
Regular Expressions Considered Harmful in
Client-Side XSS Filters

Daniel Bates
UC Berkeley

dbates@berkeley.edu

Adam Barth
UC Berkeley

abarth@eecs.berkeley.edu

Collin Jackson
Carnegie Mellon University
collin.jackson@sv.cmu.edu

ABSTRACT
Cross-site scripting flaws have now surpassed buffer over-
flows as the world’s most common publicly-reported secu-
rity vulnerability. In recent years, browser vendors and re-
searchers have tried to develop client-side filters to mitigate
these attacks. We analyze the best existing filters and find
them to be either unacceptably slow or easily circumvented.
Worse, some of these filters could introduce vulnerabilities
into sites that were previously bug-free. We propose a new
filter design that achieves both high performance and high
precision by blocking scripts after HTML parsing but before
execution. Compared to previous approaches, our approach
is faster, protects against more vulnerabilities, and is harder
for attackers to abuse. We have contributed an implementa-
tion of our filter design to the WebKit open source rendering
engine, and the filter is now enabled by default in the Google
Chrome browser.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized Access;
K.4.4 [Computers and Society]: Electronic Commerce—
Security

General Terms
Design, Security

Keywords
cross-site scripting, XSS, filter, web, browser

1. INTRODUCTION
Cross-site scripting (XSS) is recognized as the biggest se-

curity problem facing web application developers [22]. In
fact, XSS now tops buffer overflows as the most-reported
type of security vulnerability [2]. Although each individual
XSS vulnerability is easy to fix, much like each individual
buffer overflow is easy to fix, fixing every XSS vulnerabil-
ity in a large web site is a more challenging task, a task
that many web sites never fully accomplish. Worse, there
are large public repositories of unpatched XSS vulnerabili-
ties (e.g., xssed.com) that invite attackers to exploit a wide
variety of sites.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Instead of waiting for every web site to repair its XSS vul-
nerabilities, browsers can mitigate some classes of XSS vul-
nerabilities, providing protection for sites that have not yet,
or might not ever, patch their vulnerabilities. In principle,
such client-side XSS filters are easy to build. In a reflected
XSS attack, the same attack code is present in both the
HTTP request to the server and the HTTP response from
the server. The browser need only recognize the reflected
script and block the attack. However, there are a number of
challenges to building a filter with zero false negatives, even
for a restricted set of vulnerabilities.

In this paper, we analyze the best known client-side XSS
filters: the IE8 filter, the noXSS filter, and the NoScript
filter. In each case, we find that the filter either is unaccept-
ably slow (e.g., 14% overhead in page load time for noXSS)
or is easily circumvented. For example, an attacker can cir-
cumvent the IE8 filter by encoding the injected content in
the UTF-7 character set, which is not decoded by the filter’s
regular expressions. Worse, these filters can actually intro-
duce vulnerabilities into otherwise vulnerability-free sites.

We argue that the attacks we discover are not simply im-
plementation errors: the attacks are indicative of a design
error. Each of the filters we examine analyzes the HTTP re-
sponse before the response is processed by the browser. This
design decision lowers the filter’s precision because the filter
examines the syntax of the response—not its semantics. To
increase precision, some filter use a higher fidelity simula-
tion of the browser’s HTML parser, reducing performance
by, effectively, parsing the response twice.

Instead of examining the pre-parsed response, we pro-
pose that client-side XSS filters mediate between the HTML
parser and the JavaScript engine, achieving both high per-
formance and high precision. By examining the response
after parsing, the filter can examine the semantics of the
response, as interpreted by the browser, without performing
a time-consuming, error-prone simulation. Examining the
semantics of the response reduces both false positives and
false negatives by preventing the filter’s interpretation of the
response from getting “out of sync” with the browser’s inter-
pretation of the same response. Moreover, such a filter can
block XSS attacks safely instead of resorting to “mangling”
the injected script by altering the pre-parsed stream.

We demonstrate our approach by implementing the design
in WebKit, the open-source rendering engine used by Safari
and Google Chrome (see Figure 1). We find that our de-
sign is high-performance, incurring no measurable overhead
to JavaScript execution or page load time. We estimate
the percent of “naturally occurring” vulnerabilities our fil-

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

91

Figure 1: Our filter blocks a reflected XSS attack on
openssl.org. Because the site does specify a char-
acter set, IE8’s XSS filter does not have sufficient
fidelity to repair this vulnerability.

ter mitigates by analyzing 145 reflected XSS vulnerabilities
from xssed.com. We find that 96.5% of the vulnerabili-
ties are “in-scope,” meaning our filter is designed to block
100% of the script injection vectors for these vulnerabilities.
In practice, we find that our filter has a low false positive
rate. Although false negatives from implementation errors
are inevitable, our design lets us repair these vulnerabilities
without building an ever-more-complex simulator.

Client-side XSS filters are an important second line of de-
fense against XSS attacks. We caution web developers not
to rely on client-side XSS filters as the primary defense for
vulnerabilities in their applications, but we do recommend
that every browser include an XSS filter to help protect its
users from unpatched XSS vulnerabilities. Instead of using
regular expressions to simulate the HTML parser, client-side
XSS filters should integrate with the rendering pipeline and
examine the response after it has been parsed. Our imple-
mentation of this design has been adopted by WebKit and
has been deployed in Google Chrome.

Organization. Section 2 presents a threat model for rea-
soning about client-side XSS filters. Section 3 demonstrates
attacks against previous filters. Section 4 describes the de-
sign and implementation of our filter. Section 5 evaluates
our design, both in terms of correctness and performance.
Finally, Section 6 concludes.

2. THREAT MODEL
Attacker Abilities. Client-side XSS filters are designed to
mitigate XSS vulnerabilities in web sites without requiring
the web site operator to modify the web site. We assume
the attacker has the following abilities:

• The attacker owns and operates a web site.

• The user visits the attacker’s web site.

• The target web site lets the attacker inject an arbitrary
sequence of bytes into the entity-body of one of its
HTTP responses.

Vulnerability Coverage. Ideally, a client-side XSS filter
would prevent all attacks against all vulnerabilities. How-
ever, implementing such as filter is infeasible. Instead, we
focus our attention on a narrower threat model that covers

a certain class of vulnerabilities. For example, we consider
only reflected XSS vulnerabilities, where the byte sequence
chosen by the attacker appears in the HTTP request that
retrieved the resource.

Instead of attempting to account for every possible trans-
formation the server might apply to the attacker’s content
before reflecting it in the response, we restrict our attention
to mitigating vulnerabilities in which the server performs
only one of a limited number of popular transformations.
Also, we consider mitigating injections at a single location
only and do not seek to provide protection for so-called“dou-
ble injection” vulnerabilities in which the attacker can inject
content at multiple locations simultaneously.

Covering vulnerabilities is useful because the filter will
protect a web site that contains only covered vulnerabilities.
However, covering attacks is of less utility. If an attacker can
evade the filter by constructing a convoluted attack string
(e.g., by injecting script via CSS expressions [16] or via ob-
scure parser quirks [8]), then the filter does not actually pre-
vent a sophisticated attacker from attacking the site. Each
filter, then, defines a set of vulnerabilities that are in-scope,
meaning the filter aims to prevent the attacker from exploit-
ing these vulnerabilities to achieve his or her goals.

Attacker Goals. We assume the attacker’s goal is to run
arbitrary script in the user’s browser with the privileges of
the target web site. Typically, an attacker will run script as
a stepping stone to disrupting the confidentiality or integrity
of the user’s session with the target web site. In the limit,
the attacker can always inject script into a web site if the
attacker can induce the user into taking arbitrary actions. In
this paper, we consider attackers who seek to achieve their
goals with zero interaction or a single-click interaction with
the user.

3. ATTACKS
In this section, we present attacks on existing client-side

XSS filters. We first explain an architecture flaw in filters
that block exfiltration of confidential information. We then
exhibit inaccuracies in the simulations of the HTML parser
used by filters that mediate before the response is parsed,
showing how an attacker can bypass these filters. Finally,
we demonstrate how client-side XSS filters can introduce
vulnerabilities into otherwise vulnerability-free web sites.

3.1 Exfiltration Prevention
A number of client-side XSS filters attempt to mitigate

XSS vulnerabilities by preventing the attacker’s script from
leaking sensitive data to the attacker’s servers [5, 11, 23].
Typically, these filters monitor the flow of information within
the web site’s JavaScript environment and aim to block the
attacker from exfiltrating that information to his or her
servers.

One technical difficulty with preventing exfiltration is that
web sites frequently export data to third-party web sites.
For example, every web site that contains a hyperlink to an-
other site leaks some amount of data to that site. Worse,
modern web sites often have rich interactions with other web
sites, e.g., via postMessage, OAuth, or advertising. To dis-
tinguish between“benign”and“malicious”information leaks,
these client-side XSS filters often employ sophisticated anal-
ysis techniques, including taint tracking and static analysis,
with the attendant false negatives and false positives.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

92

HTTP Response XSS?

HTML Parser +
 JS Engine

No

Yes Mangle

Figure 2: IE8 XSS Filter Architecture

Architectural Limitations. However, even if these filters
could track sensitive information with zero false negatives
and zero false positives, the exfiltration approach does not
actually prevent attackers from disrupting the confidential-
ity or integrity of the user’s session with the target site. For
example, if the attacker can inject script into the user’s on-
line banking web site, the attacker can transfer money to the
attacker’s account by generating fake user input events pro-
grammatically. Worse, an attacker can almost always steal
confidential information via self-exfiltration: exfiltrating the
sensitive information via the honest web server. For exam-
ple, many web sites provide a user-to-user messaging facility
(e.g., YouTube, Flickr, and Facebook all provide in-site mes-
saging). If the attacker sends the confidential information
to his or her own user account in a user-to-user message, the
attacker can log into the site later and retrieve the informa-
tion, circumventing the exfiltration filter.

Even if the site does not provide an explicit user-to-user
messaging mechanism, the attacker can almost always ex-
filtrate the confidential information anyway. For example,
consider an attacker who is able to inject script into the Bank
of America web site and wishes to exfiltrate some piece of
confidential information, such as the user’s soft second fac-
tor authentication token. The attacker’s script can perform
the following steps:

1. Simulate a click on the logout link.

2. Log into the attacker’s account (in the user’s browser)
by filling out the login form (answering the attacker’s
secret questions as needed.)

3. Under account settings, select mailing address.

4. Save a mailing address that contains the information
the attacker wishes to exfiltrate.

5. Log out of the attacker’s account.

The attacker can then log into his or her own account at
Bank of America (this time in his or her own browser), view
the stored mailing address, and learn the confidential infor-
mation. To determine how many bytes the attacker can leak
using this technique, we examined the Bank of America web
site for user-local persistent storage. Our cursory examina-
tion revealed that the attacker can exfiltrate at least 400
bytes per attack.

Alternatives. Some filters (e.g., [20, 14, 19]) avoid the
above difficulties by blocking XSS attacks earlier. Instead
of letting the attacker’s script co-mingle with the target web
site’s script, these filters prevent the attacker from injecting
malicious script in the first place. Typically, these filters

block injection by searching for content that is contained
in both the HTTP response and the HTTP request that
generated the response. Although not necessarily indicative
of a reflection, such repeated content suggests that the server
simply reflected part of the request in the response.

One disadvantage of this technique is that filters based
on matching content in the request and the response cannot
mitigate stored XSS vulnerabilities because the attacker’s
script need not be present in the request. In a stored XSS
attack, the attacker stores malicious content in the target
web site’s server. Later, when the user visit the server, the
server sends the attacker’s content to the user’s browser. Un-
fortunately, exfiltration prevention techniques cannot block
stored XSS attacks either. By definition, the presence of a
stored XSS vulnerability implies that the attacker can store
content in the server. Using this storage facility, the attacker
can self-exfiltrate confidential information.

3.2 Pre-Parse Mediation
Client-side XSS filters that block injection typically match

content in an HTTP response with content in the HTTP re-
quest that generated the response. Because responses often
contain benign information from the request, these XSS fil-
ters narrow their focus to detecting script that is present
in both the request and the response. However, detect-
ing whether particular bytes in an HTTP response will be
treated as script by a browser is not as simple a task as it
appears.

Fidelity/Performance Trade-Off. Existing filters me-
diate between the network layer and the browser’s HTML
parser (see Figure 2). To determine whether a sequence of
bytes in an HTTP response will be treated as script by the
browser, these filters simulate the browser’s HTML parser.
Unfortunately, the browser’s HTML parser is quite complex.
The bytes in the response are decoded into characters, seg-
mented into tokens, and then assembled into a document
object model (DOM) tree. Simulating this pipeline is a
trade-off between performance and fidelity.

• Low performance. The filter could re-implement ex-
actly the same processing pipeline as the browser, but
such a filter would double the amount of time spent
parsing the HTTP response. For example, noXSS [19]
contains an entire JavaScript parser for increased fi-
delity. Unfortunately, to achieve perfect fidelity, the
filter would need to fetch and execute external scripts
because external scripts can call the document.write

API to inject characters into the processing pipeline,
altering the parsing of subsequent bytes.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

93

00000000:	
 3c	
 68	
 74	
 6d	
 6c	
 3e	
 0a	
 3c	
 68	
 65	
 61	
 64	
 3e	
 0a	
 3c	
 2f	
 <html>.<head>.</
00000010:	
 68	
 65	
 61	
 64	
 3e	
 0a	
 3c	
 62	
 6f	
 64	
 79	
 3e	
 0a	
 2b	
 41	
 44	
 head>.<body>.+AD
00000020:	
 77	
 41	
 63	
 77	
 42	
 6a	
 41	
 48	
 49	
 41	
 61	
 51	
 42	
 77	
 41	
 48	
 wAcwBjAHIAaQBwAH
00000030:	
 51	
 41	
 50	
 67	
 42	
 68	
 41	
 47	
 77	
 41	
 5a	
 51	
 42	
 79	
 41	
 48	
 QAPgBhAGwAZQByAH
00000040:	
 51	
 41	
 4b	
 41	
 41	
 78	
 41	
 43	
 6b	
 41	
 50	
 41	
 41	
 76	
 41	
 48	
 QAKAAxACkAPAAvAH
00000050:	
 4d	
 41	
 59	
 77	
 42	
 79	
 41	
 47	
 6b	
 41	
 63	
 41	
 42	
 30	
 41	
 44	
 MAYwByAGkAcAB0AD
00000060:	
 34	
 2d	
 3c	
 2f	
 62	
 6f	
 64	
 79	
 3e	
 0a	
 3c	
 2f	
 68	
 74	
 6d	
 6c	
 4-­‐</body></html>

html

body script

head

alert(1)

Figure 3: Identifying scripts in raw responses re-
quires understanding browser parsing behavior.

Figure 4: After the HTTP response is parsed, the
script is easy to find.

• Low fidelity. Instead of implementing a high-fidelity
simulation, the Internet Explorer 8 (IE8) [20] and No-
Script [14] filters approximate the browser’s process-
ing pipeline with a set of regular expressions. These
regular expressions are much faster than a complete
HTML parser, but they over-approximate which bytes
in the response will be treated as script. Low-fidelity
simulations are forced to incur a large number of false
positives because the penalty for incurring a false neg-
ative is high: an attacker can construct an attack that
bypasses the filter. For example, consider this content:

<textarea><script> ... </script></textarea>

The IE8 filter flags this content as script even though
the <textarea> element prevents the content from be-
ing interpreted as script, leading to a false positive.

To work around the false positives caused by its low-fidelity
simulation, Internet Explorer 8 disables its XSS filter for
same-origin requests. However, this reduction in false pos-
itives also comes with false negatives: instead of injecting
script directly, an attacker can inject a hyperlink that fills
the entire page and exploits exactly the same XSS vulner-
ability. When the user clicks this hyperlink, the filter will
ignore the exploit (because the request appears to be origi-
nating from the same origin), letting the attacker run arbi-
trary script as the target web site.

Simulation Errors. Worse, even high-fidelity simulations
are likely to deviate from the browser’s actual response pro-
cessing pipeline in subtle ways. If the attacker can desyn-
chronize the simulated parser from the actual parser, the
attacker can usually bypass the filter. In each of the filters
we examined, we discovered attacks of this form:

• noXSS. The HTML parsing simulation used by noXSS
does not correctly account for HTML entity encoded
JavaScript URLs. An attacker can bypass the filter
by injecting a full-page hyperlink to an HTML entity
encoded JavaScript URL. If the user click anywhere on
the page, the attacker can run arbitrary script as the
target web site.

• NoScript. The HTML parsing simulation used by No-
Script does not correctly account for the fact that the
/ character can be used to delimit HTML attributes.
For example, the attacker can bypass the filter using
an attack string that uses some complex parsing tricks
such as <a<img/src/onerror=alert(1)//<.

• IE8. The Internet Explorer 8 filter does not correctly
approximate the byte-to-character decoding process.

If the browser decodes an HTTP response using the
UTF-7 code page, the attacker can freely inject script
(see Figure 3). This issue is particularly severe be-
cause, in Internet Explorer, the attacker can force a
web page that does not declare its character set ex-
plicitly to be decoded using the UTF-7 code page [10],
making the IE8 XSS filter ineffective at protecting web
sites that do not explicitly declare their character set.

3.3 Induced False Positives
Once the filter has decided that a sequence of reflected

bytes constitutes an XSS attack, the filter must prevent
the browser from running the attacker’s script. If the filter
blocks the entire page, each false positive seriously degrades
the user experience because users would not be able to view
web pages that trigger false positives. Instead, pre-parse fil-
ters typically “mangle” injected script by altering the HTTP
response in the hopes of preventing the injected script from
executing. For example, IE8 replaces the r in <script> with
a #, tricking the parser into skipping the script block.

Although a nuisance, unintentional false positives rarely
open new security vulnerabilities in web sites. By contrast,
false positives induced by an attacker can mangle or block
security-critical code. An attacker can induce a false pos-
itive by including the security-critical code in a request to
the victim site, confusing the filter into believing the server
reflected the content and is the victim of an XSS attack. For
example, the following URL will prevent victim.com from
executing the secure.js JavaScript library:

http://victim.com/?<script src="secure.js"></script>

Because the string <script src="secure.js"> is contained
in both the request and the response, the filter believes that
the attacker has injected the script into the victim web site
and mangles the script. Induced false positives lead to a
number of security issues, described below.

Container escape. Recently, mashups such as Facebook,
iGoogle, Windows Live, and Google Wave have begun dis-
playing third-party “gadgets” that seamlessly combine con-
tent from more than one source into an integrated experi-
ence. Because the gadget author is not trusted with arbi-
trary access to the user’s account, these sites use frames or
a JavaScript sandboxing technology such as FBJS [4], AD-
safe [3], or Caja [6] to prevent the gadget from escalating its
privileges.

Gadgets are typically rendered in a small rectangle and
are not allowed to draw outside this area. Facebook uses
cascading style sheets to confine gadgets to a limited re-
gion of the page. Because Internet Explorer lets style sheets

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

94

Figure 5: Container escape phishing attack using
IE8’s XSS filter to bypass Facebook’s style restric-
tions.

contain script [16], IE8’s XSS filter blocks attackers from in-
jecting style sheets. An attacker, therefore, can trick IE8’s
XSS filter into mangling Facebook’s protective style sheet by
inducing a false positive, letting a malicious gadget escape
its container. The attacker can then display a convincing
fake login page hosted on facebook.com (see Figure 5) even
though Facebook does not contain an XSS vulnerability. If
WebKit allowed scripts in style sheets, we could block the
injected script instead of mangling the style sheet.

Parse Tree Divergence. Mangling an HTTP response be-
fore parsing makes it difficult to predict how the remainder
of the response will be interpreted by the browser. When
an attacker induces a false positive and intentionally man-
gles a page, the browser will construct a different parse tree
than the one intended by the author: code might be inter-
preted as static data and data might be interpreted as code.
Parse tree divergence vulnerabilities have been discovered in
the IE8 XSS filter in the past, allowing attackers to conduct
XSS attacks against web sites that have no “inherent” XSS
vulnerabilities [17].

Rather than sanitizing untrusted content in a way that
is robust to arbitrary mangling of the page, some security-
conscious web sites prefer to rely on their own server-side
defenses to prevent code injection. For this reason, a number
of popular web sites, including Google, YouTube, and Blog-
ger, disable the IE8 XSS filter using the X-XSS-Protection

header.

Clickjacking. In a typical clickjacking attack, the attacker’s
web page embeds a frame to the target web site. Instead
of displaying the frame to the user, the attacker obscures
portions of the frame and tricks the user into clicking on
some active portion of the frame, such as the “delete my
account” button, by displaying user experience that implies
that the button serves a different purpose and belongs to
the attacker’s site. Until recently, the recommended defense
for clickjacking was for the victim site to use a “frame bust-
ing” script to break out of the attacker’s frame. As a result
of misleading advice on sites such as Wikipedia, the Web is
littered with poorly written frame busting scripts that can
be circumvented. For example, PayPal uses this script:

if (parent.frames.length > 0) {

top.location.replace(document.location);

}

PayPal’s frame busting can be easily circumvented in sev-
eral different ways. For example, the attacker can create
a variable called location in the parent frame, preventing
the above script for successfully changing the location of the
attacker’s frame [24]. The attacker can also cancel the nav-
igation using an onbeforeunload handler [21]. Client-side
XSS filters add yet another way to circumvent frame bust-
ing: the attacker can induce a false positive that disables
the frame busting script [18].

4. XSSAUDITOR
In this section, we describe the design and implementation

of a client-side XSS filter that achieves high performance and
high precision without using regular expressions.

4.1 Design
Instead of mediating between the network stack and the

HTML parser, we advocate interposing a client-side XSS
filter between the HTML parser and the JavaScript engine,
as shown in Figure 6. Placing the filter after the HTML
parser has a number of advantages:

• Fidelity. By examining the response after parsing, the
filter can easily identify which parts of the response
are being treated as script (see Figure 4). Instead of
running regular expressions over the bytes that com-
prise the response, the filter examines the DOM tree
created by the parser, making the semantics of those
bytes clear. Placing the filter after parsing also lets
the parser correctly account for external scripts that
use document.write.

• Performance. When the filter processes the response
after the parser, the filter does not need to incur the
performance overhead of running a high-fidelity simu-
lation of the browser’s HTML parser.

• Complete interposition. By placing the filter in front
of the JavaScript engine, the filter can interpose com-
pletely on all content that will be treated as script. In
particular, because the JavaScript engine has a nar-
row interface, we can have reasonable assurance that
the filter is examining every script before it is executed.
When the filter wishes to block a script, the filter can
simply refuse to deliver the script to the JavaScript
engine instead of mangling the response.

4.2 Implementation
We implemented a client-side XSS filter, called XSSAudi-

tor, in WebKit. Our implementation has been accepted into
the main line and is enabled by default in Google Chrome 4.
The filter mediates between the WebCore component, which
contains the HTML parser, and the JavaScriptCore compo-
nent, which contains the JavaScript engine.

Interception Points. The filter interposes on a handful of
interfaces. For example, the filter intercepts any attempts to
run inline scripts, inline event handlers, or JavaScript URLs.
The filter also interposes on the loading of external scripts
and plug-ins. In addition to these interception points, two
other points require special consideration.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

95

HTML
Parser

JS
Engine

document.write

XSS? No

Yes

HTTP Response

Figure 6: XSSAuditor Architecture

The HTML <base> element [1] is used to specify the base
URL for all relative URLs in an HTML page. By injecting
a <base> element (or altering the href attribute of an exist-
ing <base>), an attacker can cause the browser to external
scripts from the attacker’s server if the script are designated
with relative URLs. For this reason, the filter causes the
browser to ignore base URLs that appear in the request. To
reduce false positives, the filter blocks base URLs only if the
URLs point to a third-party host.

Data URLs [15] require special attention for Firefox XSS
filters because data URLs inherit the privileges of the web
page that contains the URL. However, data URLs are nei-
ther an XSS attack vector for Internet Explorer nor WebKit-
based browsers because data URLs either do not work (in
IE) or do not inherit the privileges of their referrer (in Web-
Kit). Because our filter is implemented in WebKit, the filter
does not need to block data URLs in hyperlinks or iframes.
However, because data URLs contain attacker-supplied con-
tent, the filter prevents the attacker from injecting a data
URL as the source of an external script or plug-in.

Matching Algorithm. Before searching for scripts in the
HTTP request, the filter transforms the URL request (and
any POST data) as follows:

1. URL decode (e.g., replace %41 with A). This step mim-
ics the URL decoding that the server does when re-
ceiving an HTTP request (e.g., before PHP returns
the value of $_GET["q"]).

2. Character set decode (e.g., replace UTF-7 code points
with Unicode characters). This step mimics a trans-
formation done by the HTML tokenizer.

3. HTML entity decode (e.g., replace & with &). The
filter applies this transformation only to some of the
interception points. For example, inline scripts are not
entity decoded but inline event handlers are.

These steps assume that the server does not perform a com-
plex transformation on the attacker’s content. If the server
does perform an elaborate transformation, the filter will not
find an injected script in the request. In analyzing server
vulnerabilities, we found that servers commonly apply two
transformations: Magic Quotes and Unicode normalization.

• Magic Quotes. Prior to version 5.3.0, PHP automat-
ically performs the addslashes transformation on re-
quest parameters. This transformation attempts to
mitigate SQL injection by adding \ characters before

’ and \ characters and by transforming null characters
into \0. To account for this transformation, the filter
ignores any \, 0, or null characters when searching for
the script in the request.

• Unicode normalization. A number of servers “normal-
ize” Unicode characters by representing each Unicode
character with its canonical code point. For exam-
ple, the character ü can be represented either by the
code point U+0252 or the code point sequence U+0075,
U+0308 (the “u” character combined with a diacritical
mark). Mimicking Unicode normalization is difficult
and error prone because different servers might use dif-
ferent normalization algorithms. For this reason, the
filter ignores all non-ASCII characters when searching
for the script in the request.

Although the matching algorithm does simulate some of the
transformations the server and the HTML parser apply to
the attackers content, the filter does not need to simulate the
complex parts of the parser, such as tokenization or element
re-parenting.

Overflow. In some cases, an attacker can craft an exploit
for an XSS vulnerability that is partially composed of char-
acters supplied by the attacker and partially composed of
characters that already exist in the page. The filter will
be unable to find the entirety of such a script in the re-
quest because only a portion of the script originated from
the request. For example, consider the following XSS vul-
nerability:

<?php echo $_GET["q"]; ?>

<script>

/* This is a comment. */

</script>

If the attacker uses the following exploit, the injected script
will extend until the end of the existing comment:

<script>alert(/XSS/); /*

Instead of attempting to find the entire script in the re-
quest, the filter searches for the first 7 characters1 of the
script. Our hypothesis is that an attacker cannot construct
an attack in less than 7 characters. For example, the at-
tacker cannot even specify a URL on another server in less
than 7 characters because the scheme-relative URL //aa.cc

is 7 characters long.
1The version of the filter that we deployed in Google
Chrome 4 does not implement the 7 character limit.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

96

5. EVALUATION
In this section, we evaluate the correctness and the per-

formance of our client-side XSS filter. By way of correct-
ness, we evaluate what percentage of “naturally occurring”
XSS vulnerabilities are mitigated by the filter, the filter’s
false positive rate, and our assurance regarding the filter’s
false negative rate. By way of performance, we measure the
performance overhead of running the filter on a number of
JavaScript and page-loading benchmarks.

5.1 Correctness
Client-side XSS filters do not require perfect correctness

to be useful. However, the usefulness of a filter depends
what percent of vulnerabilities the filter covers and the rate
of false positives and false negatives.

Vulnerability Coverage. To estimate the percent of re-
flected XSS vulnerabilities covered by the filter, we analyzed
330 randomly selected, publicly disclosed XSS vulnerabili-
ties from xssed.com. Of the selected vulnerabilities, 76 were
“dead links” (meaning the site did not respond within 10 sec-
onds or responded with an HTTP response code other than
200), 87 were fixed, and 22 were not XSS vulnerabilities.
We were able to verify that the remaining 145 vulnerabili-
ties were live, reflected XSS vulnerabilities. (There were no
stored XSS vulnerabilities in this data set.)

Instead of testing whether the filter blocks the example
exploit in the database, we classified the underlying vulner-
ability to assess whether the filter is designed to block all
exploits for the vulnerability (see Figure 7). We found that
96.5% of the vulnerabilities were “in scope” for the filter,
meaning that the filter is designed to prevent the attacker
from exploiting these vulnerabilities to inject script. The
remaining 3.5% of the vulnerabilities were out-of-scope be-
cause they let the attacker inject content directly inside a
<script> element.

There are a number of limitations of this evaluation. First,
the xssed.com data set is biased towards easy-to-discover
vulnerabilities because the researchers who contribute the
example exploits often discover the vulnerabilities using au-
tomated vulnerability scanners. Second, the evaluation is
biased towards unfixed vulnerabilities because we excluded
87 vulnerabilities that were repaired before we conducted
our study. However, even with these biases, these observa-
tions suggest that a significant fraction of naturally occur-
ring reflected XSS vulnerabilities are in-scope for our filter.

False Positives. To estimate false positives, we deployed
the filter to all users of the WebKit nightly builds and the
Google Chrome Developer channel and waited for users of
these browsers to file bug reports. Initial iterations of the
filter had a number of interesting bugs, described below.
After examining the false positives, we were able to adjust
the filter to remove the false positives in all but one case,
also described below.

An early iteration of the filter had a large number of
false positives on web sites that contained <base> elements.
A number of web sites use a base URL of a form analo-
gous to http://example.com/ on pages with URLs anal-
ogous to http://example.com/foo/bar. The filter blocked
these <base> elements because the base URL occurred in the
page’s URL. We removed these false positives by whitelisting
base URLs from the same origin as the page.

Intertag,	
 55.9%	

A/ribute	
 escape,	
 38.6%	

 JavaScript	
 URL,	
 2.1%	

Inside	
 of	
 script	
 tag,	
 3.5%	

Figure 7: Underlying vulnerability for 145 verified
reflected XSS vulnerabilities from xssed.com. 96.5%
were “in-scope” for XSSAuditor.

An early iteration of the filter broke the chat feature on
Facebook because the chat feature loads an external script
from a URL supplied as a query parameter. Left unchecked,
this behavior would be an XSS vulnerability. However, the
Facebook server validates that the supplied URL points to
a server controlled by Facebook. We removed this false pos-
itive by reducing the set of vulnerabilities that we cover
to exclude direct injections into the src attribute of script
elements. Because these vulnerabilities accounted for zero
verified vulnerabilities in our xssed.com survey, we believe
declaring these vulnerabilities out-of-scope is an acceptable
trade-off to reduce false positives. We implemented this
change by preventing a script element from loading an ex-
ternal script only if all of the bytes of the src attribute
(including its name) appear in the request.

One subtle issue involves a user who authors a wiki that
lets authors supply JavaScript content. Typically, a wiki au-
thor edits a wiki page in a <textarea> element that is sent to
the server via a POST request. After the user edits a page,
the server responds to the POST request by reflecting back
the newly edited page. If the author includes JavaScript
in the wiki page, the filter blocks the JavaScript in this re-
sponse because the script is contained in the POST request.
Of course, the wiki page containing the JavaScript is stored
correctly in the server’s database, and the wiki page func-
tions correctly for subsequent visitors.

One user reported this issue as a false positive in his per-
sonal wiki. Upon investigating the issue, we discovered that
the version of DokuWiki the user was running is in fact vul-
nerable to XSS because the “edit wiki” form is vulnerable to
cross-site request forgery (CSRF). Thus, the “false positive”
correctly identified the web site as vulnerable to XSS. (Un-
fortunately, the filter is unable to mitigate this vulnerability
because the vulnerability is a stored XSS vulnerability.) A
more recent version of DokuWiki repaired this XSS vulnera-
bility by adding a CSRF token to the “edit wiki” form. How-
ever, it is unclear how the filter could distinguish between
the vulnerable and the non-vulnerable cases.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

97

0	

50	

100	

150	

200	

250	

300	

350	

XSSAuditor	

(Chrome	
 4)	

XSS	
 Filter	

(IE	
 8)	

noXSS	

(Firefox	
 3)	

Pa
ge
	
 lo
ad

	
)
m
e	

(m

s)
	

Disabled	

Enabled	

Figure 8: Score on the Mozilla page-load benchmark
with 10 samples. Smaller is better. Error bars show
95% confidence.

False Negatives. Over the course of implementing the fil-
ter, we discovered a sequence of false negatives, but all of
the false negatives were implementation errors that we re-
paired. After the implementation reached some level of ma-
turity, we encouraged external security researchers to find
additional false negatives. A number of researchers from
sla.ckers.org participated [13] and found a false nega-
tive related to Unicode denormalization. In response, we
changed the filter’s matching algorithm to ignore all non-
ASCII characters.

This experience suggests that we have low assurance that
the filter lacks false negatives. We fully expect security re-
searchers to discover more false negatives in the future, just
as these researchers continue to discover arbitrary code ex-
ecution vulnerabilities in mature code bases. However, the
evidence is that these false negatives will be implementation
errors that can be patched via auto-update.

Safety. Our filter resists two of the three induced false
positive attacks described in Section 3.3:

• Container Escape. Because WebKit does not let
web sites include script in style sheets, our filter does
not prevent the attacker from injecting style sheets.
Because our filter never disables style sheets, an at-
tacker cannot induce a false positive to break out of a
style container on Facebook.

• Parse Tree Divergence. Because we block JavaScript
from executing directly rather than mangling the HTTP
response before parsing, an attacker cannot create a
parse tree divergence by inducing a false positive and
sites do not need to worry about changing their server-
side XSS filters to handle arbitrary mangling.

Our decision to block individual scripts rather than block-
ing the entire page when an XSS attack is detected means
that, like the IE8 XSS filter, our filter can be used to dis-
able poorly written frame busting scripts. However, because

several techniques for disabling frame busting already exist,
we recommend that sites replace their circumventable frame
busting scripts with the X-Frame-Options HTTP response
header [12], which was designed to help mitigate clickjack-
ing. To protect users with legacy browsers that do not sup-
port this header, a web site operator should use a frame
busting script that is robust to being disabled. For exam-
ple, Twitter hides its pages by default and reveals them only
if a script detects that the page is not in a frame.

Some web applications might wish that the XSS filter
blocked the entire page when the filter detects an XSS at-
tack, especially if an induced false positive might endanger
the page’s security. We let web developers enable full page
blocking by sending the following HTTP header:

X-XSS-Protection: 1; mode=block

When the page includes this header, our filter will stop all
script execution and display a blank page if the filter detects
an XSS attack.

5.2 Performance
Performance is an essential factor in assessing the useful-

ness of a client-side XSS filter. Browser vendors are reluctant
to deploy features that slow down key browser benchmarks,
including JavaScript performance and page load time.

JavaScript. We evaluate the impact of the filter on core
JavaScript performance using the industry-standard SunSpi-
der [9] and V8 [7] benchmark suites. We were unable to
measure any performance difference on these benchmarks
as a result of the filter. This is unsurprising because the fil-
ter interposes on the interface to the JavaScript engine and
does not interfere with the engine’s internals.

Page-Load. We evaluated the impact of the filter on page-
load performance using the moz page-load benchmark, which
Mozilla and Google run in their continuous integration“build-
bots” to detect performance regressions. Our filter does not
incur a measurable performance overhead (see Figure 8). By
contrast, the fidelity-focused noXSS filter incurs a 14% over-
head on the benchmark, which is significant given the effort
browser vendors spend improve their page load time score
by even a few percentage points. (As expected, the IE8 filter
did not incur a measurable overhead.)

6. CONCLUSION
We propose an improved design for a client-side XSS filter.

Our design achieves high performance and high fidelity by
interposing on the interface between the browser’s HTML
parser and JavaScript engine. Our implementation is en-
abled by default in Google Chrome.

Most existing client-side XSS filters simulate the browser’s
HTML parser with regular expressions that produce unnec-
essary false positives. These filters can be bypassed by ex-
ploiting differences between the simulation and the actual
parser. Worse, when they detect an attack, the filters resort
to mangling the HTTP response in a way that introduces
vulnerabilities into otherwise vulnerability-free sites. Our
post-parser design examines the semantics of an HTTP re-
sponse, as interpreted by the browser, without performing
a time-consuming, error-prone simulation. We block sus-
pected attacks by preventing the injected script from being
passed to the JavaScript engine rather than performing risky
transformations on the HTML.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

98

Cross-site scripting attacks are among the most common
classes of web security vulnerabilities, and this trend shows
no signs of reversing. Fixing every XSS vulnerability in a
large web application can be a daunting task. Every browser
should include a client-side XSS filter to help mitigate un-
patched XSS vulnerabilities.

7. REFERENCES
[1] Tim Berners-Lee and Dan Connolly. Hypertext

Markup Language - 2.0. IETF RFC 1866, November
1995.

[2] Steve Christey and Robert A. Martin. Vulnerability
type distributions in cve, 2007.
http://cwe.mitre.org/documents/vuln-trends/.

[3] Douglas Crockford. ADsafe.

[4] Facebook. Fbjs. http:
//wiki.developers.facebook.com/index.php/FBJS.

[5] David Flanagan. JavaScript: The Definitive Guide,
chapter 20.4 The Data-Tainting Security Model.
O’Reilly & Associates, Inc., second edition, January
1997.

[6] Google. Caja: A source-to-source translator for
securing JavaScript-based web content.
http://code.google.com/p/google-caja/.

[7] Google. V8 benchmark suite. http://v8.googlecode.
com/svn/data/benchmarks/v5/run.html.

[8] Robert Hansen. XSS (cross site scripting) cheat sheet.
http://ha.ckers.org/xss.html.

[9] Apple Inc. Sunspider. http://www2.webkit.org/
perf/sunspider-0.9/sunspider.html.

[10] Inferno. Exploiting IE8 UTF-7 XSS vulnerability
using local redirection, May 2009.
http://securethoughts.com/2009/05/

exploiting-ie8-utf-7-xss-vulnerability-using-

local-redirection/.

[11] Engin Kirda, Christopher Kruegel, Giovanni Vigna,
and Nenad Jovanovic. Noxes: A client-side solution for
mitigating cross site scripting attacks. In Proceedings
of the 21st ACM Symposium on Applied Computing
(SAC), 2006.

[12] Eric Lawrence. IE8 security part VII: Clickjacking
defenses.
http://blogs.msdn.com/ie/archive/2009/01/27/

ie8-security-part-vii-clickjacking-defenses.

aspx

.[13] David Lindsay et al. Chrome gets XSS filters,
September 2009.
http://sla.ckers.org/forum/read.php?13,31377.

[14] Giorgio Maone. NoScript. http://www.noscript.net.

[15] Larry Masinter. The “data” URL scheme. IETF RFC
2397, August 1998.

[16] Microsoft. About dynamic properties.
http://msdn.microsoft.com/en-us/library/

ms537634(VS.85).aspx.

[17] Mitre. CVE-2009-4074.

[18] Eduardo Vela Nava and David Lindsay. Our favorite
XSS filters/IDS and how to attack them, 2009. Black
Hat USA presentation.

[19] Jeremias Reith. Internals of noXSS, October 2008.
http://www.noxss.org/wiki/Internals.

[20] David Ross. IE 8 XSS filter
architecture/implementation, August 2008. http:
//blogs.technet.com/srd/archive/2008/08/18/

ie-8-xss-filter-architecture-implementation.

aspx.

[21] Steve. Preventing frame busting and click jacking,
Februrary 2009.
http://coderrr.wordpress.com/2009/02/13/

preventing-frame-busting-and-click-jacking-

ui-redressing/.

[22] Andrew van der Stock, Jeff Williams, and Dave
Wichers. OWASP top 10, 2007.
http://www.owasp.org/index.php/Top_10_2007.

[23] Philipp Vogt, Florian Nentwich, Nenad Jovanovic,
Engin Kirda, Christopher Kruegel, and Giovanni
Vigna. Cross site scripting prevention with dynamic
data tainting and static analysis. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2007.

[24] Michal Zalewski. Browser Security Handbook,
volume 2.
http://code.google.com/p/browsersec/wiki/

Part2#Arbitrary_page_mashups_(UI_redressing).

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

99

