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ABSTRACT
The Web of Data has emerged as a way of exposing struc-
tured linked data on the Web. It builds on the central build-
ing blocks of the Web (URIs, HTTP) and benefits from its
simplicity and wide-spread adoption. It does, however, also
inherit the unresolved issues such as the broken link prob-
lem. Broken links constitute a major challenge for actors
consuming Linked Data as they require them to deal with
reduced accessibility of data. We believe that the broken
link problem is a major threat to the whole Web of Data
idea and that both Linked Data consumers and providers
will require solutions that deal with this problem. Since no
general solutions for fixing such links in the Web of Data
have emerged, we make three contributions into this direc-
tion: first, we provide a concise definition of the broken
link problem and a comprehensive analysis of existing ap-
proaches. Second, we present DSNotify, a generic frame-
work able to assist human and machine actors in fixing bro-
ken links. It uses heuristic feature comparison and employs
a time-interval-based blocking technique for the underlying
instance matching problem. Third, we derived benchmark
datasets from knowledge bases such as DBpedia and eval-
uated the effectiveness of our approach with respect to the
broken link problem. Our results show the feasibility of a
time-interval-based blocking approach for systems that aim
at detecting and fixing broken links in the Web of Data.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; H.3.3 [
Information Systems]: Information Search and Retrieval

General Terms
Algorithms, Theory, Experimentation, Measurement

1. INTRODUCTION
Data integrity on the Web is not given because URI ref-

erences of links between resources are not as cool1 as they
are supposed to be. Resources may be removed, moved, or
updated over time leading to broken links. These constitute
a major problem for consumers of Web data, both human
and machine actors, as they interrupt navigational paths in

1See http://www.w3.org/Provider/Style/URI
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the network leading to the practical unavailability of infor-
mation [15, 2, 18, 19, 22].

Recently, Linked Data has been proposed as an approach
for exposing structured data by means of common Web
technologies such as dereferencable URIs, HTTP, and RDF.
Links between resources play a central role in this Web of
Data as they connect semantically related data. Meanwhile
an estimated number of 4.7 billion RDF triples and 142 mil-
lion RDF links (cf. [6]) are exposed on the Web by numerous
data sources from different domains. DBpedia [7], the struc-
tured representation of Wikipedia, is the most prominent
one. Web agents can easily retrieve these data by derefer-
encing URIs via HTTP and process the returned RDF data
in their own application context. In the example shown in
Figure 1, an institution has linked a resource representing a
band in their local data set with the corresponding resource
in DBpedia in order to publish a combination of these data
on its Web portal.

http://example.com/bands/OliverBlack http://dbpedia.org/resource/Oliver_Blackrdfs:seeAlso

Source Resource Link Target Resource

Oliver Black

foaf:name

Oliver Black is a Canadian 
rock group ...

dbpprop: abstract 
Representation Representation

Figure 1: Sample link to a DBpedia resource

The Linked Data approach builds on the Architecture of
the World Wide Web [16] and inherits the technical benefits
such as simplicity and wide-spread adoption but also the
unsolved problems such as broken links. In the course of
time, resources and their representations can be removed
completely or “moved” to another URI meaning that they
are published under a different HTTP URI. In case of the
above example, the band eventually changed its name and
the title of their Wikipedia entry to “Townline”, with the
result that the corresponding DBpedia entry moved from its
previous URI to http://dbpedia.org/resource/Townline.

In the Linked Data context, we informally speak of links
pointing from one resource (source) to another resource (tar-
get). Such a link is broken when the representations of the
target cannot be accessed anymore. However, we consider
a link also as broken when the representations of the target
resource were updated in such a way that they underwent a
change in meaning the link-creator had not in mind.

When regarding the changes in recent DBpedia releases,
the broken link problem becomes evident: analogous to [7],
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we analyzed the instances of common DBpedia classes in the
snapshots 3.2 (October 2008) and 3.3 (May 2009), identified
the events that occurred between these versions and catego-
rized them into move, remove, and create events. The results
in Table 1 show that within a period of about seven months
the DBpedia data space has grown and was considerably re-
organized. Different from other data sources, DBpedia has
the great advantage that it records move events in so-called
redirect links that are derived from redirection pages. These
are automatically created in the Wikipedia when articles are
renamed.

Class Ins. 3.2 Ins. 3.3 MV RM CR
Person 213,016 244,621 2,841 20,561 49,325
Place 247,508 318,017 2,209 2,430 70,730
Organisation 76,343 105,827 2,020 1,242 28,706
Work 189,725 213,231 4,097 6,558 25,967

Table 1: Changes between two DBpedia releases.
Ins. 3.2 and Ins 3.3 denote the number of instances
of a certain DBpedia class in the respective release
data sets, MV the moved, RM the removed, and
CR the number of created resources.

If humans encounter broken links caused by a move event,
they can search the data source or the Web for the new lo-
cation of the target resource. However, for machine agents
broken links can lead to serious processing errors or misin-
terpretation of resources when they do not implement ap-
propriate fallback mechanisms. If, for instance, the link in
Figure 1 breaks and the target resource becomes unavailable
due to a remove or move event, the referenced biography
information cannot be provided anymore. If the resource
representations are updated and undergo a change in mean-
ing, the Web portal could encounter the problem of exposing
semantically invalid information.

While the detection of broken links on the Web is sup-
ported by a number of tools, there are only few approaches
for automatically fixing them [19]. Techniques for dealing
with the broken link problem in the Web of Data do not
exist yet. The current approach is to rely on the HTTP
404 Not Found response and assume that data-consuming
actors can deal with it. We consider this as insufficient and
propose DSNotify, which we informally introduced in [12],
as a possible solution. DSNotify is a generic change detec-
tion framework for Linked Data sources that informs data-
consuming actors about the various types of events (create,
remove, move, update) that can occur in data sources.

Our contributions are: (i) we formalize the broken-link
problem in the context of the Web of Data and provide a
comprehensive analysis of existing solution strategies (Sec-
tion 2), (ii) we present DSNotify, focusing on its core algo-
rithms for handling the underlying instance matching prob-
lem (Section 3), and (iii) we have derived benchmark data
sets from the ISLab Instance Matching Benchmark [11] and
from the DBpedia knowledge base and evaluate the effec-
tiveness of the DSNotify approach (Section 4).

2. THE BROKEN LINK PROBLEM
In the previous section, we informally described the bro-

ken link problem and its possible consequences. In this sec-
tion we want to contribute a formal definition of a broken
link in the context of Linked Data and discuss existing so-
lution strategies for dealing with this problem.

2.1 Broken Links and Events
We distinguish two types of broken links that differ in their

characteristics and in the way how they can be detected and
fixed: structurally and semantically broken links.

Structurally broken links. Formally, we define structurally
broken (binary) links as follows:

Definition 1 (Broken Link). Let R and D be the set
of resources and resource representations respectively and
P(A) be the powerset of an arbitrary set A.
Further let δt : R −→ P(D), be a dereferencing function
returning the set of representations of a given resource at a
given time t.
Now we can define a (binary) link as a pair
l = (rsource, rtarget) with rsource ∧ rtarget ∈ R.
Such a link is called structurally broken if
δt−Δ(rtarget) �= ∅ ∧ δt(rtarget) = ∅.

That is, a link (as depicted for example in Figure 1) is
considered structurally broken if its target resource had rep-
resentations that are not retrievable anymore2. In the re-
mainder of this paper, we will refer to structurally broken
links simply as broken links if not stated otherwise.

Semantically broken links. Apart from structurally bro-
ken links, we also consider a link as broken if the human
interpretation (the meaning) of the representations of its
target resource differs from the one intended by the link au-
thor. In a quantitative analysis of Wikipedia articles that
changed their meaning over time [13], the authors found out
that only a small number of articles (6 out of a test set
of 100 articles) underwent minor or major changes in their
meaning. However, we do not think that these results can
be generalized for arbitrary data sources.

In contrast to structurally broken links, semantically bro-
ken links are much harder to detect and fix by machine ac-
tors. But they are fixable by human actors that may, in a
semi-automatic process, report such events to a system that
then forwards these events to subscribed actors. We have
foreseen this in our system (see Section 3).

Events. Having defined links and broken links we can now
define events that occur when datasets are modified, possi-
bly leading to broken links:

Definition 2 (Event). Let E be the set of all events
and e ∈ E be a quadruple e = (r1, r2, τ, t), where r1 ∈ R and
r2 ∈ R ∪ {∅} are resources affected by the event,
τ ∈ {created, removed, updated,moved} is the type of the
event and t is the time when the event took place. Further
let L ⊆ E be a set of detected events.

Then we can assert that, ∀r ∈ R :
δt−Δ(r) = ∅ ∧ δt(r) �= ∅ =⇒ L←− L ∪ {(r, ∅, created, t)} .
δt−Δ(r) �= ∅ ∧ δt(r) = ∅ =⇒ L←− L ∪ {(r, ∅, removed, t)} .
δt−Δ(r) �= δt(r) =⇒ L←− L ∪ {(r, ∅, updated, t)} .

Note the analogy between the definition of broken links
and removed events: whenever the representations of a link

2Note that our definitions do not consider a link as broken
if only some of the representations of the target resource are
not retrievable anymore. We consider clarifications of this
issue as a topic for further research.
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target are removed, the corresponding links are broken. Now
we have defined create, remove and update events, but what
about the event type “moved”? In fact, it is not possible
to speak about moved resources considering only the pre-
vious definitions. Although there is no concept of resource
location in RDF, it exists in the Web of Data as it relies
on dereferencable HTTP URIs. For this reason, we define a
weak equality relation between resources in the Web of Data
based on a similarity relation between its representations
and build on that to define move events:

Definition 3 (Move Event).
Let σ : P(D) × P(D) −→ [0, 1] be a similarity function
between two sets of resource representations. Further let
Θ ∈ [0, 1] be a threshold value.

We define the maximum similarity of a resource
rold ∈ {r ∈ R|δt(rold) = ∅} with any other resource rnew ∈
R \ {rold} as simmax

rold
≡ max(σ(δt−Δ(rold), δt(rnew))) .

Now we can assert that:
∃!rnew ∈ R|δt−Δ(rnew) = ∅ ∧Θ < σ(δt−Δ(rold), δt(rnew)) =
simmax

rold
=⇒ L ← L ∪ {(rnew , rold, moved, t)} .

Thus, we consider a resource as moved from one HTTP
URI to another when the resource with the “old” URI was
removed, the resource with the “new” URI was created and
the representations retrieved from the “old” URI are very
similar3 to the representations retrieved from the“new”URI.

2.2 Solution Strategies
In consequence of Definition 1, we further provide a more

informal definition of link integrity :

Definition 4 (Link Integrity). Link integrity is a
qualitative measure for the reliability that a link leads to the
representations of a resource that were intended by the au-
thor of the link.

Methods to preserve link integrity have a long history in
hypertext research. We have analyzed existing approaches
in detail, building to a great part on Ashman’s work [2] and
extending it. In the following, we categorize broken links by
the events that caused their breaking:
type A: links broken because source resources were moved4,
type B: links broken because target resources were moved
and type C: links broken because source or target resources
were removed. The identified solution strategies are sum-
marized in Table 2 and discussed in the following:

Ignoring the Problem. Although this can hardly be called
a “solution strategy”, it is the status-quo to simply ignore
the problem of broken links and shift it to higher-level ap-
plications that process the data. As mentioned before, this
strategy is even less acceptable in the Web of Data.

Embedded Links. The embedded link model [8] is the most
common way how links on the Web are modeled. As in
HTML, the link is embedded in the source representation

3Note that in the case that there are multiple possible move
target resources with equal (maximum) similarity to the re-
moved resource rold, no event is issued (∃! should be read as
“there exists exactly one”).
4Note that in our definitions we did not consider links of
type A as we assumed an embedded link model for Linked
Data sources.

Broken link type
Solution Strategy Class A B C
Ignoring the Problem - � � �
Embedded Links p � � �
Relative References p � �� �
Indirection p � � ��
Versioned and Static Collections p � � �
Regular Updates p � � �
Redundancy p � � �
Dynamic Links a � � �
Notification c � � �
Detect and Correct c � � �
Manual Edit/Search c � � �

Table 2: Solution strategies for the broken link prob-
lem. The strategies are classified according to Ash-
man [2]: preventative methods (p) that try to avoid
broken links in the first place, adaptive methods (a)
that create links dynamically thereby avoiding bro-
ken links and corrective methods (c) that try to fix
broken links. Symbols: potentially fixes/avoids such
broken links (�), does not fix/avoid such broken
links (�), partly fixes/avoids such broken links (��)

and the target resource is referenced using e.g., an HTTP
URI reference. This method preserves link integrity when
the source resource of a link is moved (type A).

Relative References. Relative references prevent broken
links in some cases (e.g., when a whole resource collection
is moved). But neither does this method avoid broken links
due to removed resources (type C ), nor does it hinder links
with external sources/targets (i.e., absolute references) from
breaking.

Indirection5. Introducing a layer of indirection allows con-
tent providers to keep links to their Web resources up to
date. Aliases refer to the location of a resource and special
services translate between an alias and its referred location.
Moving or removing a resource requires an update in these
service’s translation tables. Uniform Resource Names were
proposed for such an indirection strategy, PURLs and DOIs
are two well known examples [1]. Permalinks use a similar
strategy, although the translation step is performed by the
content repository itself and not by a special (possibly cen-
tral) service. Another special case on the Web is the use
of small (“gravestone”) pages that reside at the locations of
moved or removed resources and indicate what happened to
the resource (e.g., by automatically redirecting the HTTP
request to the new location).

The main disadvantage of the indirection strategy is that
it depends on notifications (see below) for updating the
translation tables. Furthermore it “. . . requires the cooper-
ation of link creators to refer to the alias instead of to the
absolute address.” [2]. Another disadvantage is that spe-
cial “translation services” (PURL server, CMS, gravestone
pages) are required that introduce additional latency when
accessing resources (e.g., two HTTP requests instead of one).
Nevertheless, indirection is an increasingly popular method
on the Web. This strategy prevents broken links of type A

5The “Dereferencing (Aliasing) of End Points” and “For-
warding Mechanisms and Gravestones” categories from [2]
are combined in this category.
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and B and can also help with type C links, e.g., removed
PURLs result in HTTP 410 status code (Gone), which al-
lows an application to react accordingly (e.g., by removing
the links to this resource).

Versioned and Static Collections. In this approach, no
modifications/deletions of the considered resources are al-
lowed. This prevents broken links of types A-C within a
static collection (e.g., an archive), links with sources/targets
outside this collection can still break. Examples are HTML
links into the Internet Archive6. Furthermore, semantically
broken links may be prevented when e.g., linking to a certain
(unmodifiable) revision of a Wikipedia article.

Regular Updates. This approach is based on predictable
updates to resource collections, so applications can easily
update their links to the new (predictable) resource loca-
tions, avoiding broken links of types A-C ).

Redundancy. Redundant copies of resource representations
are kept and a service forwards referrers to one of these
copies as long as at least one copy still exists. This approach
is related to the versioning and indirection approaches. How-
ever, such services can reasonably be applied only to highly
available, unmodifiable data (e.g., collections of scientific
documents). This method may prevent broken links of types
A-C, examples include LOCKSS [21] or RepWeb [23].

Dynamic Links. In this method, links are created dynami-
cally when required and are not stored, avoiding broken links
of types A-C. The links are created based on computations
that may reflect the current state of the involved resources
as well as other (external) parameters, i.e., such links may
be context-dependent. However, the automatic generation
of links is a non-trivial task and this solution strategy is not
applicable to many real-world problems.

Notification Here, clients are informed about the events
that may lead to broken links and all required information
(e.g., new resource locations) is communicated to them so
they can fix affected links. This strategy was for example
used in the Hyper-G system [17] where resource updates are
propagated between document servers using a p-flood algo-
rithm. It is also the strategy of Silk and Triplify discussed
in Section 5. This method resolves broken links caused by
A-C but requires that the content provider can observe and
communicate such events.

Detect and Correct. The solution for the broken link prob-
lem proposed in this work falls mainly into this category
that Ashman describes in her work as: “. . . the application
using the link first checks the validity of the endpoint refer-
ence against the information, perhaps matching it with an
expected value. If the validity test fails, an attempt to correct
the link by relocating it may be made . . . ” [2].

As all other solutions in this category (cf., Section 5), we
use heuristic methods to semi-automatically fix broken links
of the types A-C.

6For example the URI http://web.archive.org/web/
19971011064403/http://www.archive.org/index.html
references the 1997 version of the internet archive main
page.

Dsrc Dtgt

links to

Application

updates
consumes

consumes

DSNotifynotifies

monitors

consumes notifies

event choice

User

Figure 2: DSNotify Usage Scenario.

Manual Edit/Search. In this category we summarize man-
ual strategies for fixing broken links or re-finding missing
link targets. This “solution strategy” is currently arguably
among the most popular ones on the Web. First, content
providers may manually update links in their contents (per-
haps assisted by automatic link checking software like W3C’s
link checker). Second, users may re-find the target resources
of broken links e.g., by exploiting search engines or by man-
ual URI manipulations.

3. DSNOTIFY
After having investigated possible solution strategies to

deal with the broken link problem, we now present our own
solution strategy. It is called DSNotify and is a generic
change detection framework that assists human and machine
actors in fixing broken links. It can be used as an add-on to
existing applications that want to preserve link integrity in
the data sets that are under their control (detect and correct
strategy, see below). It can also be used to notify subscribed
applications of changes in a set of data sources (notification
strategy). Further, it can be set-up as a service that au-
tomatically forwards requests to new resource locations of
moved resources (indirection strategy).

DSNotify is not meant to be a service that monitors the
whole Linked Data space but rather as a light-weight com-
ponent that can be tailored to application-specific needs and
detects modifications in selected Linked Data sources.

A typical usage scenario is illustrated in Figure 2: an ap-
plication hosts a data set Dsrc that contains links to a target
data set Dtgt. The application consumes and integrates data
from both data sets, and provides a view on this data (such
as a Website) consumed by Web users. The application uses
DSNotify to monitor Dtgt as it has no control over this tar-
get data set. DSNotify notifies the application (and possibly
other subscribed actors) about the events occurring in Dtgt

and the application can update and fix potentially broken
links in the source data set.

3.1 General Approach
Our approach for fixing broken links is based on an in-

dexing infrastructure. A monitor periodically accesses con-
sidered data sources (e.g., a Linked Data source), creates
an item for each resource it encounters and extracts a fea-
ture vector from this item’s representations. The feature
vector is stored together with the item’s URI in an item
index (ii). The set of extracted features, their implementa-
tion, and their extractors are configurable. Feature vectors
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are updated in the ii with every monitoring cycle resulting
in possible update events logged by DSNotify.

Items corresponding to resources that are not found any-
more are moved to another index, the removed item index
(rii). After some timeout period, items are moved from the
rii to a third index called the archived item index (aii) re-
sulting in a remove event (cf. Definition 2).

Items in the ii and the rii are periodically considered by a
housekeeper thread (a “move detector”) that compares their
feature vectors and tries to identify possible successors for
removed (real-world) items (cf. Definition 3). A plug-in
heuristic is used for this comparison; in the default con-
figuration a vector space model acting on the extracted and
weighted feature vectors is used. The similarity measures for
the features themselves are configurable; for character string
features one could use, for instance, exact string matching
or the Levenshtein distance. The similarity value calculated
by the heuristic is compared against threshold values7 to
determine whether an item is another item’s predecessor
(resulting in a detected move event) or not (possibly re-
sulting in a detected create event). The predecessors of the
newly indexed items are moved to the aii and linked to the
new corresponding items. This enables actors to query the
DSNotify indices for actual locations of items.

The events detected by DSNotify are stored in a central
event log. This log as well as the indices can be accessed
via various interfaces, such as a Java API, an XML-RPC
interface, and an HTTP interface.

3.2 Time-interval-based Blocking
The main task of DSNotify is the efficient and accurate

matching of pairs of feature vectors representing the same
real-world item at different points in time. As in record
linkage and related problems (cf. Section 5), the number of
such pairs grows quadratically with the number of consid-
ered items resulting in unacceptable computational effort.
The reduction of comparisons is called blocking and various
approaches have been proposed in the past [25].

We have developed a time-interval-based blocking (TIBB)
mechanism for an efficient and accurate reduction of the
number of compared feature vector pairs. Our method in-
cludes only the feature vectors derived from items that were
detected as being recently created or removed, blocking out
the vast majority of the items in our indices. Reconsider-
ing Definition 3, this means that we are allowing only small
values for Δ. Thus, if x is the number of feature vectors
stored in our system, n is the number of new items and r
is the number of recently removed items with n + r ≤ x,
then the number of comparisons in a single DSNotify house-
keeping operation is n · r instead of x2. It is intuitively clear
that normally n and r are much smaller than x and therefore
n ·r � x2. The actual number of feature vector comparisons
in a single housekeeper operation depends on the vitality of
the monitored data source with respect to created, removed
and moved items and on the frequency of housekeeping op-
erations8. We have analyzed and confirmed this behavior in
the evaluation of our system (see Section 4).

7Note that using threshold values for the determination
of non-matches, possible-matches and matches was already
proposed by Fellegi and Sunter in 1969 [10].
8As housekeeping and monitoring are separate operations
in DSNotify, this number depends also on the monitoring
frequency when lower than the housekeeping frequency.
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Figure 3: Example timeline illustrating the main
workflow of DSNotify. Ci,Ri and Mi,j denote create,
remove and move events of items i and j. mx and
hx denote monitoring and housekeeping operations
respectively. The current index contents is shown
in the grey boxes below the respective operation,
the overall process is explained in the text.

3.3 Monitoring and Housekeeping
The cooperation of monitor, housekeeper, and the indices

is depicted in Figure 3. To simplify matters, we assume an
empty dataset at the beginning. Then four items (A,B,C,D)
are created before the initial DSNotify monitoring process
starts at m0. The four items are detected and added to
the item index (ii). Then a new item E is created, item A
is removed and the items B and C are “moved” to a new
location becoming items F and G respectively. At m1 the
three items that are not found anymore by the monitor are
“moved” to the removed item index (rii) and the new item
is added to the ii. When the housekeeper is started for the
first time at h1, it acts on the current indices and compares
the recent new items (E,F ,G) with the recently removed
items (B,C,A). It does not include the “old” item D in its
feature vector comparisons. The housekeeper detects B as a
predecessor of F and C as a predecessor of G, moves B and
C to the archived item index (aii) and links them to their
successors. Between m1 and m2 a new item is created (H),
two items (F ,D) are removed and the item E is “moved”
to item I . The monitor updates the indices accordingly at
m2 and the subsequent housekeeping operation at h2 tries
to find predecessors of the items H and I . But before this
operation, the housekeeper recognizes that the retention pe-
riod of item A in rii is longer than the timeout period and
moves it to the aii. The housekeeper then detects E as a
predecessor of I , moves it also to the aii and links it to I .
Between m2 and m3 no events take place and the indices
remain untouched by the monitor. At h3 the housekeeper
recognizes the timeout of the items F and D and moves
them to the aii leaving an empty rii.

3.4 Event Choices
As mentioned before, a threshold value (upperThreshold)

is used to decide whether two feature vectors are similar
enough to assume their corresponding items as a predeces-
sor/successor pair. Furthermore, DSNotify uses a second
threshold value (lowerThreshold) to decide whether two fea-
ture vectors are similar enough to be even considered as
such a pair (“possible move candidates”, pmc). When none
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Data: Item indices ii, rii, aii
Result: List of detected events L
begin

Move timed-out items from rii to aii ;
L←− ∅; PMC ←− ∅;
foreach ni ∈ ii.getRecentItems() do

pmc←− ∅;
foreach oi ∈ rii.getItems() do

sim←− calculateSimilarity(oi, ni);
if sim > lowerThreshold then

pmc←− pmc + {(oi, ni, sim)};
end

end
if pmc = ∅ then

L←− L + {(ni, ∅, create)};
else

PMC ←− PMC + {pmc};
end

end
foreach pmc ∈ PMC do

if pmc �= ∅ then
(oimax, nimax, simmax)←−
getElementWithMaxSim(pmc);
if simmax > upperThreshold then

L←− L + {(oimax, nimax, move)};
move oimax to aii;
link oimax to nimax;
remove all elements from PMC where
pmc.oi = oimax;

else
Issue an eventChoice for pmc;

end
end

end
return L;

end
Algorithm 1: Central DSNotify housekeeping algorithm.

of the feature vectors considered for a possible move op-
eration are similar enough (i.e., >upperThreshold), DSNo-
tify stores all considered pairs of feature vectors with sim-
ilarity values >lowerThreshold in a so-called event choice
object. Event choices are representations of decisions that
have to be made outside of DSNotify, for example by hu-
man actors or by other machine actors that can resort to
additonal data/knowledge. These external actors may ac-
cess the log of event choice objects and send their decisions
about what feature vector pair (if any) corresponds to a pre-
decessor/successor pair back. DSNotify will now update its
indices accordingly and send notifications to all subscribed
actors. A detailed description of the overall housekeeping al-
gorithm, the core of DSNotify, is presented in Algorithm 1.

3.5 Item History and Event Log
As discussed above, DSNotify incrementally constructs

three central data structures during its operation: (i) an
event log containing all events detected by the system, (ii) a
log containing all unresolved event choices and (iii) a linked
structure of feature vectors constituting a history of the re-
spective items. This latter structure is stored in the indices
maintained by DSNotify. All three data structures can be
accessed in various ways by agents that make use of DSNo-
tify for fixing broken links as further described in [12].

As these data structures may grow indefinitely, a strategy
for pruning them from time to time is required. Currently
we rely on simple timeouts for removing old data items from
these structures but this method can still result in unaccept-

Dsrc

Dtgt

Simulator DSNotify
Dobs

Etest Edet
Analyzer

updates monitors

Results

Figure 4: The DSNotify evaluation approach. A
simulator takes two datasets (Dsrc and Dtgt) and an
eventset (Etest) as input and continuously updates
a newly created observed dataset (Dobs). DSNotify
monitors this dataset and creates a log of detected
events (Edet). This log is compared to the eventset
Etest to evaluate the system’s accuracy.

able memory consumption when monitoring highly dynamic
data sources. More advanced strategies are under consider-
ation. Note that we consider particularly the feature vector
history as a very valuable data structure as it allows ex post
analysis of the evolution of items w.r.t. their location in a
data set and the values of the indexed features.

4. EVALUATION
In the evaluation of our system we concentrated on two

issues: first, we wanted to evaluate the system for its ap-
plicability for real-world Linked Data sources, and second,
we wanted to analyze the influence of the housekeeping fre-
quency on the overall effectiveness of the system.

We evaluated our system with datasets that we call event-
sets. An eventset is a timely-ordered set of events (cf. Defini-
tion 2 and 3) that transforms a source into a target dataset.
Thus, an eventset can be seen as the event history of a
dataset. We have developed a simulator that can re-play
such eventsets, interpreting the event timestamps with re-
gard to a configurable duration of the whole simulation. Fig-
ure 4 depicts an overview of our evaluation approach.

All experiments were carried out on a system using two
Intel Xeon CPUs with 2.66 Ghz each and 8 GB of RAM.
The used threshold values were 0.8 (upperThreshold) and 0.3
(lowerThreshold). We have created two types of eventsets
from existing datasets for our evaluation: the iimb-eventsets
and the dbpedia-eventset9 .

4.1 The IIMB Eventsets
The iimb-eventsets are derived from the ISLab Instance

Matching Benchmark [11] which contains one (source) data-
set containing 222 instances and 37 target datasets that vary
in number and type of introduced modifications to the in-
stance data. It is the goal of instance matching tools to
match the resources in the source dataset with the resources
in the respective target dataset by comparing their instance
data. The benchmark contains an alignment file describing
what resources correspond to each other that can be used
to measure the effectiveness of such tools. We used this

9All data sets are available at http://dsnotify.org/.
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Name Coverage H Hnorm

tbox:cogito-Name 0.995 5.378 0.995
tbox:cogito-first sentence 0.991 5.354 0.991
tbox:cogito-tag 0.986 1.084 0.201
tbox:cogito-domain 0.982 3.129 0.579
tbox:wikipedia-name 0.333 1.801 0.333
tbox:wikipedia-birthdate 0.225 1.217 0.225
tbox:wikipedia-location 0.185 0.992 0.184
tbox:wikipedia-birthplace 0.104 0.553 0.102
Namespace prefix tbox: <http://islab.dico.unimi.it/iimb/tbox.owl# >

Table 3: Coverage, entropy and normalized en-
tropy of all properties in the iimb datasets with a
coverage > 10%. The selected properties are written
in bold.

alignment information to derive 10 eventsets, correspond-
ing to the first 10 iimb target datasets, each containing 222
move events. The first 10 iimb datasets introduce increasing
numbers of value transformations like typographical errors
to the instance data. We used random timestamps for the
events (as this data is not available in this benchmark) that
resulted in an equal distribution of events over the eventset
duration.

We have simulated these eventsets, monitored the chang-
ing dataset with DSNotify and measured precision and recall
of the reported events with respect to the eventset informa-
tion. For a useful feature selection we first calculated the
entropy of the properties with a coverage > 10%, i.e., only
properties were considered where at least 10% of the re-
sources had instance values. The results are summarized
in Table 3. As the goal of the evaluation was not to op-
timize the resulting precision/recall values but to analyze
our blocking approach, we consequently chose the properties
tbox:cogito-tag and tbox:cogito-domain for the evaluation be-
cause they have good coverage but comparatively small en-
tropy in this dataset. We calculated the entropy as shown
in Equation 1 and normalized it by dividing by ln(n).

H(p) = −
n∑

i=1

pi ln(pi) (1)

DSNotify was configured to compare these properties using
the Levenshtein distance and both properties contributed
equally (weight = 1.0) to the corresponding feature vector
comparison. The simulation was configured to run for 60
seconds, thus the monitored datasets changed with an aver-
age rate of 222

60
= 3.7 events/s.

As stated before, the goal of this evaluation was to demon-
strate the influence of the housekeeping frequency on the
overall effectiveness of the system. For this, we repeated
the experiment with varying housekeeping intervals of 1s,
3s, 10s, 20s, 30s (corresponding to an average rate 3.7, 11.1,
37.0, 74.0, 111.0 events/housekeeping cycle) and calculated
the F1-measure (the harmonic mean of precision and recall)
for each dataset (Figure 5).

Results. The results clearly demonstrate the expected de-
crease in accuracy when increasing the length of the house-
keeping intervals, as this leads to more feature vector com-
parisons and therefore more possibilities to make the wrong
decisions. Furthermore, Figure 5 depicts the decreasing ac-
curacy with the increasing dataset number. This is also
expected as the benchmarks introduces more value trans-
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Figure 5: Influence of the housekeeping interval
(hki) on the F1-measure in the iimb-eventsets evalu-
ations.

formations with higher dataset numbers, although there are
two outliners for the datasets 7 and 10.

4.2 The DBpedia Persondata Eventset
In order to evaluate our approach with real-world data we

have created a dbpedia-eventset that was derived from the
person datasets of the DBpedia snapshots 3.2 and 3.310. The
raw persondata datasets contain 20,284 (version 3.2) and
29,498 (version 3.3) subjects typed as foaf:Person each hav-
ing three properties foaf:name, foaf:surname and foaf:given-
name. Naturally, these properties are very well suited to
uniquely identify persons as also confirmed by their high
entropy values (cf. Table 4). For the same reasons as al-
ready discussed for the iimb datasets an evaluation with
only these properties would not clearly demonstrate our
approach. Therefore we enriched both raw data sets with
four properties (see Table 4) from the respective DBpedia
Mapping-based Infobox Extraction datasets [7] with smaller
coverage and entropy values.

We derived the dbpedia-eventset by comparing both data-
sets for created, removed or updated resources. We retrieved
the creation and removal dates for the events from Wikipedia
as these data are not included in the DBpedia datasets. For
the update events we used random dates. Furthermore, we
used the DBpedia redirect dataset to identify and generate
move events. This dataset contains redirection information
derived from Wikipedia’s redirect pages that are automat-
ically created when a Wikipedia article is renamed. The
dates for these events were also retrieved from Wikipedia.

The resulting eventset contained 3810 create, 230 remove,
4161 update and 179 move events, summing up to 8380
events11. The histogram of the eventset depicted in Fig-
ure 6 shows a high peak in bin 14. About a quarter of
all events occured within this time interval. We think that
such event peaks are not unusual in real-world data and are

10The snapshots contain a subset of all instances of type
foaf:Person and can be downloaded from http://dbpedia.
org/ (filename: persondata_en.nt).

11Another 5666 events were excluded from the eventset as
they resulted from inaccuracies in the DBpedia datasets.
For example there are some items in the 3.2 snapshot
that are not part of the 3.3 snapshot but were not re-
moved from Wikipedia (a prominent example is the re-
source http://dbpedia.org/resource/Tim_Berners-Lee).
Furthermore several items from version 3.3 were not in-
cluded in version 3.2 although the creation date of the corre-
sponding Wikipedia article is before the creation date of the
3.2 snapshot. We decided to generally exclude such items.
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Name Coverage H Hnorm

foaf:name (d) 1.00/1.00 9.91/10.28 1.00/1.00
foaf:surname (d) 1.00/1.00 9.11/9.25 0.92/0.90
foaf:givenname (d) 1.00/1.00 8.23/8.52 0.83/0.83
dbpedia:birthdate (d) 0.60/0.60 5.84/5.96 0.59/0.58
dbpedia:birthplace (o) 0.48/0.47 4.24/4.32 0.43/0.42
dbpedia:height (d) 0.10/0.08 0.65/0.51 0.07/0.05
dbpedia:draftyear (d) 0.01/0.01 0.06/0.05 0.01/0.01
Namespace prefix dbpedia: <http://dbpedia.org/ontology/>

Namespace prefix foaf: <http://xmlns.com/foaf/0.1/>

Table 4: Coverage, type, entropy and normalized
entropy of all properties in the enriched dbpedia
3.2/3.3 persondata sets. The selected properties
are written in bold. Symbols: object property (o),
datatype property (d).
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Figure 6: Histogram of the distribution of events in
the dbpedia-eventset. A bin corresponds to a time
interval of about 11 days.

interested how our application deals with such situations.
We re-played the eventsets, monitored the changing dataset
with DSNotify and measured precision and recall of the re-
ported events with respect to the eventset information (cf.
Figure 4). We repeated the simulation seven times varying
the number of average events per housekeeping interval and
calculated the F1-measure of the reported move events12.

For each simulation, DSNotify was configured to index
only one of the six selected properties in Table 4. To calcu-
late the similarity between datatype properties, we used the
Levensthein distance. For object properties we used a sim-
ple similarity function that counted the number of common
property values (i.e., resources) in both resources that are
compared and divided it by the number of total values.

Furthermore, we ran the simulations indexing only one
cumulative attribute, an rdf-hash. This hash function calcu-
lates an MD5 hashsum over all string-serialized properties
of a resource and the corresponding similarity function re-
turns 1.0 if the hash-sums are equal or 0.0 otherwise. Thus
this rdf-hash is sensible to any modifications in a resource’s
instance data.

Additionally we evaluated a combination of the dbpedia
birthdate and birthplace properties, each contributed with
equal weight to the weighted feature vector. The coverage of
resources that had values for at least one of these attributes
was 65% in the 3.2 snapshot and 62% in the 3.3 snapshot.

Results. The results, depicted in Figure 7, show a fast sat-
uration of the F1-measure with an decreasing number of

12We fixed the housekeeping period for this experiment to 30s
and varied the simulation length from 3600 to 56.25s. Thus
the event rates varied between 2.3 to 149.0 events/second
or 35.2 to 2250.1 events/housekeeeping interval respectively.
For these calculations we considered only move, remove and
create events (i.e., 4219 events) from the eventset as only
these influence the accuracy of the algorithm.
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Figure 7: Influence of the number of events per
housekeeping cycle on the F1-measure of detected
move events in the dbpedia-eventset evaluation.

events per housekeeping cycle. This clearly confirms the
findings from our iimb evaluation. The accuracy of DSNo-
tify increases with increasing housekeeping frequencies or
decreasing event rates. From a pragmatical viewpoint, this
means a tradeoff between the costs for monitoring and house-
keeping operations (computational effort, network transmis-
sion costs, etc.) and accuracy. The curve for the simple rdf-
hash function is surprisingly good, stabilizing at about 80%
for the F1-measure. This can be attributed mainly to the
high precision rates that are expected from such a function.
The curve for the combined properties shows maximum val-
ues for the F1-measure of about 60%.

The measured precision and recall rates are depicted in
Figure 8. Both measures show a decrease with increasing
numbers of events per housekeeping cycle. For the preci-
sion this can be observed mainly for low-entropy properties
whereas the recall measures for all properties are affected.
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Figure 8: Influence of the number of events per
housekeeping cycle on the measured precision and
recall of detected move events in the dbpedia-eventset
evaluation.

It is, again, important to state that our evaluation had not
the goal to maximize the accuracy of the system for these
particular eventsets but rather to reveal the characteristics
of our time-interval-based blocking approach. It shows that
we can achieve good results even for attributes with low en-
tropy when choosing an appropriate housekeeping frequency.
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5. RELATED WORK
Besides the already cited works, our research is also closely

related to the areas of record linkage, a well-researched prob-
lem in the database domain, and instance matching, which
is related to ontology alignment and schema matching.

Record linkage13 is concerned with finding pairs of data
records (from one or multiple datasets) that refer to (de-
scribe) the same real-world entity [25, 9]. This informa-
tion is useful e.g., for joining different relations or for du-
plicate detection [9]. Record linkage is trivial where entity-
unique identifiers (such as ISBN numbers or OWL inverse-
functional properties like foaf:mbox) are available. When
such additional identifiers are missing, tools often rely on
probabilistic distance metrics and machine learning meth-
ods (e.g., HMMs, TD-IDF; SVM). A comprehensive survey
of record linkage research can be found in [9]. The instance
matching problem is closely related to record linkage but re-
quires certain specific methods when dealing with structural
and logical heterogeneities as pointed out in [11].

Furthermore, our work is closely related to current work
in Semantic Web and in hypertext research:

In [20], Phelps and Wilensky propose so-called robust hy-
perlinks based on URI references that are decorated with a
small14 lexical signature composed of terms extracted from
the referenced document. When a target document is not
found, this lexical signature can be used to re-find the re-
source using regular Web search engines. A disadvantage
of the robust hyperlink approach is that it requires existing
URI references to be changed which is not the case with
our approach. Furthermore, it is unclear how to extend this
method to non-textual resources whereas our feature vector
based approach could in principle be combined with most
existing multimedia feature extraction solutions.

In [14], an algorithm for record linkage (object consoli-
dation) based on inverse-functional properties is described.
The approach groups instances with matching IFP values
together and determines canonical URIs for identification of
the real-world entities described by those instances. Natu-
rally, IFPs can be used efficiently for record linkage prob-
lems but are unfortunately unavailable in many real-world
datasets. In DSNotify, IFPs can be exploited by simply us-
ing them as a single feature in a feature vector.

The Silk framework [24] aims mainly at the automatic,
heuristics-based discovery of semantic relationships between
resources in the Web of Data. These heuristics may be
configured using an XML-based links specification language
(Silk-LSL). In order to react on changes in the interlinked
datasets, the authors propose a new SOAP-based protocol
(Web of Data - Link Maintenance Protocol, WOD-LMP 15)
for synchronizing and maintaining links between LD sources.

Triplify [3] is a system that exposes data from relational
databases as Linked Data. It is based on mapping HTTP re-
quests to RDBMS queries and publishing the result data as
RDF. Triplify also provides a Linked Data Update Log that
groups updates to an RDF model within a certain timespan
into nested collections accessible via HTTP. In principle, this

13Record linkage is also known under many other names,
such as object identification, data cleaning, entity resolution,
coreference resolution or object consolidation [25, 14, 9].

14The authors found out that five terms are enough to
uniquely identify a Web resource in virtually all cases.

15http://www4.wiwiss.fu-berlin.de/bizer/silk/
wodlmp/

solution provides a scalable approach for logging events that
occurred in a Linked Data source. However, this notification
approach requires clients to regularly poll this log and the
data source to capture all these events (if possible). Fur-
thermore, the current specification of the vocabulary16 used
for describing the update events does not contain moved or
created events but only “Update” and “Deletion”.

Peridot is a tool developed by IBM for automatically fix-
ing links in the Web. It is based on the patents [4, 5] and the
basic idea is to calculate fingerprints of Web documents and
repair broken links based on their similarity. The method
differs from DSNotify in that we consider the structured
nature of Linked Data and support domain-specific, config-
urable similarity-heuristics on a property level which allows
more advanced comparisons methods. Furthermore, DSNo-
tify introduces the described time-interval-based blocking
approach and detects also create, remove and update events.

In [19], Morishima et al. describe Link Integrity Man-
agement tools that focus on fixing broken links in the Web
that occurred due to moved link targets (type B, cf. section
2.2). Similar to DSNotify, they have developed a tool called
PageChaser that uses a heuristic approach to find missing
resources based on indexed information (namely URIs, page
content and redirect information). An explorer component,
which makes use of search engines, redirect information,
and so-called link authorities (Web pages containing well-
maintained links) is used to find possible URIs of moved
resources. They also provide a heuristics-based method to
calculate such link authority pages. A major difference to
our approach is that PageChaser was built for fixing links in
the (human) Web exploiting some of its characteristics (like
locality or link authorities), while DSNotify aims at becom-
ing a general framework for assisting actors in fixing links
based on domain-specific content features.

In a recent paper, Van de Sompel et al. discuss a proto-
col for time-based content negotiation that can be used to
access archived representations (“Mementos”) of resources
[22]. By this, the protocol enables a kind of time-travel
when accessing archived resources (such archives would fall
into the Versioned and Static Collections category in Ta-
ble 2). DSNotify could be used to build such archives when
a monitor implementation was used that would store not
only a feature vector derived from a resource representation
but also the representation data itself.

6. CONCLUSIONS AND FUTUREWORK
We presented the broken link problem in the context of

the Web of Data as a special case of the instance matching
problem and showed the feasibility of a time-interval-based
blocking approach for systems that aim at detecting and fix-
ing such broken links. Reconsidering the solution strategies
for the broken link problem discussed in Section 2.2, we can
state that DSNotify can actually be used in multiple ways,
including: (1) to function as a detect and correct module in
an existing software, (2) as a standalone notification service
that keeps subscribed clients informed about changes in a
data source, (3) as an indirection service that automatically
forwards requests for moved resources to their new location.
The various interfaces for accessing the data structures built
by DSNotify should facilitate the integration with existing
applications. Our approach is by design a semi-automatic

16http://triplify.org/vocabulary/update
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solution that is capable of integrating human intelligence in
the sense of human-based computation. We plan to further
elaborate on this issue. However, DSNotify cannot “cure”
the Web of Data from broken links. It may rather be used
as an add-on for particular data providers that want to keep
a high level of link integrity in their data.

The flexibility of our tool is founded in its generic nature
and its customizability. Consequently, the development and
evaluation of additional monitors, features and extractors,
heuristics and indices is one part of our future work. In
particular we want to research feasible methods for auto-
matic feature selection as well as for the determination of
optimal monitoring/housekeeping periods as these are the
key parameters for achieving good accuracy with our tool.
Further, we plan to analyze the applicability of DSNotify to
other domains like the (document) Web or the file system.
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