a failure in the
test execution.

4

I tab navigate to ‘‘meme’’ link

Focused element activation : users that rely solely in
keyboard as input device for computers, once they
have set focus to the interactive element they are look-
ing for, can use the ENTER key to activate this el-
ement. The activate action is similar to the visual
interface event of mouse click (for BUTTON or link
elements), however this operation requires that the in-
teractive element which is been activated is the cur-
rent focused one in the webpage. This action can also
be used to submit HTML FORMS elements, if the
focus is set to an INPUT element that is inside the
FORM. Next, we present an example of the action. In
the example, the action statement execution will first
search for an interactive element that contains the text
“submit”. Next, the action execution will dispatch a
ENTER keypress event targeting the current focused
element. If the current focused element is a link, for
instance, it will be activated and the user will be redi-

rected to its referenced URL. It is worth noticing that
this action does not make any assertion, however it
simulates the navigation behaviour of users that use
the keyboard in order to navigate in the Web.

I tab navigate to ‘‘submit’’ button
And I type enter

Next, we present a complete test case example to present
how the actions are used. The test case example (named
Scenario 1 - Searching for Tennis mews) represents a sce-
nario where the user searches an interactive element that
contains the text “Sports” in the Yahoo! News Portal” web-
page. If an interactive element containing the text “Sports”
is found, the user will search for another interactive element
containing the text “Tennis”. As that interactive element is
found, the user will activate the element by pressing the EN-
TER key. After the execution of the activation action, the
user should wait for a complete page reload. And, finally,
it should be verified that the title of the newly loaded web-
page is set to “Tennis News...”. It is worth noticing that,
as the user find the interactive element containing the text
“Sports”, the focus event dispatched in this element will trig-
ger a DOM structure update. This update is associated to
the presentation of the previously hidden interactive element
containing the text “Tennis”. This interface component be-
haviour characterizes a Fly-out menu interaction design
pattern® which is also addressed as a RIA drop-down menu
widget [31]. Therefore this test case specifically describes
how the use of Acceptance Tests to validate accessibility
requirements can be used to automatically analyse RIA dy-
namic presentation, considering specifically the management
of focus WAI-ARIA requirement. Figure 2 illustrates how
the example test case is executed and interacts with the
Fly-out menu interface component.

Scenario 1 - Searching for Tennis news
Given
I go to "http://news.yahoo.com"
When
I tab navigate to "Sports" element
And I tab navigate to "Tennis" element
And I press enter
Then
I wait for the page to load
And I see "Tennis News..." title

The prototype source code is available in http: //github.com-

/watinha/Pyccuracy-Accessibility-Actions.

Pyccuracy executes all actions that were specified in the
test cases, and while executing them Pyccuracy identifies
whether the action can be executed (if there are no failed
assertions) or not (if there there is a failed assertion). If
all actions are executed with no failed assertions, then the
functionality (use scenario) the test case represents is classi-
fied as accessible for users that interact with the web appli-
cation using the same navigation strategy (using TAB key
presses to navigate through focusable elements). If any ac-
tion generate a failed assertion, then the web application is

"http://news.yahoo.com
Shttp://www.welie.com/patterns/showPattern.php?pat-
ternID=fly-out-menu

not accessible for users that navigate using the same strat-
egy the test case represents. A failure example for the test
case (named Scenario 1 - Searching for Tennis news) would
be raised if Pyccuracy, while running the test, did not find
the interactive element containing “Tennis” string (consid-
ering the action And I tab navigate to “Tennis” element)
after it had been given focus to the interactive element con-
taining the string “Sports” (in the action And I tab navigate
to “Sports” element). The failure example would have been
caused by an error in the implementation of the keyboard
navigation functionality of the Fly-out menu, in which the
Fly-out menu only presents the menu sub-options if targeted
by hover events, which are only available for users using the
mouse.

It is worth noticing that the generated report of the Ac-
ceptance Tests is significantly different from the report gen-
erated by automatic accessibility evaluation tools that anal-
yse only HTML static content. The Acceptance Tests are
elaborated and executed considering the final user perpec-
tive of the software, simulating task-oriented usage scenar-
ios written in natural language. Considering the webpage
assessed by the example test case (Scenario 1 - Searching
for Tennis news), automatic repair tools that analyse only
static HTML, making use of no interaction scenario context
information, are incapable of evaluating the presentation of
the interactive element containing the text “Tennis”. The
“Tennis” interactive element is only visible to users as the
“Sports” element is focused, which characterizes an interac-
tion scenario context that is not known if not through the
scenario description in the Test Case. Therefore automatic
repair tools that evaluate solely static HTML content are
incapable of verifying this functionality. Acceptance Tests
evaluation approaches are also capable of verifying all layers
of the sofware (from client-side to server-side implementa-
tions).

Reports generated by Acceptance Tests also present the
accessibility requirements failures and successes differently
from other approaches. While HTML static automatic re-
pair tools reports contains HT'ML code lines that are not
conformance to WCAG or Section 508 guidelines, Accep-
tance Tests reports contain a list of usage scenarios that
failed or succeeded. The usage scenarios failure means that
the functionality is not accessible to users that interact with
the applications with the same interaction strategy the sce-
nario represents. The usage scenario success, on the other
hand, means that the functionality is accessible to users that
interact with the application using the same strategy the
scenario represents.

Using Acceptance Tests to evaluate accessibility also con-
tribute towards the design of accessible solutions by iden-
tifying accessible use scenarios for developers. This charac-
teristic increase the implementation cost of the development
process. Automatic repair tools that evaluate static HTML
content do not require any setup or test case elaboration
priorly to the evaluation. Acceptance Tests require that the
test cases are written before the evaluation process could be
run. The test cases frequently present domain specific infor-
mation in their specification. Like the test case example Sce-
nario 1 - Searching for Tennis news which requires domain-
specific information such as the texts “Sports” and “Tennis”.
However, the prior definition of the domain-specific content
of the web application allow developers to analyse subjec-
tive accessibility criteria. Borodin et al., for instance, argues

SPORTS TECH POLITICS

SPORTS TECH

Tab navigation to NCAAF

“Sports” element

NCAAB
Soccer

y Cycling
NHL
Tennis
Golf
Boxing
Motor Sports
MMA

Extreme

POLITICS]

TECH

NCAAF
NCAAB
Soccer
Cycling
NHL
Tennis
Golt
Boxing

Motor Sportg

Tab navigation to
“Tennis” element

Figure 2: TAB navigation interaction schema for a Fly-out menu available at Yahoo! News homepage

that, although automatic static HTML evaluation tools are
capable of identifying whether an IMG (image) element con-
tains an associated textual alternative, they can not evalu-
ate if this textual alternative actually describes the image
they are associated with [4]. The prior elaboration of the
usage scenarios of Acceptance Tests allow that the analysis
of these subjective criteria be realized during its execution
in the development process, by the developer or tester who
is responsible for the test case implementation.

5. CASE STUDY

In order to evaluate the approach based on Acceptance
Tests, we conducted a case study that compared how Ac-
ceptance Tests and HTML static automatic repair tools re-
ported accessibility errors in a web application. The ini-
tial hypothesis of the case study was that, since Acceptance
Tests are capable of evaluating dynamic content genera-
tion in webpages, they can analyse accessibility requirements
that cannot be evaluated by HTML static evaluation tools.

It is worth noticing that the Acceptance Tests prototype
implements is TAB navigation usage scenarios (implement-
ing Acceptance Tests actions that search for interactive ele-
ments and activate them). Therefore, the case study metrics
consider only accessibility reports related to user navigation
and keyboard accessibility requirements.

In the next sections we present details about the case
study methodology (Section 5.1), results (Section 5.2) and
discussion (Section 5.3).

5.1 Methodology

In order to evaluate the accessibility reports generated
from the Acceptance Tests approach (using the Pyccuracy
set of accessibility actions) and the HTML static repair
tools, considering only navigation and keyboard accessibil-
ity issues, we developed a set of webpages to be evaluated
by both approaches.

Since this work aims at improving automatic accessibility

evaluation tools in regards to RIA advancements, the set
of webpages to be evaluated by the approaches contained
widgets that implemented some sort of DOM structure up-
dates as the users interact with them. These widgets imple-
ment the interaction design patterns of Fly-out menu, Ac-
cordion menu, Overlay menu and Tabbed menu defined by
Welie®. The widgets implementation if completely available
in http://watinha.com/pyccuracy_test_1/templates.

Each widget was implemented in more than one webpage,
in a way that each widget had keyboard accessible and in-
accessible versions in the webpages. The accessibility errors
inserted in the inaccessible versions of the widgets were re-
lated to the use of interactive elements that are not capa-
ble of acquiring focus state or being activated via keyboard
in the interface component. These problems are related to
the guidelines 6, 9, 12 and 13 of WCAG 1.0 and guidelines
1.3, 2.1, 2.4 and 3.2 of WCAG 2.0. In this context, we fil-
tered all report information generated from the evaluation
approaches that were not related to these guidelines.

The distribution of webpages, widgets and accessibility
errors associated to the interface component navigation are
presented next:

e Webpage with a Fly-out menu widget that does not
acquire focus events.

e Webpage with an accessible version of a Fly-out menu
widget.

e Webpage with an Accordion menu widget that does
not acquire focus events.

e Webpage with an Accordion menu widget that is not
activated with ENTER keypress events.

e Webpage with an accessible version of an Accordion

menu widget implemented with HTML heading ele-
ments (using TABINDEX attributes).

“http://www.welie.com/patterns

Webpage with an accessible version of an Accordion
menu widget implemented with HTML button ele-
ments.

Webpage with an Overlay menu widget that does not
acquire focus events.

Webpage with an accessible version of the Owerlay
menu implemented with links.

Webpage with an Owverlay menu widget that is not
activated with ENTER keypress events.

Webpage with an accessible version of an Overlay menu
widget implemented with HTML SPAN elements.

Webpage with a Tabbed menu widget that does not
acquire focus events.

Webpage with a Tabbed menu widget that is not acti-
vated with ENTER keypress events.

Webpage with an accessible version of a Tabbed menu
widget.

It is worth noticing, that all widgets in the case study
implement navigation mechanisms functionality in web ap-
plications. Therefore, we elaborated test case scenarios that
consider these functionalities in our Acceptance Tests ap-
proach. The accessibility reports generated by the Accep-
tance Tests execution were compared with the accessibility
reports generated by HTML static automatic repair tools.

As evaluation metrics between both approaches, we con-
sidered the number of correct and incorrect assertions raised
in the reports. The assertions are represented as the fi-
nal status of the report generated by each approach. For
instance, if an evaluation approach identifies an accessibil-
ity error in the webpage and the webpage really contains
an accessibility error in its implementation, then we count
one correct assertion for that approach. If an evaluation
approach identifies an accessibility problem in a webpage,
however the webpage does not present any accessibility error
in its implementation, then we count an incorrect assertion
for that tool. On the other hand, if an evaluation approach
does not identifies any accessibility error in the webpage,
and the webpage does not contain any accessibility error in
its implementation, then we count a correct assertion for
the approach. If an evaluation approach does not identifies
any accessibility error in the webpage but the webpage does
present an implementation error, then we count an incor-
rect assertion for the approach. This evaluation metric was
used in the study, considering Continuous Integration prac-
tices. In the development process, the automatic evaluation
tools define the stability of the application and their results
impact directly in the deployment and release schedule of
the software. The results are reported as stable or unstable
build, which defines is the applications is stable or not.

In the study we considered HTML static automatic re-
pair tools the following applications: DaSilva (available at
http://dasilva.org.br/), EvalAccess (available at http://sipt07-
.si.ehu.es/evalaccess2/), WAVE (available at http: //wave.web-
aim.org/) and fae - Functional Accessibility Evaluator (avail-
able at http://fae.cita.uiuc.edu/). These tools were selected
for the study considering the set of automatic evaluation
tools presented in the WAI website'®. As selection criteria,

Yhttp:/ /www.w3.org/WAI/ER/tools/complete

we selected all tools that run in the web platform (that did
not require installing the software) and manage to perform
tests on all the webpages elaborated in the study.

5.2 Results

In the case study, the HTML static automatic evalua-
tion tools (DaSilva, EvalAccess, WAVE and fae) reported
accessibility issues associated to the following accessibility
recommendations:

e Create a logical navigation, considering the tabindex
attribute, for links, form controls and objects: check-
point 9.4 of WCAG 1.0 and Success Criteria 2.4.3 and
1.3.1 of WCAG 2.0.

e Divide blocks of information: checkpoint 12.3 of WCAG
1.0 and Success Criteria 2.4.1 of WCAG 2.0.

e Present coherent navigation mechanisms: checkpoint
13.4 of WCAG 1.0 and Success Criteria 2.4.3 and 3.2.3
of WCAG 2.0.

e Group related links: checkpoint 13.6 of WCAG 1.0 and
Success Criteria 1.3.1 of WCAG 2.0.

The accessibility issues were reported by the HTML static
evaluation tools as errors (considering design solutions that
prevent groups of users from using the software) and warn-
ings (considering design solutions that might prevent groups
of users from using the software). It is worth noticing that
the warnings reported by the HTML static evaluation tools
are associated to checkpoints of WCAG 1.0 or Success Cri-
teria of WCAG 2.0 that could not be verified by the tools
and should be evaluated manually. In this study, both forms
of reporting accessibility issues were counted as assertions.

The case study identified that the HTML static evaluation
tools and Acceptance tests reported the following numbers
as correct and incorrect assertions for each tool:

DaSilva : 5 correct assertions and 8 incorrect assertions.

EvalAccess : 7 correct assertions and 6 incorrect asser-

tions.
WAVE : 6 correct assertions and 7 incorrect assertions.
fae report : 6 correct assertions and 7 incorrect assertions.

Acceptance Test : 12 correct assertions and 1 incorrect
assertion.

The number of correct and incorrect assertions for each
tool and evaluation approach is illustrated in Figure 3.

In order to improve the detail of the results, the number
incorrect assertions for each tool and approach was divided
in two groups: false positives, indicating if a tool or approach
did not identified any issue in a webpage that contained ac-
cessibility flaws in its design; and false negatives, indicating
if a tool or approach identified accessibility flaws in a web-
page that did not contained any accessibility error in its
implementation. These results are illustrated in Figure 4.

5.3 Discussion

Considering, initially, the number of correct and incor-
rect assertions made by each tool and approach, it can be
observed that the Acceptance Tests presented the lowest
number of incorrect assertions in the study. However, the

Yl

DaSilva EvalAccess

H Correct assertions

WAVE Fae report

acceptance tests

Incorrect assertions

Figure 3: Numbers of correct and incorrect assertions for each evaluation tool and approach

o

n

2.

DaSilva EvalAccess

H False positives

WAVE Fae report

acceptance tests

M False negatives

Figure 4: False negative and posivite numbers for each evaluation tool or approach

Acceptance Tests approach also demands more efforts, in or-
der to be run, since this approach requires the elaboration of
test cases priorly to the execution of the tool. On the other
hand, in Continuous Integration development environments,
the elaboration of test cases for Acceptance Tests is an inher-
ent activity of the process and the inclusion of accessibility
specific test cases would have a low impact in the cost for
this activity.

It is worth noticing that correct and incorrect assertions
for Acceptance Tests are dependant of what functionality
the test case was elaborated to test. The simple fact that
developers have written test cases for an specific webpage
does not guarantee that the webpage itself is covered against
accessibility errors. The Acceptance Tests are written ac-
cordingly to the user perspective and validate specific usage
scenarios that could be executed by the user. Therefore, the
test cases only cover the functionality that is specified in
them, meaning that a single webpage would require one test
case for each functionality it presents, in order to guaran-
tee accessibility in the software. For the webpages used in
the study, we elaborated test cases that made assertions in
the exact functionality in which the accessibility errors were
inserted. However, the authors do not feel the test cases
elaboration could have biased the results of the case study.
Since in Continuous Integration practices guide developers
into the elaboration of the Acceptance Tests for all User Sto-
ries (that describe software core functionalities) that should
be included within the software and, then, these function-
ality would certainly be covered by the Acceptance Tests
approach.

The tools EvalAccess, WAVE and fae did not identified

any distinction between webpages which presented accessi-
ble design solutions and the ones that did not. While the
tools WAVE and fae did not report any type of error or
warning (which can be verified in the high number of false
positives assertions made by these tools), the EvalAccess
tool presented accessibility warnings for all versions of web-
pages included in the case study. EvalAccess presented the
highest number of false negatives assertions, numbers which
represent all webpages that did not present any accessible
design flaw in their implementation. In the Web 2.0 context,
these tools would impact severely in the production deploy-
ment schedule of development processes. WAVE and fae
tools, given the high number of reported false positives as-
sertions, would not raise errors for accessibility design flaws
like the ones used in the case study, and would increase the
risk of deploying a software which is inaccessible. On the
other hand, EvalAccess tool would not allow production de-
ployments to be executed automatically, always requiring
that accessibility evaluations were made manually (since all
issues reported by EvalAccess consisted of warnings), even
when the application was accessible.

It is also worth noticing, that all accessibility issues iden-
tified by the tools EvalAccess and DaSilva were reported as
accessibility warnings, which means this issues would have
to be manually verified by designers and engineers in or-
der to grant the accessibility of the software. However this
behaviour would characterize a semi-automatic evaluation
method, differently from the automatic evaluation method
based on Acceptance Tests proposed in this work.

6. FINAL REMARKS

This paper reported the development of an Acceptance
Tests based approach for testing applications for accessibil-
ity. We described the implementation of a tool that runs
test cases automatically and considers assistive technologies
user scenarios for raising accessible design flaws. The ap-
proach assists the software development process by provid-
ing developers with an automatic tool that test all layers
of the system (from client-side to server-side implementa-
tion), while assessing also RTA’s dynamic behaviour and in-
teraction complexity. As the solution is implemented as an
automatically executable test, it fits the Continuous Inte-
gration software development process of constantly evolving
web applications

The proposed solution is not capable of scaling as HTML
validators, since it requires the prior elaboration of test cases
in order to be executed. It would be necessary a specific test
case for each functionality in the application. In a menu wid-
get, for instance, it would be required that each menu item
is properly tested in a single test case. However, the activity
of elaborating acceptance tests is already part of a web ap-
plication development in Agile methodologies (specially in
long-term projects, as web applications).

The solution is under development, and require improve-
ments related to addition of other keyboard navigation ac-
tions (headers navigation, for instance) and analysis for the
inclusion of a automatically ARIA roles, properties and states
validation functionality. It is worth noticing that the pro-
posed approach alone is not enough to guarantee that ARIA
roles, states and properties are been correctly placed in the
dynamic elements of the webpage. In order to identify ele-
ments which require ARIA markup, the author suggests as-
sociating Actions execution in Acceptance tests with DOM
Mutation Events that were triggered during the action run-
time. However further studies are required in this area.

Other future works include: analysing how the assistive
technology user scenarios differ from actual users, through
usability testing, and comparing the results of this approach
with the ones obtained from traditional automatic confor-
mance evaluation tools and metrics currently available.

7. ACKNOWLEDGMENTS

Our thanks to FAPESP (process 2010/05626-7) and CAPES

for supporting this work.

8. REFERENCES

[1] IEEE standard for software verification and validation
plans. Technical report, 1986.

[2] B. C. Aratjo, A. C. Rocha, A. Xavier, A. I. Muniz,
and F. P. Garcia. Web-based tool for automatic
acceptance test execution and scripting for
programmers and customers. In Proceedings of the
2007 Euro American conference on Telematics and
information systems, EATIS ’07, pages 56:1-56:4, New
York, NY, USA, 2007. ACM.

[3] K. Beck. Test-driven development : by example.
Addison-Wesley, Boston, 2003.

[4] Y. Borodin, J. P. Bigham, G. Dausch, and I. V.
Ramakrishnan. More than meets the eye: a survey of
screen-reader browsing strategies. In Proceedings of
the 2010 International Cross Disciplinary Conference
on Web Accessibility (W4A), W4A 10, pages
13:1-13:10, New York, NY, USA, 2010. ACM.

[5]

(12]

(16]

G. Brajnik. Beyond conformance: The role of
accessibility evaluation methods. In Web Information
Systems Engineering - WISE 2008 Workshops, volume
5176 of Lecture Notes in Computer Science, pages
63-80. Springer Berlin / Heidelberg, 2008.

G. Brajnik, Y. Yesilada, and S. Harper. Testability
and validity of wcag 2.0: the expertise effect. In
Proceedings of the 12th international ACM
SIGACCESS conference on Computers and
accessibility, volume 1 of ASSETS 10, pages 43-50,
New York, NY, USA, 2010. ACM.

S. Bratt. Breaking barriers to a read/write web that
empowers all. In Proceedings of the 2010 International
Cross Disciplinary Conference on Web Accessibility
(W4A), W4A 10, pages 1:1-1:1, New York, NY, USA,
2010. ACM.

F. Cannizzo, R. Clutton, and R. Ramesh. Pushing the
boundaries of testing and continuous integration. In
Proceedings of the Agile 2008, pages 501-505,
Washington, DC, USA, 2008. IEEE Computer Society.
M. Cooper. Accessibility of emerging rich web
technologies: web 2.0 and the semantic web. In
Proceedings of the 2007 international
cross-disciplinary conference on Web accessibility
(W4A), W4A °07, pages 93-98, New York, NY, USA,
2007. ACM.

M. Fowler and M. Foemmel. Continuous integration,
http://www.martinfowler.com/articles/-
continuousIntegration.html,

2005.

A. P. Freire, R. P. M. Fortes, M. A. S. Turine, and

D. M. B. Paiva. An evaluation of web accessibility
metrics based on their attributes. In SIGDOC ’08:
Proceedings of the 26th annual ACM international
conference on Design of communication, pages 73-80,
New York, NY, USA, 2008. ACM.

A. P. Freire, R. Goularte, and R. P. M. Fortes.
Techniques for developing more accessible web
applications: a survey towards a process classification.
In SIGDOC ’07: Proceedings of the 25th annual ACM
international conference on Design of communication,
pages 162-169, New York, NY, USA, 2007. ACM.

A. P. Freire, C. M. Russo, and R. P. M. Fortes. A
survey on the accessibility awareness of people
involved in web development projects in brazil. In
W4A °08: Proceedings of the 2008 international
cross-disciplinary conference on Web accessibility
(W4A), pages 87-96, New York, NY, USA, 2008.
ACM.

J. Gehtland, D. Almaer, and B. Galbraith. Pragmatic
Ajaz: A Web 2.0 Primer. Pragmatic Bookshelf, 2006.
B. Gibson. Enabling an accessible web 2.0. In
Proceedings of the 2007 international
cross-disciplinary conference on Web accessibility
(W4A), W4A °07, pages 1-6, New York, NY, USA,
2007. ACM.

P. Hsia, J. Gao, J. Samuel, D. Kung, Y. Toyoshima,
and C. Chen. Behavior-based acceptance testing of
software systems: a formal scenario approach. In
Computer Software and Applications Conference,
1994. COMPSAC 9/. Proceedings., Fighteenth Annual
International, pages 293 —298, nov 1994.

[17]

[19]

[20]

[24]

[25]

[26]

[27]

B. Kelly, D. Sloan, S. Brown, J. Seale, H. Petrie,

P. Lauke, and S. Ball. Accessibility 2.0: people,
policies and processes. In W4A ’07: Proceedings of the
2007 international cross-disciplinary conference on
Web accessibility (W4A), pages 138-147, New York,
NY, USA, 2007. ACM.

B. Kelly, D. Sloan, L. Phipps, H. Petrie, and

F. Hamilton. Forcing standardization or
accommodating diversity?: a framework for applying
the wcag in the real world. In W/A ’05: Proceedings
of the 2005 International Cross-Disciplinary
Workshop on Web Accessibility (W4A), pages 46-54,
New York, NY, USA, 2005. ACM.

H. K. N. Leung and P. W. L. Wong. A study of user
acceptance tests. Software Quality Control, 6:137-149,
October 1997.

F. Matheson. Designing for a moving target. In
Proceedings of the 4th Nordic conference on
Human-computer interaction: changing roles,

volume 1 of NordiCHI ’06, pages 495496, New York,
NY, USA, 2006. ACM.

M. Naftali, W. Watanabe, and D. Sloan. W4a 2010: a
web accessibility conference report from the google
wda student award winners. SIGWEB Newsl., pages
1:1-1:5, September 2010.

J. Nielsen and R. L. Mack, editors. Usability
inspection methods. John Wiley & Sons, Inc., New
York, NY, USA, 1994.

L. G. Reid and A. Snow-Weaver. Wcag 2.0: a web
accessibility standard for the evolving web. In W/A
’08: Proceedings of the 2008 international
cross-disciplinary conference on Web accessibility
(W4A), pages 109-115, New York, NY, USA, 2008.
ACM.

P. Thiessen and S. Hockema. Wai-aria live regions:
ebuddy im as a case example. In Proceedings of the
2010 International Cross Disciplinary Conference on
Web Accessibility (W4A), W4A 10, pages 33:1-33:9,
New York, NY, USA, 2010. ACM.

J. M. Umbach. Web 2.0 - the new commons. Feliciter.
Canadian Library Association. HighBeam Research.,
January 2006.

C. A. Velasco, D. Denev, D. Stegemann, and

Y. Mohamad. A web compliance engineering
framework to support the development of accessible
rich internet applications. In W4A ’08: Proceedings of
the 2008 international cross-disciplinary conference on
Web accessibility (W4A), pages 4549, New York, NY,
USA, 2008. ACM.

M. Vigo, M. Arrue, G. Brajnik, R. Lomuscio, and

J. Abascal. Quantitative metrics for measuring web
accessibility. In W4A ’07: Proceedings of the 2007
international cross-disciplinary conference on Web
accessibility (W4A), pages 99-107, New York, NY,
USA, 2007. ACM.

W3C. Web content accessibility guidelines 1.0. W3C
Recommendation, May 1999.

W3C. Web content accessibility guidelines (wcag) 2.0.
W3C Recommendation, December 2008.

W3C. Wai-aria 1.0 authoring practices - an author’s
guide to understanding and implementing accessible
rich internet applications. W3C Working Draft,

(31]

(32]

September 2010.

W3C. Accessible rich internet applications - (wai-aria)
version 1.0. W3C Candidate Recommendation,
January 2011.

T. Watanabe. Experimental evaluation of usability
and accessibility of heading elements. In W4A ’07:
Proceedings of the 2007 international
cross-disciplinary conference on Web accessibility
(W4A), pages 157-164, New York, NY, USA, 2007.
ACM.

W. M. Watanabe, D. F. Neto, T. J. Bittar, and

R. P. M. Fortes. Wcag conformance approach based
on model-driven development and webml. In
Proceedings of the 28th ACM International Conference
on Design of Communication, SIGDOC ’10, pages
167-174, New York, NY, USA, 2010. ACM.

