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ABSTRACT

There are many online systems where millions of users post
original content such as videos, reviews of items such as
products, services and businesses, etc. While there are gen-
eral rules for good behavior or even formal Terms of Service,
there are still users who post content that is not suitable.
Increasingly, online systems rely on other users who view
the posted content to provide feedback.

We study online systems where users report negative feed-
back, i.e., report abuse; these systems are quite distinct from
much studied, traditional reputation systems that focus on
eliciting popularity of content by various voting methods.
The central problem that we study here is how to moni-
tor the quality of negative feedback, that is, detect negative
feedback which is incorrect, or perhaps even malicious. Sys-
tems address this problem by testing flags manually, which
is an expensive operation. As a result, there is a tradeoff
between the number of manual tests and the number of er-
rors defined as the number of incorrect flags the monitoring
system misses.

Our contributions are as follows:

• We initiate a systematic study of negative feedbacks
systems. Our framework is general enough to be ap-
plicable for a variety of systems. In this framework,
the number of errors the system admits is bounded
over the worst case of adversarial users while simul-
taneously the system performs only small amount of
manual testing for multitude of standard users who
might still err while reporting.

• Our main contribution is a randomized monitoring al-
gorithm that we call Adaptive Probabilistic Testing
(APT), that is simple to implement and has guaran-
tees on expected number of errors. Even for adversar-
ial users, the total expected error is bounded by εN
over N flags for a given ε > 0. Simultaneously, the
number of tests performed by the algorithm is within
a constant factor of the best possible algorithm for
standard users.

• Finally, we present empirical study of our algorithm
that shows its performance on both synthetic data and
real
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data accumulated from a variety of negative feedback
systems at Google. Our study indicates that the algo-
rithm performs better than the analysis above shows.

Categories and Subject Descriptors

H.1.2 [Information Systems]: Models and Principles—
User/Machine Systems; I.2.0 [Computing Methodolo-
gies]: Artificial Intelligence—General

General Terms

Human Factors,Algorithms,Experimentation

Keywords

Negative Feedback Systems, User Reputation, Probabilistic
Analysis

1. INTRODUCTION
The World Wide Web made information dissemination

much easier and more efficient, from communication and
commerce to content. In particular, not only did more offline
content come online and access to it made easier, but gener-
ation and publication of content has become easier. Millions
of users publish blogs, self-made videos, and post comments
or reviews of products and businesses such as hotels, restau-
rants, and others. Users also post and answer questions, tag
pictures and maps, form and nurture social networks, etc.
This giant publication system works by implicit understand-
ing that content should be appropriate (e.g., avoid porn),
legal (e.g., no illegally copied content), believed to be cor-
rect (e.g., when tagging maps and answering questions fac-
tually), or respectful of others privacy (e.g., with blogging
and social networking), etc.; explicitly, these are enforced
by Terms of Service that gives the platform provider the
right to remove content, cancel access, report to police, etc.
However, for a variety of reasons — non-professional users,
monetary incentives, lack of cost to action, etc. — such
user-generated content is always suspect. The challenge is
how to identify inappropriate content at the Internet scale
where millions of pieces of content being generated every
day. While sophisticated algorithms that explicitly identify
inappropriate content are used in cases (e.g., with finding
copyright violations), a common solution has been to rely
on the community, i.e., other users, to identify and “flag”
inappropriate content.

We refer to such systems where users flag or report in-
appropriate content as negative feedback systems. Exam-
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ples of negative feedback systems include Amazon reviews1,
or YouTube comments2. There are many other examples.
These systems should be distinguished from others that rely
on user participation, in particular those that identify pop-
ular items based on user feedback. These use various voting
schemes to tap into the wisdom of crowds and aggregate
positive feedback, for say ranking content.3 Such ratings
systems rely on the fact that single popular item can score
thousands of ratings. In contrast, negative feedback systems
are expected to take action quickly, in some cases even after
a single flag on certain content.

The community-based policing in negative feedback sys-
tems faces a different challenge. How do the systems know
when a user’s flag is genuine and something to be acted
upon? Flags may be simply incorrect due to an error on
the user’s part (mistaken about an answer to a query), or
maliciousness (flag and remove a good review for a competi-
tor), or even cluelessness; in some cases, there may be re-
venge flags. Known systems solve this problem by manually
evaluating some or all the flags. There are two underlying
assumptions here. First, humans can identify a correct flag.
Second, human testing of flags is more scalable than human
testing of the original contents. These are reasonable as-
sumptions in many applications. As an example, consider
YouTube comments: humans can readily spot incorrect flags
of spam, and the number of flags is several orders of magni-
tude smaller than the number of either user-generated videos
or comments.4 However, as the systems grow in size, even
testing of all flags becomes prohibitively expensive and be-
comes prone to denial of service style attacks. The challenge
is then reduced to a tradeoff: number of flags tested by hu-
mans versus the number of incorrect flags the system misses.
Testing all the flags by humans will be prohibitive but de-
tect all incorrect flags, and testing none will allow far too
many incorrect flags. In this paper, we study this tradeoff.

1.1 Our Formulation
Consider a set of items I, and a user u who generates

a sequence of flags i1, i2, . . . , iN . These flags correspond
to the items ij that the user u deems abusive. The flag
could either be true or false. A flag ij is True means that
the item ij violates Terms of Service; a false flag indicates
that the item is not abusive and user committed an error
(whether honestly or maliciously) when reporting it. For
each flag, the monitoring algorithm performs one of the
three actions, A = {accept, reject, test}, and the outcome is
S = {accepted, rejected, positive, negative}. The first two
states correspond to the case when algorithm accepted the
report and took appropriate action against the item (say, re-
moved or demoted it) or rejected the flag (did not perform
any action against content) without any further testing. The
last two correspond to the case where the algorithm chooses
to perform external, human-based testing and discovered

1See “Report This” link in product re-
views. e.g., http://www.amazon.com/
Introduction-Algorithms-Third-Thomas-Cormen/dp/
0262033844/
2See http://www.youtube.com/watch?v=4TpRAp0WWLs
where reported spam comments are hidden by default.
3For example, see http://digg.com/about/.
4Of course, since humans do not test content that are not
flagged by any user, there could potentially be false nega-
tives. This, however, is a reasonable outcome, since it indi-
cates that the content is not seen by too many users.

the true state of the flag. If the algorithm chooses to test,
depending on the outcome of the test the system will either
accept or reject the item. We further assume that an item is
not flagged multiple times; in fact, multiple flags are seldom
seen in our applications and can be handled as a sequence
of independent, single flags. In fact as we discuss later, very
few flags per item, is a crucial difference between our system
and traditional reputation systems. Formally,

• User strategy is a function U : A∗ × r→ {true, false}
that takes as an input vector A∗ of past actions of the
monitoring algorithm, a random vector r, and gener-
ates the next flag.

• The monitoring algorithm R : S∗×r→ A is a function
that takes as an input the vector S∗ of past outcomes, a
random vector r and returns the action for the current
flag.

Interestingly, we do not assume any structure between
items (such as, two videos were posted by the same user)
or model the correlation between items with flags (such as,
reviews in poor language tend to get flags, or videos with
DJ mixes get fewer flags). Our approach here is to focus on
users alone, and ignore the signals from the content. This
may be seen as analogous to web search where link analy-
sis, without content analysis, gives lot of information [5, 9].
The additional motivation for us is that focusing on user
analysis makes our model applicable across content types
(be they video, review text or others) and general. Finally,
notice that the monitoring algorithm has no access to user
strategy and it only learns something about user when it
decides to test the flag, and not in other actions. This is
in contrast with standard learning with experts framework
where algorithm learns something on each action or step.

Say user u places N flags. Given a randomized monitoring
algorithm A we measure:

• tA
u (N), the expected number of tests performed by al-

gorithm A on the sequence of N flags by user u, and

• eA
u (N), the expected number of errors — an incorrect

flag that is accepted or a correct flag that is rejected
— by the algorithm for user u.

1.2 Our Contributions
To the best of our knowledge this is the first effort to for-

malize the problem of monitoring negative feedback. More
formally, we study the tradeoff between tA

u (N) and eA
u (N).

• Our main contribution is the design of a randomized
algorithm called Adaptive Probabilistic Testing (APT )
to process flags in real time as they are being submitted
by users, and a detailed theoretical analysis of it. We
prove that APT satisfies the following:

– [Adversarial Users] eAPT
u (N) ≤ εN in expecta-

tion against any user u and any fixed ε, 0 ≤ ε ≤ 1.

The user strategy could be adversarial and user
can observe actions of the monitoring algorithms
once they are performed and adjust his strategy
arbitrarily.

– [Standard Users] We denote by STD(p) a stan-
dard user who errs with some probability p in-
dependently on each flag. Let OPT be the op-
timal algorithm for monitoring such a user with
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eOPT
STD(p)(N) ≤ εN . We show that for APT algo-

rithm we have:

tAPT
STD(p)(N) ≤ 4 tOPT

STD(p)(N) + o(N).

in other words, the adaptive testing algorithm
performs within constant factor of the best pos-
sible algorithm for that particular type of user.

• We present an experimental study of our algorithm
with synthetic and real data collected from various
Google systems. Our algorithm satisfies eu(N) ≤ εN
almost always (not only in expectation), and at the
same time, behaves significantly better than our theo-
retical analysis, more like tAPT

STD(p)(N) ≤ tOPT
STD(p)(N) +

o(N).

Thus the framework we use for evaluating any monitor-
ing algorithm involves two properties: (1) the number of
errors should be bounded in all cases including adversarial
users, and simultaneously, (2) in a system where overwhelm-
ing majority of the users are nonmalicious, the monitoring
algorithm should perform almost as well as the best possible
algorithm that satisfies (1).5 It is our experience that prac-
titioners do need both of the properties above. Systems need
to be robust when it comes to spammers, but also graceful
for majority of users who tend to be honest. Notice that it
is not trivial for a monitoring algorithm to satisfy these two
properties simultaneously. For example, a naive approach
would be to test a user at the beginning to see if the user
is standard, determine p and then thereafter run OPT for
user STD(p). This however will not satisfy the first prop-
erty because a strategy available to a user is to pretend to be
STD(0) at the beginning (e.g. never lie) and then switch to
STD(1). In fact, our algorithm is far more graceful: if an ad-
versarial user becomes standard only for certain consecutive
number of flags and is arbitrary elsewhere, our algorithm
will automatically behave like OPT for most of that portion
when user is standard. We do not formally abstract this
property for the various portions, and only focus on the two
properties above over the entire sequence of flags.

1.3 Related Work and Technical Overview
Our model is very general and can be applied to many

real world negative feedback systems. Because of its gener-
ality however it is reminiscent of many other problems. In
particular it is reminiscent of “online label prediction prob-
lems”, where the task is to predict the label on each item.
But typically in such problems, there is an underlying well-
structured class of hypotheses and errors are measured with
respect to best in this class. In contrast, users may have
arbitrary strategy in our problems, and no structured class
of hypotheses may fit their behavior. In multiarmed ban-
dit [2], expert learning setting with limited feedback [6],
apple-tasting [7], and other learning problems, for each on-
line item, one is given the correct label for all experts or
arms after the action is performed, but in our problem, we
obtain the correct label only when we test an item. Hence
our monitoring algorithms have to work more agnostically.

Our approach is also reminiscent of large class of “reputa-
tion problems” where a user’s reputation is measured based

5For calibration, tOPT
STD(p)(N) = c(ε, p)N tests if p > ε and

O(1) otherwise. This is far fewer than what an optimal
algorithm needs for an adversarial user.

on his agreement with other users or item quality and is
used as weight to measure how much the system values user
feedback. Reputation problems arise in user driven systems
such as Wikipedia [1, 4] and others [3, 8]. Such reputation
schemes do not apply directly to negative feedback systems,
since our systems do not have opportunity to adjust a users’
errors based on other users.6

Despite the plethora of work in related areas, and practical
motivations, to the best of our knowledge there is very little
work done in the area of negative feedback systems. In fact,
the only work we are aware of is empirical paper by Zheleva
et al [10] that considers a problem of computing trust score
of e-mail users reporting spam/non-spam. Their results con-
siders a community-based scoring and a fixed scoring func-
tion and present empirical results, however, their algorithm
provides no guarantees against malicious users.

Approaching our problem from the first principles, it is
immediately clear that the monitoring algorithm has to use
randomization to determine what flags to test. The algo-
rithm we design is simple and natural, keeping a testing
probability pi that is adjusted based on feedback from tests,
up or down based on whether tests reveal correct or incor-
rect flags. The main difficulty is its analysis because of the
dependence of the state of the algorithm to the entire tra-
jectory of testing probabilities and user strategies. In par-
ticular, the analysis of expected behavior relies on careful
upper bounding the hitting times of sequences of Bernoulli
trials with stopping probabilities pi1 ≥ pi2 ≥ pil

. . . . The
stopping probability itself changes non-deterministically, in
fact influenced by user strategy, over time in such a way that
there is no explicit upper bound on expectation. Instead, we
rely on expectations of hitting times conditioned on the fact
that stopping probability stays above some fixed value, and
then generalize the results.

2. ALGORITHM AND INTUITION
In this section we describe our algorithm and provide in-

tuition why it works; we defer full analysis to Section 3.
We begin by presenting a monitoring algorithm which only

performs two actions: test and accept. This algorithm has
applications of its own such as when leaving abusive content
after it was reported is unacceptable for legal reasons. Sim-
ilarly, a monitoring algorithm which either rejects or tests
has applications of its own in systems where accidentally re-
moving content bears high cost. Later we generalize these
two algorithms into an universal monitoring algorithm with
at most ε1N false positive (accepts erroneous flags) and at
most ε2N false negative errors (ignores correct flags).

The high level idea behind the algorithm is as follows.
When flag i arrives, the algorithm flips a pi-biased coin and
tests the flag with probability pi and accepts it otherwise.
After each flag, the new probability pi+1 is computed. The
crux is to determine the update rule for the consequent of
pi’s. A naive approach would be to set p1 = · · · = pk = 1
for some k, and use the fraction of incorrect flags out of k
as pj for j > k. However, if user changes strategy after k
flags, this method will fail. A different approach is to fix
some window size w and test a fraction in each window i
to estimate the number ni of incorrect flags, and use ni/w

6If some item was demoted or deleted on request of a user,
it will no longer be equally visible to other users, and thus
likely to become uncorrectable.
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as testing probability for subsequent window. Again, if user
changes strategy between windows, this method will fail and
make far too many errors. Thinking about this further, one
will realize that we need a more flexible way to combine
testing probability, and knowledge from each testing. Our
approach is based on the following simple observation – if
we test flags with probability p, then upon discovery of a
false flag, the expected number of missed false flags is 1−p

p
,

independently of user strategy. Indeed, since each false flag
is tested with probability p, the expected stopping time on
a sequence of false flags is 1−p

p
. Thus, intuitively if between

two consecutive discoveries of false flags the testing proba-
bility was in the range [p′, p′′] then we have both lower and
upper bound on the expected number of missed flags in be-

tween as 1−p′

p′
and 1−p′′

p
. The formal proof of this statement

is not obvious since the actual probability p′ is changing non-
deterministically and is in fact not bounded away from zero
in advance. A technical achievement in our paper is to in-
deed develop this idea formally as in Theorem 3.1, but this
intuition suffices. Using this, we can keep track of approxi-
mately how many false items we have accepted (e.g. number
of false positive errors), and thus can chose new pi in such
a way so that we satisfy the constraint on the number of
false positives in expectation. See Algorithm 1 for the full
details.

Algorithm 1 Test-Accept Algorithm

Input: A stream of flags.
Output: For each flag we either accept or test it. If the flag
is tested the algorithm learns its true state
Description:

1. Set testing probability pi = 1, estimated number of
false skipped flags at L = 0;

2. For each flag i,

(a) Test flag with probability pi and accept otherwise.

(b) If flag is tested and the flag is false, set L ←
L + 1−pi

pi

(c) Set the new testing probability pi+1 ← 1
εi+1−L

.

Test-accept and test-reject cases are symmetric (with de-
fault action accept action being replaced by reject, and in
step 2b, L increases if the flag is true). For completeness
Algorithm 2, provides full details on test-reject algorithm.

Combining Two Cases.

The idea behind test-accept-reject algorithm is that we just
run test-accept and test-reject algorithms in parallel, with
only one of them being active and producing the next ac-
tion. After every step, both algorithms advance one step,
and we re-set active algorithm to the one which has lower
probability of testing. The complete algorithm is given on
Figure 3.

3. ANALYSIS
We first analyze errors by the monitoring algorithm

against an adversarial user; later, we analyze the number
of tests it performs against a standard user.

Algorithm 2 Test-Reject Algorithm

Input: A stream of flags.
Output: For each flag we either reject or test it. If the flag
is tested the algorithm learns its true state
Description:

1. Set testing probability pi = 1, estimated number of
true skipped flags at L = 0;

2. For each flag i,

(a) Test flag with probability pi and reject otherwise.

(b) If flag is tested and it is true, set L← L + 1−pi

pi

(c) Set the new testing probability pi+1 ← 1
εi+1−L

.

Algorithm 3 Adaptive Probabilistic Testing algorithm

Input: Stream of flags, constants ε1, ε2

Output: For each flag, output test, accept or reject
Description:

Let A and B be the test-accept and test-reject algo-
rithms respectively.

For each flag, the algorithms A and B are run in parallel
to produce probabilities pA

i and pB
i .

If pA
i < pB

i , set algorithm A as active, B as passive.
Else, set B as active and A as passive.

Active algorithm flips a coin performs its action and
updates its state. Passive algorithm is executed to up-
date its pi, but the suggested action is not performed.

3.1 Adversarial Users
We begin by analyzing the test-accept algorithm. For

each flag this algorithm tests each flag with certain prob-
ability and accepts it otherwise. Thus the only type of error
admitted is false positives, where algorithm accepts a false
flag. Intuitively, how many undetected false flags there are
between two detected ones? We begin by estimating the run
length until the first detected flag, if the testing probabilities
is some non-increasing sequence {pi}.

Lemma 3.1. Let {ri} be a sequence of Bernoulli tri-
als with parameter pi, where {pi} is monotonically non-
increasing sequence, and pi itself can depend on rj, for
j < i. Let Q ∈ [0,∞] be the hitting time for the sequence
{r0, r1, . . . }. In other words random variable Q is equal to
the first index i, such that ri = 1. Then for any γ, we have
the expectation bound:

E [Q|pQ ≥ γ] ≤ (1−γ)/γ and E [Q|pQ] ≤ (1−pQ)/pQ (1)

and further the realizations are concentrated around the ex-
pectation:

Pr [Q > c/γ |pQ ≥ γ] ≤ e−c and Pr [Q > c/pQ] ≤ e−c (2)

Proof. Consider sequence r
(γ)
i , such that r

(γ)
i = ri if pi ≥ γ

and is Bernoulli trial with probability γ otherwise. And

suppose Q(γ) is a hitting time for r
(γ)
i . Then

E
h

Q(γ)
i

= E
h

Q(γ)|pQ ≥ γ
i

Pr [pQ ≥ γ]

+ E
h

Q(γ)|pQ < γ
i

Pr [pQ < γ] ≥ E
h

Q(γ)|pQ ≥ γ
i
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True False False True False True FalseFalse

Tested Accepted Accepted Tested Tested

f5 = 7f2 = 3 f3 = 4

Accepted

g1 = 4 g2 = 7

False

f4 = 6

Accepted

f6 = 9

Tested Tested

g3 = 9
R1 = 2 (2 missed false flags) R2 = 1 (1 missed flag) R3 = 0

f1 = 2

Figure 1: A sequence of flags. Gray flag indicates that the flag was not tested and its true state is unavailable
to the algorithm. fi indicates indices of all false flags (both discovered and not), gi indicates realization of
indices of discovered false flags. Ri is a realization of random variable “the number of undiscovered flags
between two sequential gi’s”.

where in the first transition we used the linearity of expecta-
tion and in the second we used the fact that for any fixed se-

quence P = {pi}, E
h

Q(γ)|pQ ≥ γ, P
i

< E
h

Q(γ)|pQ ≤ γ, P
i

.

On the other hand Q(γ) and Q are equal to each other if
pQ ≥ γ. Thus, we have

E [Q|pQ ≥ γ] = E
h

Q(γ)|pQ ≥ γ
i

≤ E
h

Q(γ)
i

similarly for probabilities we have:

Pr

»

Q ≥ c

γ
|pQ ≥ γ

–

= Pr

»

Q(γ) ≥ c

γ
|pQ ≥ γ

–

≤ Pr

»

Q(γ) ≥ c

γ

–

Now we just need to show E
h

Q(γ)
i

≤ (1 − γ)/γ and

Pr
h

Q(γ) ≥ cγ
i

≤ e−c. Observe that Q(γ) can be upper

bounded by geometric random variable G ≥ 0 with pa-
rameter γ. Indeed, let us suppose gi is 1 with probability

min{1, γ/pi} if r
(γ)
i = 1, and is 0 otherwise. Uncondition-

ally each gi is 1 with probability γ. Thus, hitting time G
for {gi} is a geometric random variable, and by definition
G ≥ Q. Since expectation of G is (1−γ)/γ we have the first
part of our lemma. The second part of equation (1) follows
from the definition of conditional expectation. To prove the
equation (2), we note that

Pr [G > c/γ] = (1− γ)
c
γ

+1 ≤ e−c

since it is exactly the probability that a sequence of Bernoulli
trials with identical probability γ does not hit 1 after c

γ

steps. Since Q(γ) ≥ G in the entire space, we have the
desired bound.

Theorem 3.2. For the test-accept algorithm, the expected
number of errors eu(N) ≤ εN for an adversarial user u.

Proof. We count the expected number of undetected false
positives so far after we test the ith flag. The crux is to con-
sider the underlying sequence of false flags and correspond-
ing testing probability, and hide all the true flags inside the
probability changes pi and apply lemma 3.1.

Suppose the false flags have occurred at positions f1, f2

. . . fl. We do not know what those fi are, but our goal
is to show that for any sequence the desired lower bounds
holds. Denote ri a random variable that indicates whether
i-th false flag has been accepted without testing. In other
words ri is a sequence of bernoulli trials each occurring with
probability 1− pfi

.

Consider g0, g1, ...gl′ where g0 = 0, and gi is an index
of the ith detected false flag. In other words {gi} is a ran-
dom subsequence of {fi} where algorithm detected false flag.
Note that while fi are unknown, gi are the steps of the al-
gorithm where we test and discover false flags and thus are
known. Let Ri denote a random variable that is equal to
the number of false flags between flags gi−1 and gi. We il-
lustrate all the notation we used with an example on Figure
3.1. It is easy to see that Ri =

P

j:gi−1≤fj<gi
rfj

. And thus
Pl′

i=1 Ri =
Pl

i=1 rfi
, therefore it is sufficient for us to esti-

mate E
h

Pl′

i=1 Ri

i

. Note that Ri is a hitting time for the

sequence of pgi−1
, . . . pgi

, where the sequence if over hidden
false flags pgi

is not bounded a-priori. Since our algorithm
does not increase testing probability if it does not detect
false flags by Lemma 3.1

E [Ri|pgi
] ≤ 1− pgi

pgi

.

Further, note that for fixed pgi
the expectation is bounded

independently of all earlier probabilities and therefore:

l′
X

i=1

E [Ri|pg0
. . . pgi

] =
l′

X

i=1

E
ˆ

E [Ri|pgi
]
˛

˛pg1
, . . . pgi−1

˜

≤
l′

X

i=1

1− pgi

pgi

≤ εN.

where the last transition follows from the step 2c of Al-
gorithm 1, where we have pgi

= 1
ε(gi−1)+1−L

and thus
1−pgi

pgi
≤ εgi − Lgi

, where Lgi
=

Pi
j=1

1−pgj

pgj
. Hence

Pl′

i=1

1−pgi

pgi
≤ εN.

To finish the proof:

l′
X

i=1

E [Ri] = E

2

4

l′
X

i=1

E [Ri|pg1
]

3

5
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Expanding the right hand part, we have:

E

2

4E [R1|pg1
] +

l′
X

i=2

E [Ri|pg1
]

3

5

= E

2

4E [R1|pg1
] + E [R2|pg1

, pg2
] +

l′
X

i=3

E [Ri|pg1
, pg2

]

3

5

= · · · = E

2

4

l′
X

i=1

E [Ri|g1, . . . gi]

3

5

≤ E

2

4

l′
X

i

1− pgi

pgi

3

5 ≤ εN

Similarly to above, the same results apply to the test-
reject algorithm. Combining these two results together we
have:

Theorem 3.3. For APT monitoring algorithm the ex-
pected number of false positives is at most ε2N and the ex-
pected number of false negatives is at most ε2N .

Proof. Indeed, lets A denote the set of items where test-
accept algorithm was active, and let B denote the set of
items where test-reject algorithm was active. During the B
phase, the test-accept algorithm did not produce any mis-
take (since no item was accepted), thus the expected number
of errors still test-accept is ε1N . More formally, we define
Ri as aa hitting times, of detecting false flags, with an extra
constraint that the algorithm must have been active, and
the analysis carries through.

3.2 Standard Users
In this section, we consider standard users. Recall that for

a standard user, each flag is incorrect with some unknown
probability pu. This models two dimensions about users
in negative feedback systems. First, even genuine users err
sometimes, but it is not correlated across items, and hence
we assume it is with some fixed, independent, but unknown
probability pu. Second, some of non-malicious users might
be clueless and err; in such cases, the error probability pu is
again considered independently random, not correlated with
the items. We abstract these as STD(p) users. Note that p
may be small as in the first case or large as in the second
case. What is the minimum number of tests we need to
perform to guarantee at most ε1N of false positive? Since
the user is random the only parameters we can tune are the
number of tests T , the number of accepts A and the number
of rejects R with the goal of minimizing T , since it does not
matter which flags got tested:

T + A + R = N, Ap ≤ ε1N, R(1− p) ≤ ε2N, min T

Thus if p ≤ ε1 then we can accept all the flags and not do
any testing. On the other hand if p ≥ 1 − ε2, then we can
reject all flags and again not perform any testing. In the
general case it can be shown that the total fraction of tested
flags will be at least 1− ε1

p
− ε2

1−p
. In the case when ε2 = 0

we get the total fraction of flags that needs to be tested is
at least p−ε1

p
and if ε1 = 0 it becomes 1−p−ε2

1−p
.

We now analyze the behavior of our algorithm and show
that for a standard user the algorithm is competitive with

respect to the optimal algorithm described above. Equiva-
lently, we prove that if p ≤ ε then the expected number of
tests is o(N) and if p ≥ ε then it is bounded by 4 OPT.
As empirical evaluation in Section 4 shows, the analysis be-
low is very likely to be not tight, and providing a tighter
constant is an interesting open problem.

Theorem 3.4. For a STD(p) user with N flags, each
false with probability p, the test-accept algorithm performs

in expectation βN
p
ε tests if p ≤ ε, and γN + c tests oth-

erwise, where γ = 4 p−ε
p

and c and β are O(1). Similarly

test-reject algorithm performs at most βN
1−p

ε if p ≥ 1 − ε
and 4 1−p−ε

1−p
N + c otherwise.

Proof. Suppose our target is ε fraction of errors. It is easy
to see that the algorithm can be reformulated as follows.
At step i test with probability 1

1+εi
, and every time the

item is tested, the probability of testing resets back to 1
with probability p. The question then becomes what is the
expected number of tests we will perform? The full proof is
given in the appendix.

Finally, we analyze the performance of the APTalgorithm.

Theorem 3.5. Consider STD(p) a user u with N flags.
The number of tests performed by the APT algorithm is at
most 4 OPT + 2max(ε1, ε2)N + o(N).

Proof.
The total number of tests is the lesser of the number of

tests performed by either of the test-accept and test-reject
algorithms in isolation. Thus it is sufficient to only consider
ε1 ≤ p ≤ 1 − ε2, otherwise, by Theorem 3.4 the expected
number of tests is o(N). For the latter case we have, the
expected number of tests is:

tAPT
STD(p)(N) ≤ 4n min(1− ε1

p
, 1− ε2

1− p
). (3)

If p ≥ 1/2 , the number of tests performed by the optimal
algorithm is tOPT

STD(p)(N) ≥ N(1− ε1

p
− ε2

1−p
) ≥ N(1− ε1

p
−2ε2).

Similarly, for p ≤ 1/2 the number of tests is bounded by:
tOPT
STD(p(N) ≥ N(1− ε1

p
− ε2

1−p
) ≥ n(1− ε1

1−p
−2ε1), combining

these two inequalities with equation (3) we have the desired
result.

4. EXPERIMENTS
In this section we perform two kinds of experiments. First,

on synthetic data, we compare our algorithm with the opti-
mal algorithm which knows user strategy in advance. The
primary goal here is to show that not only the algorithm per-
forms only constant times as optimal, but to further demon-
strate that the constant is very close to 1.

Second, we present results from running our algorithm on
real data consisting of abuse reports submitted to several
Google properties. An important observation here is that
since our algorithms are not using the actual content in any
way, the only important quantity is the number of reports
per user. In all our experiments we assume that acceptable
error level for either false positive or false negative type of
errors is 0.1.

Synthetic data. We first demonstrate the performance
(number of tests and number of errors) of the algorithm
against standard users. To achieve this we plot the optimal
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Figure 2: Experiments on synthetic data
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number of tests for fixed acceptable error ε = 0.1 and p
changing from 0.01 to 1 for STD(p) against average number
of tests performed by APT . For each p we assume 1000 flags
and run the experiments 30 times, to get accurate estimate
of the expected number of tests performed. The results are
presented in Figure 3(a). It is clear that our algorithm is in
fact much closer to the optimal than the theoretical analysis
above suggests, and tAPT

STD(p)(N) is more like tOPT
STD(p)(N) +

o(N).
On the Figure 3(b) we consider a user who changes his

error probability over time. The step-function with extreme
values between 0 and 1 is user real error rate. The best
optimal test rate (if the algorithm knew the underlying con-
stant), is step function bounded by 0.5. The line, closely
following the latter, shows the testing probability for the
APT algorithm when STD(p) user keeps changing p. It is
clear that APT algorithm automatically adjusts its testing
rate nicely to be nearly close to the best testing for STD(p)
for whatever p the user uses for a period of time.

Experiments with real data. In this section we present
experimental results that we perform using real data, which
contains a subset of abuse reports accumulated by various
Google services over the period of time of about 2 years.
The dataset contained roughly about 650 randomly selected
anonymized users who submitted at least 50 reports to the
system (some submitted considerably more). Their total
contribution was about 230,000 flags. The algorithm com-
puted testing probability independently for every user, and
thus our guarantees apply for every user independently. Our
goal was to measure to average testing rate as a function of
the total number of flags, since it translates to immediate re-
duction of amount of manual labor required. On Figure 3(c)
we plot the number of total flags arrived into system (blue
curve), vs the total number of tested flags (green curve).
The bottom three curves show the actual fraction of admit-
ted errors vs the acceptable error levels.

To illustrate the actual fraction of tested flags we refer
to Figure 3(d). As one can see the testing ratio in general
hovers around 0.35, which means that only roughly 1 in

every 3 user flags needs to get tested, and the remainder
can be acted on automatically.

5. FUTURE WORK AND CONCLUSIONS
We described a simple model for monitoring negative feed-

back systems, and presented the APT algorithm with ex-
pected number of errors ≤ εN for even adversarial users;
for a standard user STD(p), the expected number of tests is
close to that of the optimal algorithm for STD(p). Practi-
tioners look for such algorithms that are resistant to adver-
sary users, while still being gracefully efficient to standard
users. We have found these algorithms useful for some of
the Google systems.

From a technical point of view, the immediate open ques-
tion is if our analysis of APT algorithm can be improved
since our experiments indicate tAPT

STD(p)(N) behaves more like

tOPT
STD(p)(N) + o(N). Further, could we extend the expected

case analysis in this paper to high concentration bounds?
We are able to analyze the APT algorithm and show that
the eAPT

u (N) is within twice the expectation with over-
whelming probability for any user, under certain mild con-
ditions. This result appears in Appendix B. We need to use
martingale inequalities to prove these bounds, but they re-
quire bounded difference, whereas hitting times of our algo-
rithm are not bounded. We overcome this problem by suit-
ably modifying Azuma’s inequality. This analysis may be
of independent interest. Similar high concentration bounds
for tAPT

STD(p)(N) would be of interest.
From a conceptual point of view, negative feedback sys-

tems are abundant on the Internet, and we need more re-
search on useful monitoring algorithms. For example, an
extended model is to

consider items having attributes and typical user error as
some function of those attributes that we need to learn. Sim-
ilarly considering standard (e.g. non malicious) user whose
behavior evolves over time is also important. A potential
first step in this direction is to compare the performance
of a monitoring algorithm with the optimal (but not nec-
essarily spam resistant) algorithm that is required to have
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Figure 3: Performance of the algorithm on flags received from real users.

bounded number of error on every prefix sequence of user
flags for users that change their failure probability grace-
fully over time. Another potentially interesting direction
which has practical justification is to allow monitoring algo-
rithms to take retroactive actions such as deciding to test an
item which was accepted or rejected earlier. Finally, a rich
direction is to not consider each user individually, but group
them according to their past history of reports. This allows
a reduction in the amount of testing for users who provide
only a few flags since such users can contribute a significant
fraction of flags in many real-world systems. Such a group-
ing can be dynamic and depend on users’ strategies as well
as other properties, and guarantees will be relative to the
group. We hope our work here spurs principled research on
monitoring algorithms for negative feedback systems that
are much needed.
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APPENDIX

A. PROOF OF 3.4

Proof of Theorem 3.4. We reformulate the algorithm
equivalently: at step i test with probability 1

1+εi
, and ev-

ery time we reset the probability p. The question then be-
comes what is the expected number of tests we will per-
form? Let Xi be the random variable that is 1 if there
were no reset until step i, and ith flag was tested (whether
or not the probability was reset on flag i.) Further let
Pi be the probability that there was no reset until step
i (whether or not reset happened on step i). Obviously

Pi =
Qi−1

j=1(1 − p
1+εj

) and E [Xi] = Pi

1+εi
. The number of

tests that happened before and including the first reset is
the random variable: E

ˆ
Pn

i=1 Xi

˜

=
Pn

i=1
Pi

1+εi
. Let Fn de-

notes the random variable indicating how many tests were
performed during the first n steps. Let Fn,i denote random
variables indicating how many tests were performed by the
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algorithm after i-th step respectively, provided that the reset
occurred at position i, and is 0 if the reset hasn’t occurred.
Also let Gn denote the number of tests performed by the
algorithm before and including the first reset. Note that the
algorithm has no memory and thus Fn,i = Pi

p
1+εi

Fn−i. On
the other hand since each test causes a reset with probabil-
ity p the expected number of tests before the first reset can
be expressed as

E [Gn] =

n
X

i=1

Pi

1 + εi
=

1

p
(1− Pn+1)

≤ min(
1

p
,
ln(1 + εn)

ε
) ≤ ln(1 + εn)

ε
.

Where in the first upper bound, we used

X

i = 1n 1

1 + εi
≤

Z n

1

1

εx + 1
dx ≤ ln(1 + εn)

ε
.

Thus:

E [Fn] = E

"

n
X

i=1

Fn,i + Gn

#

(4)

=
n

X

i=1

Pi

1 + εi
pE [Fn−i] +

ln(1 + εn)

ε
(5)

Now we estimate
Pn

i=1
Pi

1+εi
[1 + pE [Fn−i]]. First of all we

have:

ln[Pi] = ln(1− p

1 + ε
) +

i−1
X

j=2

ln(1− p

1 + εj
)

After some algebra, where we approximate the sum and
integrating, we have

Pi ≥
(1− p + ε)

p
ε
+1

(1 + ε)(1− p + (i− 1)ε)
p
ε

Case p ≤ ε. We need to show that E [Fn] ≤ βnα where
α = p

e
and β = 2 ln(1 + εn) 1+ε

ε
. The proof is by induction.

The base is obvious, to prove the induction hypothesis we
have:

E [Fn] ≤ ln(1 + εn)

ε
+

n
X

i=1

Pi × p× E [Fn−i]

1 + εi

≤ ln(1 + εn)

ε
+ (1− Pn+1)Fn−1

≤ ln(1 + εn)

ε
+ βnα − β(1− p + ε)α+1nα

(1 + ε)(1− p + εn)α

≤ ln(1 + εn)

ε
+ βnα − β

nα

(1 + ε)(1 + εαnα)

≤ ln(1 + εn)

ε
+ βnα − β

2(1 + ε)
≤ βnα

where first we used
Pn−1

i=1
pPi

1+εi
= 1−Pn, then that (1− p +

ε) ≥ 1 and (1 − p + εn)α ≤ (1 + εn)α ≤ 1 + (εn)α α < 1,

and finally, nα

1+εαn
≥ 1/2.

Case p ≥ ε. We have to prove E [Fn] ≤ γn + c. If p ≥ 4/3ε
the result is obvious since 4p−ε

p
≥ 1. We consider p ≤ 4/3ε

only. After some algebra, we get the following bound:

Pi

1 + εi
≥ (1− p + ε)

p
ε
+1

(1 + ε)(1− p + iε)
p
ε
+1

Substituting that into (4) we have:

E [Fn] ≤ 1

p
+

n−1
X

i=1

pPiγ(n + c− i)

1 + εi

=
1

p
+ (1− Pn)(γn + c)−

n−1
X

i=1

pPiγi

1 + εi

≤ γn + c +
1

p
− Pnc− γp

n−1
X

i=1

i(1− p + ε)α+1

(1 + ε)(1− p + εi)α+1

Thus we need to prove:

1

p
− Pncγ − γp

n−1
X

i=1

i(1− p + ε)α+1

(1 + ε)(1− p + εi)α+1
≤ 0 (6)

Let q = 1− p:

n−1
X

i=1

i

(q + εi)α+1
≥ 1

(q + ε)α+1
+

Z n

x=2

x

(q + εx)α+1
=

=
1

(q + ε)α+1
+

−(q + αεx)

(−1 + α)αε2(q + εx)α

˛

˛

˛

˛

n

x=2

=
1

(q + ε)α+1
+

−(q + px)

(−ε + p)p(q + εx)α

˛

˛

˛

˛

n

x=2

=
1

(q + ε)α+1
+

1 + p

(p− ε)p(q + 2ε)α
− q + pn

(p− ε)p(q + εn)α

substituting we have:

p

1 + ε

n
X

i=1

i(q + ε)α+1

(q + εi)α+1
≥

≥ p(q + ε)α+1

1 + ε

` 1

(q + ε)α+1
+

1 + p

(p− ε)p(q + 2ε)α
−

− q + pn

(p− ε)p(q + εn)α

´

≥ p

1 + ε
+

(1 + p)(q + ε)α+1

(1 + ε)(p− ε)(q + 2ε)α
− (q + pN)(q + ε)α+1

(1 + ε)(p− ε)(q + nε)α

Note that the last term asymptotically behaves as
O(n1−α) = o(1), and on the other hand we have Pn ≥

(q+ε)α+1

(1+ε)(q+(n−1)ε)α , thus by adjusting c independently of n we
can guarantee:

cPn −
(q + pN)(q + ε)α+1

(1 + ε)(p− ε)(q + Nε)α
≥ 1

thus we have:

cPn +
p

1 + ε

n
X

i=1

i(q + ε)α+1

(q + εi)α+1
≥

≥ p

1 + ε
+

(1 + p)(q + ε)α+1

(1 + ε)(p− ε)(q + 2ε)α
− 1

≥ p

1 + ε
− 1 +

(1 + p)(q + ε)

(1 + ε)(p− ε)
(1− p

1− p + 2ε
)

≥ (p− 1− ε)(p− ε) + (1− p2)(1− p + ε)

(1 + ε)(p− ε)

≥ (q + ε)2(q − p2 + ε)

(1 + ε)(p− ε)
≥ 1

4(p− ε)
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Using this bound and substituting γ = 4(p−ε)
p

we immedi-

ately have (6) satisfied, as needed.

B. CONCENTRATION BOUNDS ON NUM­

BER OF ERRORS
In this section we show that under certain conditions the

number of missed false flags is also tightly concentrated
around its expectation. In particular we introduce an extra

constraint to algorithm 1, that requires that each pi ≥
q

1
i
.

Curbing at this probability adds O(
√

N) extra tests, the
adversarial case is not affected, and the standard user ex-
pectation only adds o(N), thus the analysis carries through.
The proof is based on application of Azuma inequality to the
sequence of Ri with a twist that since Ri are unbounded we
need to bound each Ri with high probability.

Lemma B.1. Suppose X1 . . . Xn be a submartingale such
that Pr [Xi+1 −Xi ≥ ci] ≤ δ

n
, then

Pr [Xn ≥ λ] ≤ exp[
λ

2
P

c2
i

] + δ

Proof. In order to prove the inequality we introduce
bounded random variables that are almost always equal to
Xi, and then use Azuma inequality combined with union
bound. Let Yi = Xi − Xi−1, and let Y ′

i = min(Yi, ci),
and X ′

i =
Pn

i=1 Y ′
i , then using Azuma inequality we have

Pr [X ′
m ≥ λ] ≤ exp[− λ

2
P

c2
i

], Consider the underlying prob-

ability space and let Ω(.) denotes the subspace where con-
dition (.) is satisfied.

We have Ω(X ′
n 6= Xn) ⊆ Ω(Y ≥ ci, for some i), thus

Pr [X ′
n 6= Xn] ≤ nδ

n
= δ. On the other hand we have

Ω(Xn ≥ γ) ⊆ Ω(X ′
n 6= Xn) ∪ (Ω(X ′

n ≥ γ) ∩ Ω(X ′
n = Xn)).

Thus:

Pr [Xn ≥ λ] ≤ Pr
ˆ

X ′
n 6= Xn

˜

+ Pr
ˆ

X ′
n 6= Xn

˜

≤ δ + exp[− λ

2
Pn

i=1 c2
i

]

as needed.

Theorem B.2 (Concentration). If all pi ≥
q

1
i

we

have

Pr [(e(N)− εN) ≥ εN ] ≤ 2 exp[−ε2/3N1/6 + log N ]

Note that the constraint on pi is on the algorithm execution
(e.g. we control all pi), and not on the stopping times out-
comes, thus we are not introducing any hidden conditioning
and do not change distributions. Proof. The idea of the
proof is to apply Azuma inequality and use lemma B.1 to
get the desired bound.

Fix δ = exp[−ε2/3N1/6 + log N ] and denote c = log N/δ,

and consider Ti =
1−pgi

pgi
. By using lemma 3.1 we

have E [Ri − Ti|Ti, R0 . . . Ri−1] ≤ 0 for any Ti, and thus

E [Ri − Ti|R0 . . . Ri−1] < 0 therefore
Pi

i=0(Ri−Ti) is a sub-
martingale. On the other hand, we have:

Pr
h

Ri − Ti ≥ c
√

N
i

≤ Pr

»

Ri − Ti ≥ c

pgi

–

≤ exp[−c] ≤ δ

N
.

Where we have used that gi ≤ N , constraint on pgi
≥ i√

gi
,

and the lemma 3.1 to bound Pr
h

Ri − Ti ≥ c
pgi

i

.

Thus we can use lemma B.1 with bound ci ≤
log(N/δ)

√
N . For any l′ and λ = εN we have:

Pr

2

4

l′
X

i

Ri − Ti ≥ εN

3

5 ≤ δ + exp[− ε2N2

2l′
√

N log2(N/δ)
]

≤ exp[− ε2
√

N

(log N − log δ)2
] + δ

Now we substitute for log δ into the exponent and we get as
needed:

Pr

2

4

l′
X

i

Ri − Ti ≥ εN

3

5 ≤ δ + exp[− ε2
√

N

(log N − log δ)2
]

≤ exp[− ε2
√

N

(ε2/3N1/6)2
] + δ ≤ 2δ.
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