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ABSTRACT
Browsers do not currently support the secure sharing of
JavaScript objects between principals. We present this prob-
lem as the need for object views, which are consistent and
controllable versions of objects. Multiple views can be made
for the same object and customized for the recipients. We
implement object views with a JavaScript library that wraps
shared objects and interposes on all access attempts. The
security challenge is to fully mediate access to objects shared
through a view and prevent privilege escalation. We discuss
how object views can be deployed in two settings: same-
origin sharing with rewriting-based JavaScript isolation sys-
tems like Google Caja, and inter-origin sharing between
browser frames over a message-passing channel.

To facilitate simple document sharing, we build a policy
system for declaratively defining policies for document ob-
ject views. Notably, our document policy system makes it
possible to hide elements without breaking document struc-
ture invariants. Developers can control the fine-grained be-
havior of object views with an aspect system that accepts
programmatic policies.
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1. INTRODUCTION
Under current browser policies, sharing between web prin-

cipals is all or nothing. Since sharing everything can lead
to cross-site attacks, the browser security community has
proposed many new ways to isolate principals from one an-
other [16, 12, 28, 3, 25]. Given such isolation techniques,
we explore the next problem: controlled sharing of objects
between otherwise isolated principals [16, 4]. We present a
mechanism for fine-grained mediation of shared objects.

Web principals have several resources worth sharing, such
as their document, access to server-side data, and JavaScript
APIs. Principals may want to share limited portions of these
resources without giving up access to all of them. For exam-
ple, consider an application that plots real estate prices on
a map. Fine-grained sharing controls should let the applica-
tion share only the map-relevant portions of the page with a
third-party mapping service. The application and map ser-
vice would then be able to exchange JavaScript objects and
methods while maintaining separate internal invariants.

With our system, a principal can create a consistent, re-
stricted wrapper for an object. We call the restricted version
an object view, and a principal can share an object view in-
stead of a plain object to limit the recipient’s access to the
shared object. The restrictions might include, for example,
making a property read-only or overriding a method so it al-
ways returns 0. Our object views support an aspect system
[19] to implement these restrictions; we provide hooks on
view actions so that programmatic policies can control the
behavior of views. The most notable web resource we can
wrap is the page document itself. Atop our aspect system,
we build a declarative policy system for sharing document
objects. We further show how to obscure document elements
without breaking document traversal methods.

Our core mechanism for building views is a recursive wrap-
per. The security challenge is complete mediation: leaking
references to unwrapped objects violates isolation, so views
must avoid doing so. This is challenging because JavaScript
is a flexible language; when passing object references across
a trust boundary, even small gaps in the mediation strategy
can enable privilege escalation [23, 21].

We apply our work to two web scenarios:

• Same-origin sharing. JavaScript rewriting systems
[25, 17, 1] isolate gadgets from the rest of the page.
These systems must share heavily restricted DOM API
access with gadgets and facilitate gadget-to-gadget com-
munication.
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• Cross-origin sharing. The postMessage browser
primitive can be used to remotely share objects be-
tween frames by marshaling objects into strings. We
present object views as a way to control and restrict
remote object sharing in the browser.

Our primary contributions are 1) the abstraction of an
object view for fine-grained object sharing patterns using
an aspect system, and 2) a discussion of how to build a
JavaScript wrapper in an adversarial setting.

2. THREAT MODEL
We consider the security of object sharing between two

web principals. We begin by presenting attacks on secure
object sharing within a single frame and show that a trusted
platform is necessary to defend against some classes of at-
tack. Our view mechanism is responsible for defending against
the remaining attacks. We distinguish the responsibilities of
the view mechanism from the trusted platform to make their
relationship more explicit.

2.1 Web Security Model
Web pages have two primary components: static docu-

ment content and JavaScript scripts. Documents are rep-
resented by the Document Object Model (DOM), a tree of
document objects. Scripts are included with the original
document or imported from a third party; imported scripts
are given the same privileges as included same-origin scripts.

The basic web security model is known as the Same Origin
Policy (SOP). Under the SOP, a script in a document may
access everything in that document and other documents
from the same origin. All scripts in a document share one
DOM and a set of global variables; pages in the same domain
have separate sets of global objects, but additional references
may be exchanged between them. A document’s scripts do
not have any access to documents from other origins.

2.2 Trusted Platforms
A trusted platform is responsible for providing encapsula-

tion to separate principals from one another. Each principal
is an instance of a script (or set of related scripts). We
examine two trusted platforms:

Server-Side Script Rewriters. Gadget aggregators want
to embed third-party web applications directly into their
own web sites. Here, the principals are the gadgets and
the aggregator. Under the SOP, the browser does not pro-
vide any isolation guarantees between third-party applica-
tions and the aggregator site. Gadget aggregators therefore
achieve isolation themselves with server-side tools that auto-
matically verify and rewrite third-party scripts before they
are added to the site [1, 25, 17]. Rewritten scripts have
separate “virtual” global objects. Several of the web’s most
visited sites (e.g., Facebook and the Yahoo! home page) use
server-side script rewriting. Views are of interest to gad-
get aggregators because (a) they need to provide gadgets
with restricted versions of DOM nodes and (b) they want
to support object and DOM node sharing between gadgets.
The former scenario is a one-way notion of security, and the
latter is symmetric.

Browsers. The browser principals that we consider are
frames from different origins. In this scenario, the brow-
ser provides isolation between the frames’ principals as per

the Same Origin Policy. Objects cannot be directly shared
between cross-origin browser frames. Instead, the postMes-

sage communication primitive can be used to remotely share
objects by marshaling objects to strings. Using views, prin-
cipals can control the way objects are remotely shared and
prevent capability leaks.

2.3 Attacks
In our object sharing scenario, one principal shares an ob-

ject by creating an object view with a policy and sending
the view to another principal. Our attacker is the view re-
cipient. The view sender intends to only share the object as
restricted by the policy, but the attacker’s goal is to steal ad-
ditional privileges by manipulating the view in unexpected
ways. We try to prevent privilege escalation by implement-
ing a view as a wrapper around the shared object.

Consider an object sharing scenario where we have two
web principals in the same frame, and one principal wants
to share a restricted object with the other. The following
example is an attempt to restrict an object from subsequent
code in the page by wrapping the the object. The example
wrapping technique is based on proposals by others [27, 20,
8]. The intended policy is to limit the content of a frame to
URLs specified by a whitelist:

<head><script>
(function () {
var orig = frame1.location.assign;
var wlist = {"msn.com": true};
frame1.location.assign = function (url) {

if (wlist[url])
orig.call(this, url); };

})();</script> ... </head>

The method is reassigned early into loading a page to pre-
vent access to the original assign function. Wrapping the
policy code in a function is an attempt to keep other scripts
from accessing the wlist variable. However, this code is
vulnerable to several categories of attacks:

1. Incomplete mediation. The assign function is still
accessible in other ways. The DOM and other libraries
often provide multiple ways to reference the same ob-
ject, e.g., frame2.location.assign.call(frame1, url).

2. Incomplete policy. frame1.location.href can also
be used to change the location. This is different from
incomplete mediation: with incomplete mediation, the
same object can be referenced multiple ways; with an
incomplete policy, the same capability can be accessed
through multiple objects.

3. Parameter type forgery. Instead of passing a string
for the parameter url, an attacker could pass an ob-
ject with a malicious toString method that returns a
different value each time it is invoked. Its first invoca-
tion occurs at wlist[url], where it tricks the whitelist
by returning a safe URL. The second invocation of
toString, after apply, can return a different value not
in the whitelist.

4. Root prototype poisoning. All JavaScript objects
inherit basic properties and methods from the Object

prototype. In the above example, an attack can be
mounted by adding a field to the Object prototype:
Object.prototype[‘http://z.com’]. As a result, the
check on wlist[‘http://z.com’] evaluates to true.
Similar attacks can target the Function prototype and
other globals.
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Wrappers in a same-frame scenario are also subject to the
following attack vectors:

5. Prototype chain poisoning. Prototype poisoning
attacks do not require direct access to a root proto-
type. An attacker can traverse a wrapper’s prototype
chain to indirectly access a prototype:
obj.constructor.prototype might point to a proto-
type that is shared with other objects.

6. Untrusted parameter callbacks. Raw objects should
never be passed to untrusted code. For example, if a
wrapper accepts an untrusted object as a parameter
and then passes a raw object to a method on the un-
trusted object, then a raw object has been leaked.

7. Callstack inspection. ECMAScript 3 provides an
exploitable form of stack inspection. For example, if a
function is passed {secret: 2} for its first parameter
and then the function calls another function, the called
function can steal the secret with the following:
arguments.callee.caller.arguments[0].secret

8. Untamed JavaScript. JavaScript can provide capa-
bilities in surprising or excessive ways. For example,
running eval on an untrusted string can be exploited
to violate lexical scope.

Due to the current limitations of JavaScript, wrappers are
unable to defend themselves against root prototype poison-
ing, attacks via the call stack, or untamed JavaScript fea-
tures. We therefore must assume the presence of a trusted
platform to remove these attack vectors by providing encap-
sulation. Our wrappers must defend against the remaining
attacks: incomplete mediation, parameter type forgery, pro-
totype chain poisoning, and untrusted parameter callbacks.
Part of our contribution is exploring what security proper-
ties wrappers may provide and how they must rely upon an
external platform. Further, although policy correctness is
the responsibility of the developer, we provide mechanisms
to help developers write better policies.

3. VIEWS FOR FINE-GRAINED SHARING
We present object views, an abstraction for securely shar-

ing objects between principals. Views are shared in place
of the original object, and they support an aspect system.
The aspect system lets developers install advice on views to
control their behavior. We then build a declarative policy
system on top of the advice system.

3.1 View Design
An object view proxies access to the original object and

constrains access to it with a fine-grained policy. When Alice
shares an object with Bob, she can create a view to share
with Bob instead of the original object. We implement a
view as a wrapper that enforces Alice’s policy code on every
attempt to access the object.

In Figure 1, Alice creates a view for her account object
and gives it (account_control.view) to Bob using an exam-
ple communication primitive send. Calls through the view,
if allowed, are proxied to the original object. Alice con-
trols access to her view object by setting a policy, using
account_control.definePolicy. As long as Alice does not
share account_control, she is the only one who can control
the view. In the example, she encodes a whitelist: Bob may
read the amount property and invoke the deposit method,

deposit() amount deposit() amount 

view 
definePolicy() 

account_control 

account 

200 200 
var account = { deposit: function(v){ }, amount: 200 };
var account_control = makeView(account);
var permitGet = function (obj, prop) { return obj[prop]; };
account_control.definePolicy(account,
{getters: {amount: permitGet, deposit: permitGet}});

var permitCall = function (f, t, a) { return f.apply(t, a); };
account_control.definePolicy(account.deposit,
{funCall: permitCall});

Bob.send(account_control.view);

Figure 1: Alice shares a view of her account object.

but he cannot redefine either nor any act upon any of Alice’s
other objects. Alice’s access to the original account is not
restricted, and she can make different views for the same
object by making new control variables.

A view is a composition of a proxy and a policy. In our
implementation, the proxy is a wrapper and the policy is a
function. We create a new wrapper object for every distinct
object accessed through a view. A wrapper object is created
by installing accessors (getters and setters) on the wrapper
that correspond to all of the properties of the original object.

For each wrapped function object, we define a new proxy
function object that calls a policy function instead of the
original function. All operations on an object view go through
a proxy. Reading and invoking a method are different oper-
ations: assigning x = obj_v.deposit will trigger a getter,
whereas invoking a method obj_v.deposit() will trigger a
getter and run the proxy function. Running an unattached
function object will only run a proxy function. A wrapper
is applied recursively to return values.

Consider the property read foo_v.bar.xyz, where foo_v

is a view of foo. First, the getter that we have assigned
to the property foo_v.bar will be invoked. The getter will
return a view of bar. Next, the getter that we have assigned
to bar_v.xyz will be invoked. If xyz is a primitive, then the
getter will return that result. Otherwise, it will return a
wrapped version of xyz.

We take care to preserve reference equality. If Bob re-
peatedly requests the same object from Alice, our system
will repeatedly be asked to wrap it. If we were to create a
new wrapper every time or reuse a wrapper from a different
object, Bob would not have a consistent view of the object
with respect to reference equality. Instead, we store a dictio-
nary that associates wrappers and the objects they wrap so
that we only generate a new wrapper for an object if it is not
in this dictionary. Consequently, wrapping the same object
twice yields the same wrapper each time, thereby preserv-
ing reference equality. We do not support reference equality
in the presence of multi-principal delegation chains [24], re-
ferring to a scenario where an object is repeatedly shared
across multiple parties.
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3.2 Aspect System
Views support fine-grained policies. To accomplish this,

we implement a library-based aspect system [19]. The get-
ters, setters, and proxy functions on wrappers provide inter-
positioning points for three actions: reading a field, setting a
field, and calling a function. A policy author specifies an ob-
ject and registers an advice function for each object action.
Advice is a function that is applied “around” an object ac-
tion. Advice might change arguments, choose not to perform
the action, perform a different action, throw an exception,
etc. An object’s wrapper passes a property’s advice func-
tion the original property or method, the this object, and
any arguments. Unlike simple permit/deny policies, advice-
based policies can significantly change behavior.

We implement whitelisting: a cross-principal action must
be explicitly enabled. Whitelisting an action can be accom-
plished with the permit advice functions shown in Figure 1.
More sophisticated advice can perform actions like transla-
tion or encryption. For example, consider Alice sending Bob
a Spanish-translated version of her object:

function say_hi () { return "hello"; }
String.prototype.toSpanish = function () {

return this == "hello" ? "hola" : "hola"; };
var c = makeView(say_hi);
c.definePolicy(say_hi, {funCall: function (f, ctx, args) {

return f.apply(ctx, args).toSpanish(); }});
bob.send(c.view);

Alice makes a view of her function object say_hi with advice
that translates the result. Bob will see “hola” when he runs
his view’s version of say_hi.

3.3 Document Sharing Policies
The DOM API provides scripts with access to a docu-

ment’s structure and contents. It is large and complex,
so programmatically expressing DOM policies as functions
would likely be difficult and error-prone. To address this, we
built a policy specification system that accepts declarative
policies and translates them into executable advice.

Figure 2 presents an example policy that enforces read-
only access to subtrees of a document. The policy author
first specifies a collection of DOM elements and a set of re-
strictions to apply to these elements; in the example, the re-
strictions would apply to all elements with a class name “ex-
ample”. Object interactions (read, write, funCall for func-
tion objects, and methCall for methods) can be associated
with predefined advice (e.g., permitCall) or custom policy
functions. Giving a method a methCall rule will by default
also set read: permitGet for that property; this is not nec-
essary for function objects. Every rule specifies:

1. Selector. An XPATH expression selecting a set of de-
scendent nodes to apply the rule to.

var m = makePolicyView(makeView(document));
var policy = [{"selector": "(//*[@class=‘example’])

| (//*[@class=‘example’]//*)",
"enabled": true,
"defaultFieldActions": {read: permit},
"fields": {shake: {methCall: permit}}}];

m.applyPolicy(policy);
return m.view;

Figure 2: A policy that restricts a subtree to read-
only if the root’s class name includes example. Meth-
ods named shake may also be invoked.

2. Enabled. To allow any access to a node, the rule must
specify that the node is enabled. We later will intro-
duce the disabled state obscure as an alternative.

3. Default and specific rules. (Optional.) Default rules
apply to all fields of the element. Specific rules such
as shake in Figure 2 will apply to only the named field
and have precedence over default policies. If multiple
specific rules apply to the same element, all of them
will be applied as the union of the privileges.

There are also policy-wide parameters, such as a default
error handler.

Error-Free DOM Traversal. If done naively, restricting
access to a document node would break expected invariants
as has been explored with lenses [9]. Consider the task of
disallowing all interaction with a single DOM element. If
the view were to throw exceptions whenever that element
is accessed, then the view recipient would experience unex-
pected exceptions while performing innocent tasks like it-
erating through the restricted element’s parent node’s chil-
dren. We believe a better sharing policy would allow the
view recipient to correctly navigate through the DOM tree
even if an element is restricted.

We address this need with a rule that obscures elements.
An obscured element is not accessible, and we generate ad-
vice to prevent other DOM elements’ methods from return-
ing references to the obscured node. Instead of specifying
an enabled:false rule, the value "obscured" may be set.
Our policy system then generates advice so that views of
neighboring nodes’ traversal methods return the next node
in the list instead of the obscured node. Our prototype does
not yet handle the full DOM API.

A B C

(a) normal linked list

A B C

(b) shared view

Figure 3: A view hides a linked list node.

Two peculiar cases arise when we discuss sharing the DOM
in terms of views. First, actions on the view may have un-
clear mappings to raw objects. Consider Figure 3: it is
unclear what should happen when a view recipient inserts a
new node between a and c. On what side of node b should
it be positioned in the underlying list? This scenario has
an application-level solution: the view can be modified to
expose a placeholder for b. A dual difficulty occurs when
actions on the underlying object do not map clearly to the
view. Suppose Alice shares a view that allows access to a
tree but later obscures a part of it. If the view recipient
has already stored a reference to the now obscured node,
it is unclear what the parent pointer of the obscured node
should be. For error-free hiding of nodes, an application
should obscure a node upon its introduction.

4. VIEW-SHARING PLATFORMS
We examine how our view sharing primitive can be used

with two different object sharing platforms: gadget aggrega-
tors with server-side script rewriting for same-origin sharing,
and browser frames for cross-origin sharing. We do not limit
the usefulness of views to these two scenarios; there are other
settings (e.g., extensions and plug-ins) where partial DOM
access and safe object sharing are desirable.
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4.1 Server-Side Script Rewriting
Several prominent gadget aggregators use server-side script

rewriters to isolate untrusted scripts from the rest of the
page. We focus on Google Caja [25], a server-side script
rewriter which rewrites all gadgets into a subset of JavaScript
and inserts runtime security checks. Caja supports two ob-
ject sharing scenarios that could benefit from views: the
gadget aggregator (container) needs to share a restricted
version of the DOM API with gadgets, and gadgets might
want to share objects with one another. Other gadget ag-
gregators have similar object sharing needs.

For the container-gadget scenario, Caja currently uses a
set of handwritten DOM wrappers known collectively as
Domita. The Caja developers came up with a DOM taming
policy and then manually implemented a different wrapper
for each node type. Unfortunately, the wrappers consist
of thousands of lines of code (4111 lines of JavaScript in
Caja as of this writing) and therefore require a significant
amount of maintenance and review. Automatically gen-
erated views from declarative policies might replace some
handwritten wrappers. Additionally, our system could ac-
commodate policies for other APIs (e.g., the OpenSocial
API) that an aggregator might want to share with a gadget.

In the gadget-gadget sharing scenario, the two gadgets are
mutually distrusting principals, given access to each other
by the aggregator. Views could be used by either gadget to
export mediated access to its own objects. These two sce-
narios compose. For example, gadget A migh provide gadget
B read-only access to the DOM subtree that the aggregator
has provided to gadget A. A’s access to the real DOM is
then limited to a view of the subtree according to the ag-
gregator’s policy, and B’s access to the subtree is limited to
a read-only view by gadget A’s policy.

Caja provides security features that make it a suitable
trusted platform: all prototypes are immutable, closures
are truly encapsulated, global variables and the global ob-
ject are inaccessible, the call-stack is inaccessible, and the
whitelisted subset of JavaScript available to gadgets does
not include JavaScript features that could escape Caja’s se-
curity rules. We implemented a version of the view library to
work with Caja. The library only uses JavaScript that meets
the ECMAScript 3 specification; Caja provides the ability
to install getters and setters on wrapper objects without us-
ing browser getters and setters. Caja also provides the
ability to intercept the addition of a new property, which
enables consistency between wrapper objects and raw ob-
jects. The current version of our Caja view library includes
only a simple policy system, but we plan to integrate our
full advice system with it.

4.2 Browser Frames
We propose views as a way to control remote object shar-

ing between frames. Browsers do not provide a channel for
reference passing across origin boundaries; instead, they pro-
vide an inter-frame string passing mechanism named postMes-

sage. Objects can be remotely shared across this primitive
by marshaling objects into strings and vice versa, as Post-
Mash [2] demonstrates.

Although using postMessage means that no actual ref-
erences are passed between windows, a marshaling library
can still leak authority. Suppose that Alice implements a
marshaling library that will carry out any operation on a
remotely shared object. Alice remotely shares a form object
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Figure 4: Remote object sharing with views.

foo with Bob, and then Bob asks the marshaling library for
the value of foo.parentNode.parentNode.parentNode.cookie.
This reveals the private value of the document cookie. If
Alice remotely shared a view, the view could enforce a pol-
icy that only whitelists foo’s safe properties. Our contribu-
tion is how to apply policies to objects remotely shared over
postMessage using views.

4.2.1 System Design
We present the use of views to safely share remote objects

through a user-level postMessage marshaling library. Fig-
ure 4 shows views in use with a marshaling library. Sender
Alice creates a view tree_v and restricts it with a policy.
The view creation library exists in sender Alice’s frame be-
cause recipient Bob can manipulate any of the libraries in
his frame. When Alice shares tree_v with recipient Bob,
the sender library converts it to a string and sends it to
Bob’s frame using postMessage. The recipient library re-
ceives the message via a callback and turns the string into
an object for Bob. When Bob later requests tree_v.prop,
the marshaling system forwards the property get request to
Alice’s frame, gets the result pursuant to the view’s policy,
and sends it back to Bob.

Figure 4 shows the basic one-way communication scenario,
where Alice’s state needs to be protected from an adversarial
recipient Bob but Bob desires no protection. This is satis-
factory in some scenarios, such as typical DOM interactions
where DOM methods only accept primitives as arguments.
However, Alice might share a function that accepts objects
from Bob. If Bob wants protection from Alice, he should
turn all of the non-primitive parameters that he passes to
Alice into views as well. This could be automated by Bob’s
library so that all of his non-primitive parameters are con-
verted to a view with a default policy, although our proto-
type does not implement this.

Our implementation of the marshaling and view creation
libraries for this embedding conforms to the ECMAScript
3 specification plus postMessage. We use field accessors
in our original view design for clarity, but not in our actual
implementation. Since our postMessage embedding requires
a callback parameter for every action, sets and gets are more
cleanly presented as functions.

Marshaling Library. Our marshaling library performs all
of the necessary tasks related to converting objects. It en-
codes the basic JavaScript operations of calling functions,
getting and setting fields, and throwing exceptions. Each
message is a JSON object so we can rely on calls to stan-
dard browser support for JSON objects to prevent unex-
pected code execution. We also want to prevent our sender
library from leaking additional information, so we refrain
from using any global state in the sender library.
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var z = x.y.z;
alert(z);
...

(a) synchronous

x_v.y(function (y) {
y.z(function (z) {
alert(z);
... }); });

(b) asynchronous

var z = x.y().z();
alert(z);
...

(c) implicitly yielding

var z_vP = x_v.y().z();
z_vP.when(

function(z_v){alert(z_v);});
...

(d) promise-based

Figure 5: Shared object interaction options.

Functions and methods always execute in the frame that
defined the function or method. When Bob asks to execute
Alice’s function foo, it will execute in Alice’s frame and Bob
will receive the result. Additionally, if Bob has redefined
a method on an object of Alice’s, all invocations of that
method will execute in Bob’s frame.

Trusted Platform. The marshaling library and browser
together serve as the trusted platform. The browser’s SOP
ensures general isolation between the two frames: they have
separate prototype chains and sets of global objects. The
separation of global objects means that potentially danger-
ous JavaScript features like eval are not an issue unless the
view sender voluntarily chooses to make them available to
the recipient. The marshaling library defends against leaks
through stack inspection and root prototype poisoning. Our
platform library checks objects before proxying them to en-
sure that transmitted objects are views of Alice’s objects or
proxies for Bob’s. If a get, set, or call involves an object
that is neither a view nor proxy, the sending library rejects
the object. Attacks via stack inspection are therefore pre-
vented: for example, the get fn_v.caller.arguments will
fail because fn_v.caller is neither a view nor proxy object.
We special case root prototypes for convenience. Requests
for a root prototype object are rejected; instead, the receiv-
ing library substitutes the recipient frame’s root prototypes.
E.g., fn_v.call(...) uses the recipient frame’s
Function.prototype.call.

4.2.2 Asynchronous Shared Object Interactions
Typical JavaScript calls are synchronous, such as the ex-

ample in Figure 5(a). However, the remote sharing of objects
over postMessage introduces asynchrony because postMes-

sage is an asynchronous1 communication channel. If x in
Figure 5(a) is changed to be a view of a remote object, the
responses of the two “.” calls become asynchronous. This
introduces concerns about changing code structure and vi-
olating invariants naturally assumed in synchronous code.
The challenges of asynchronous remote sharing are not in-
troduced by our view abstraction; all cross-origin JavaScript
work faces the same issues, and concurrent programming has
long dealt with related challenges.

Our first concern is that using postMessage requires struc-
turally inverting typical programs. Consider Figure 5(b),
where we extend the PostMash [2] approach to remote ob-
ject sharing by registering callbacks for every interaction.
Not only must the developer rewrite the code that inter-
acts directly with the shared object, she must also move
subsequent code into a callback. This change affects the
caller as well: the caller must supply a callback of where to

1Internet Explorer non-compliantly implements postMes-
sage synchronously, avoiding the issues in this section.

continue upon completion of the segment. This pattern is
known as continuation passing style (CPS) [6]. A client-side
library can be used to automate the global transformation
into CPS [26], enabling the interaction in Figure 5(c). In
calls y() and z(), the proxy captures the continuation, reg-
isters a callback that continues it upon invocation, and yields
the current thread of control. If ECMAScript natively sup-
ported continuations like the Rhino variant of JavaScript,
then the rewriting step would be unnecessary.

A second concern is preserving invariants across calls. For
example, control is never yielded in the original code in Fig-
ure 5(a), so we can locally reason that variable alert is
bound to the intended function. However, yielding on the
asynchronous call to postMessage introduces a race: a GUI
event handler that breaks an invariant might be called while
waiting for z, such as what alert is bound to. Figure 5(d)
demonstrates a variant of promises [22], which can represent
a delayed computation with a handle. Further asynchronous
requests can be composed upon a handle, and the handles
can be synchronously propagated. If a handle’s actual value
is needed, an asynchronously invoked callback may be reg-
istered to receive it. Depending on the implementation,
rewriting might still be necessary (as in our example). Un-
like callbacks, control is not entirely given to the receiver.
Unlike the continuation-based approach, we avoid concerns
about preemption.

5. VIEW SECURITY
A view recipient should only be able to access the shared

object(s) according to the policy set by the view creator.
We implement views with wrappers, and interpositioning
occurs at points where reference leaks must be prevented.
Our definition of wrapper safety is as follows:

A wrapper is secure if and only if: A series of inter-
actions with a wrapper can return only a wrapped value, a
primitive value, or an unwrapped value previously passed in
to the wrapper.

To achieve wrapper safety, the attacks described in Sec-
tion 2.3 must be addressed. We rely on trusted platforms
(Section 4) to initially isolate principals and provide security
defenses against stack inspection, root prototype poisoning,
and JavaScript that can escape encapsulation. Our wrap-
per mechanism, assuming the above, must provide complete
mediation, deal with parameter type forgery and untrusted
parameter callbacks, and prevent prototype chain poison-
ing. By carefully considering these attack vectors, we aim to
avoid past mistakes; for example, an audit of a proposal for
self-protecting JavaScript wrappers [27] reveals at least two
prototype poisoning attacks and a parameter type forgery
“solution” that is still vulnerable to a type forgery attack.

Mediation. The basic recursive wrappers described in Sec-
tion 3.1 wrap all of an object’s properties and return val-
ues. We assign accessors or proxy functions to all fields on
an object, including inherited ones; we also recursively wrap
return values. Our wrappers use reference equality to detect
and restrict alternate access paths. Reconsider the example
from Section 2.3 that tries to restrict access to assign by
redefining frame1.assign. One reason this fails is because
alternate access paths to assign exist. We can accomplish
mediation correctly with a view. We look up a policy based
on the reference equality of the object under consideration,
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and frame1.assign and frame2.assign refer to the same
closure. Consequently, the same policy applies regardless of
the aspect path. In Caja, we use a dictionary lookup to
check for reference equality; with our marshaling library, we
associate object IDs with references.

Untrusted Parameters. The basic wrapper described in
Section 3.1 is concerned with not letting raw references out,
which we call “exporting”. However, we must also be con-
scious of the effects of letting untrusted code in, which we
call “importing”. We import code when a view method ac-
cepts parameters or permits a property reassignment. Im-
ported code raises three safety issues: we should not pass
privileged objects to callbacks on untrusted parameters or
methods that the view recipient has redefined; we must de-
fend against parameter type forgery attacks; and a property
that the view recipient has reassigned should not execute
with a privileged object as its this parameter.

A solution to protect views from imported code is to use
dual import and export wrappers [29]. An object defined by
Alice will have an export wrapper: this is the basic wrapper
based on membranes. Import wrappers surround any ob-
ject introduced by another party (parameters and redefined
properties). They are identical to export wrappers, except
that they add two extra security checks. Import wrappers
prevent any of Alice’s unwrapped objects from being passed
into them, and imported methods execute with an export-
wrapped version of its parent object as its local scope. Con-
sider the following policy:

var x = {y: function () {}, secret: "secret"};
var c = makeView(x);
var permitSet = function (o, p, rhs) { o[p] = rhs; };
c.definePolicy(x, {getters: {y: permitGet},

setters: {y: permitSet}}]]);
mallory.send(c.view); // gives Mallory the view of x

Object x has two properties, one of which (secret) is not
meant to be readable by the recipient of the wrapper. The
attempted attack:

// x_v is Mallory’s view of x
x_v.y = function (o) { broadcast(o.secret); };

// Alice calls y on the original object
c.definePolicy(x.y, {funCall: permitCall});
x.y(x);

The view recipient redefines a property y to be a method
that leaks the secret. If we did not have import wrappers,
the new y function would broadcast the secret when the
owner of x calls the method y. Consider how import wrap-
pers prevent this attack:

1. x_w is an export wrapper for x, so the attempt to “set”
field y of view x_w is subject to mediation.

2. The setter proxy sees that the function on the right
hand side of the assignment is not wrapped. The setter
applies an import wrapper to the untrusted function
before assigning it to x.y.

3. The import wrapper on x.y discovers that its argu-
ment (Alice’s secret) is protected state. The argument
will thus be wrapped for export, and secret will not
be a property of the export wrapper.

By wrapping imported objects, we can prevent raw privi-
leged objects from being passed to untrusted code and en-
sure that Alice’s restrictions remain in place.

Wrapper and advice code must also be careful when han-
dling shared objects because a malicious principal could
redefine methods or properties that typically would have
been inherited from Object or Function. Consider again
the attack from Section 2.3 of adding a malicious toString

method to an object. The malicious version of toString

provides different answers at different times. We can enforce
a policy that sets inherited methods on import wrappers to
be the trusted versions of those methods.

Prototype Chain Prototype Poisoning. For security,
the prototype chain of a view must only contain wrapped
objects. For consistency, elements along the prototype chain
of a view should proxy to their unwrapped counterparts.
The psuedo-code to wrap object o (assuming it does not
directly inherit from a root prototype) in ECMAScript 3 is:

var cnstrctr_v = function () {};
cnstrctr_v.prototype = wrap(o.constructor.prototype);
var o_v = new cnstrctr_v();

The prototype of o_v is a wrapped object so, inductively,
o_v’s inheritance chain should be of wrapped objects. At-
tacks like deleting fields of a view to expose underlying pro-
totype or constructor values are made meaningless as the
wrapper’s prototype chain consists of wrappers. Our ap-
proach fails when we reach the bottom of the prototype
chain. The final wrapper should have a prototype of null,
but running

cnstrctr_v.prototype = null;
o_v = new cnstrnctr_v();

gives o_v a prototype of Object.prototype. We rely on the
trusted platform to protect root prototypes.

Modern JavaScript variants typically expose the proto-
type property as the readable and writeable field __proto__,
in which case we do not need cnstrctr_v as we can sim-
ply write o_v.__proto__ = null. Wrapping the prototype
chain of functions currently requires the non-standard field
__proto__ as we cannot set the function constructor pro-
totype. Without the __proto__ field, we lose some consis-
tency. We can add inherited properties and fields directly to
a function’s wrapper, but the actual prototype chain is lost.

Privileged Unwrapping. An object wrapper has one ex-
tra method beyond what is present on the original object:
every object wrapper must have an unwrapping method for
when an untrusted principal passes a protected argument
to a protected method. Otherwise, the view owner loses
pointer equality and faces restrictions on its own object.
However, the unwrapping mechanism cannot be exploitable
by an attacker. One solution [30] is to communicate through
a variable lexically scoped to the view controller. Calling
x_w.unwrap() will set a variable in the view controller’s
scope to the original object and not return anything. Wrap-
per code can access the view controller’s variable to retrieve
that unwrapped object, but the attacker cannot. Invoking
x_w.unwrap therefore leaks nothing to an attacker. Chang-
ing or deleting x_w.unwrap would only render the wrapper
useless, since it would break its functionality. Import wrap-
pers have unwrap methods just like export functions, but an
attacker should not be able to invoke an import wrapper’s
unwrap method because the attacker should never come into
contact with an import wrapper.
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6. EVALUATION
All benchmarks are on a 2.4GHz Intel Core 2 Duo Mac-

Book Pro with 2GB of RAM. We measured the performance
of our view creation library in Firefox 3.5.4 with JavaScript
tracing optimizations enabled. We tested a version of our
code that uses JavaScript accessors.

6.1 File size
File size is important for networked application perfor-

mance: a small file loads faster. Our view creation and
advice library is 445 lines of well-commented code. Our
declarative policy system is 110 lines. The postMessage li-
brary is 334 lines, and it would not be necessary if browsers
natively supported object marshaling.

Using standard JavaScript minifiers and ZIP file genera-
tors, our view creation library is 2.0KB. Including our pol-
icy library, it is 3.1KB. Adding the postMessage library in-
creases the size to 7.4KB. Our policies incur a constant,
application-specific increase in code size. In contrast, weav-
ing policies into the source increases application size from
1.15x to 1.65x [20].

6.2 Speed Macrobenchmark
The Bubblemark benchmark for comparing user interface

frameworks is an n-body animation of colliding balls [10].
We compare a standard version of the UI benchmark against
one in which every ball is wrapped in a view. All manipu-
lations by the Ballmark JavaScript physics engine and the
browser-provided layout engine go through views. Views in
all cases stay above the smooth animation threshold (Fig-
ure 6(a)). Our postMessage library is not used.

JavaScript execution time is dominated by browser li-
braries like the layout engine. Using the Shark profiler, we
sampled Safari 4.0.3’s callstack at 20µs intervals over 2 sec-
onds for the Bubblemark test and while loading post-login
screens forfacebook.com and netflix.com (Figure 6(b)).
We found that the Bubblemark test is more JavaScript-
intensive than those two sites, yet the view version still per-
forms well enough to stay above the threshold. We expect
that typical applications would be significantly less demand-
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Figure 6: Bubblemark benchmark with and without
views. Views in all cases stay above the smooth an-
imation threshold. Also, JavaScript execution time
is dominated by other factors.

ing than the Bubblemark test, but views still have sufficient
performance in this worst case scenario.

6.3 Function Call Microbenchmarks
We compare the performance of views with plain func-

tion calls and shallow (non-recursive) wrappers [27] on four
types of basic function calls (Figure 7). We implemented
the shallow wrappers by setting accessors on object prop-
erties; as in their benchmarks [27], we simulate the cost of
checking a policy by mutating a global variable in the acces-
sor function. Views do more work than shallow wrappers,
such as wrapping return values and parameters. For each of
the four function calls, we ran 20 trials consisting of 10,000
invocations of the call of interest:

• In the first test, we measure the overhead of making
two DOM calls to set the font size of a paragraph. We
found that the shallow wrappers impose an overhead
of 53%, and views impose another 83% overhead (so
2.81x slower than the unwrapped version). This over-
head is higher than would be expected because it is
only JavaScript interpreter time. All modern brow-
sers batch layout commands for later bulk processing;
this means that the relevant expensive layout calls will
occur sometime after the benchmark finishes.
• In the next test, a DOM write call is followed by a

DOM read. By following a font size change with a
read, we force the layout re-computation during the
benchmark. We see interpreter time overhead is now
only actually 6% for shallow wrappers and 22% over-
head on deep ones.
• In the last two calls (a user-defined JavaScript function

and a DOM call that does not use the layout engine),
we see that shallow and deep wrappers have a cost
linear in the number of calls, but do not significantly
depend on the type of call.

Overall, we see that the overhead of enforcing a policy,
when considering expensive JavaScript calls, is dominated
by the calls themselves. While our system does have sophis-
ticated runtime mechanisms, we only found the overhead rel-
ative to the lightweight approach to be 15% to 2.36x on im-
pacted microbenchmarks. We do not perform microbench-
marks for postMessage object marshaling performance; au-
thors of previous work provide this [2].
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Figure 7: A comparison of unwrapped objects, shal-
lowly wrappers, and deep wrappers on different mi-
crobenchmarks. The red lines show the relative
slowdown of our views vs. the shallow wrappers.
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6.4 Memory
Use of ECMAScript 3 delays garbage collection. The

problem manifests itself when an object from Alice repeat-
edly passes through her view to Bob. As Bob repeatedly
receives views of this object, he expects reference equality
for them. Thus, the view controller maintains a map from
raw objects to views. However, consider when Alice does not
reference the raw objects nor Bob the views. If Alice refer-
ences the view controller, she still has an indirect reference
to the map. To collect the map entries, the controller must
also be gone. ECMAScript Harmony includes a proposal for
ephemeral weak tables, which would solve this problem [7].

We measured the impact on memory. We ran two 20
minute trials at 99% CPU intensity, creating as many wrap-
pers as it could to stress test the worst case scenario. The
first trial created, used, and discarded views so that mem-
ory could be reclaimed. As expected, the browser cycled
between 160MB and 200MB of RAM, signifying successful
garbage collection. The second trial reused the same view,
preventing reclamation of objects passing through it. We
observed real memory use monotonically grew to 220MB,
representing a 20MB increase despite full CPU load over a
prolonged period. We conclude memory use is low.

7. RELATED WORK
Membranes. Views are inspired by the membrane pattern,
which controls an object by creating a recursive wrapper
and tying it to an access control gate [22]. We extend the
membrane pattern with an aspect system for sophisticated
policies instead of a coarse access control gate. We also add
pointer equality and consider JavaScript-specific security. A
related mechanism was proposed for enforcing contracts that
take developer-provided type annotations for functions and
returns shared versions that enforce the signature [15]. Un-
fortunately, it is hard to write types for JavaScript programs
and even a small developer mistake in such a signature may
expose the entire system to attack. We conjecture that sup-
porting policies like whitelists is less error-prone.

Aspects. One of our contributions is a notion of per-principal
advice for multi-principal software. Prior aspect systems for
web applications do not completely mediate access. One
proposal [31] is not designed for an adversarial setting, and
two [20, 8] do not explain how they prevent the attack vec-
tors identified in this paper. Two related proposals [27, 8]
have vulnerabilities in their code samples. Most of these
approaches suffer from incomplete mediation because their
wrappers are installed indirectly as API properties and meth-
ods; this is a potential problem if the policy author fails to
observe an unexpected path to a capability. Instead, we ap-
ply a single recursive wrapper to the whole API that checks
for policies based on object identity.

Dantas et al. [5] also propose secure advice systems. Their
security goal is to guarantee that malicious advice cannot
interfere with certain program invariants. By requiring ref-
erences to the raw object and the view in order to add advice
– as opposed to global type-based pointcuts – we can assume
advice has proper authority over the impacted objects and
do not need to worry about their threat model. Instead,
we concern ourselves with protecting advice from malicious
view recipients.

Secure Browser Environments. Recent proposals like
BEEP [18] and MashupOS [16] seek to tailor the granular-
ity of the Same Origin Policy to the needs of a web site, e.g.,
to prevent unauthorized script execution or allow one-way
DOM access. We are also interested in application-specific
policies for sharing, but our sharing mechanism operates at
a finer level. Other browser proposals have focused on im-
proving isolation between principals [12]; we look at the next
step of controlled sharing without violating isolation.

OMash [4] lets a frame define a public “interface” so that
other principals may interact with it in a restricted fashion.
This is similar in spirit to a view, but OMash limits value
passing to primitives, whereas views support arbitrary ob-
jects. Our views could be used in conjunction with their
framework to provide share objects over an interface. Post-
Mash [2] encodes objects with object-to-string marshaling,
and our postMessage library extends this idea with view
advice to apply policies to marshaled sharing. Addition-
ally, our view mechanism is broader and allows for the se-
cure passing of actual references in scenarios where an object
sharing communication channel is available.

Server-Side Script Rewriting. Our work on views orig-
inated as part of Google Caja [25]. Other server-side script
rewriters (Facebook JavaScript [1] and Microsoft Web Sand-
box [17]) have developed their own automated DOM wrap-
ping systems since we began this research.

Lenses. Concurrent to our work, secure lenses were pro-
posed [9] as a way to verify confidentiality of strings. Our
focus is on supporting policies for sharing objects in web
applications; how to embed lenses in languages used for ap-
plications is still unclear [11].

8. CONCLUSION
We propose object views as a user-level mechanism for

fine-grained JavaScript object sharing. A view is an object
proxy controlled by advice functions. Advice functions per-
mit the expression of policies that govern access to the orig-
inal object. Instead of sharing the actual object, a principal
would share a view of the object. We build a policy system
for developers to declaratively specify view restrictions; the
policy system automatically generates advice functions from
the declarative rules.

We present how views can be used in two settings: gad-
get aggregators with server-side script rewriting and cross-
domain browser frames. Server-side script rewriters isolate
gadgets from the rest of the page but need to provide re-
stricted DOM access to gadgets; we propose views as a mech-
anism for partial DOM access. For cross-domain browser
communication, we discuss how views can be exchanged over
a postMessage object-to-string marshaling library. Marshal-
ing objects over postMessage is not new [2]; we extend the
idea with views to add advice-based policies.

Our security goal is to ensure that a view recipient cannot
gain unauthorized access to unrestricted references through
a view. To this end, we implement views using a recursive
wrapper that has been specialized to prevent JavaScript at-
tacks. One of our contributions is a discussion of how to
build JavaScript-safe wrappers.

Future work could examine further applications of views
(e.g., partial DOM access for extensions), policy usability,
security testing, and native browser support for views.
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