WWW 2010 ¢ Full Paper

April 26-30 » Raleigh * NC « USA

Fast and Parallel Webpage Layout’

oo
Leo A. Meyerovich
Imeyerov@eecs.berkeley.edu
University of California, Berkeley

ABSTRACT

The web browser is a CPU-intensive program. Especially
on mobile devices, webpages load too slowly, expending sig-
nificant time in processing a document’s appearance. Due
to power constraints, most hardware-driven speedups will
come in the form of parallel architectures. This is also true
of mobile devices such as phones and e-books. In this pa-
per, we introduce new algorithms for CSS selector matching,
layout solving, and font rendering, which represent key com-
ponents for a fast layout engine. Evaluation on popular sites
shows speedups as high as 80x. We also formulate the lay-
out problem with attribute grammars, enabling us to not
only parallelize our algorithm but prove that it computes in
O(log) time and without reflow.

Categories and Subject Descriptors

H.5.2 Information Interfaces and Presentation|: User
Interfaces— Benchmarking, graphical user interfaces (GUI),
theory and methods; 1.3.2 [Computer Graphics|: Graph-
ics Systems— Distributed/network graphics; 1.3.1 [Computer
Graphics|: Hardware Architecture—Parallel processing

General Terms

Algorithms, Design, Languages, Performance, Standardiza-
tion

Keywords

attribute grammar, box model, CSS, font, HTML, layout,
mobile, multicore, selector

1. INTRODUCTION

Web browsers should be at least a magnitude faster. Cur-
rent browser performance is insufficient, so companies like

*Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227).

TThiS material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

711

Rastislav Bodik
bodik@eecs.berkeley.edu
University of California, Berkeley

Google manually optimize typical pages [14] and rewrite
them in low-level platforms for mobile devices [1]. As we
have previously observed, browsers are increasingly CPU-
bound [8, 16]. Benchmarks of Internet Explorer [18] and
Safari reveal 40-70% of the average processing time is spent
on visual layout, which motivates our new components for
layout. Crucial to exploiting coming hardware, our algo-
rithms feature low cache usage and parallel evaluation.

Our primary motivation is to support the emerging and
diverse class of mobile devices. Consider the 85,0004 appli-
cations specifically written for Apple’s iPhone and iTouch
devices [10]. Alarmingly, instead of just refactoring existing
user interfaces for the smaller form factor, sites like yelp.com
and facebook.com fully rewrite their clients with low-level
languages: mobile devices suffer 1-2 magnitudes of sequen-
tial performance degradation due to power constraints, mak-
ing high-level languages too costly. As we consider succes-
sively smaller computing classes, our performance concerns
compound. These applications represent less than 1% of on-
line content; by optimizing browsers, we can make high-level
platforms like the web more viable for mobile devices.

Our secondary motivation for optimizing browsers is to
speedup pages that already take only 1-2 seconds to load. A
team at Google, when comparing the efficacy of showing 10
search results vs. ~30, found that speed was a significant la-
tent variable. A 0.5 second slowdown corresponded to a 20%
decrease in traffic, hurting revenue [14]. Other teams have
confirmed these findings throughout Facebook and Google.
Improving client-side performance is now a time-consuming
process: for example, Google sites sacrifice the structuring
benefits of style sheets in order to improve performance. By
optimizing browsers, we hope enable developers to instead
focus more on application domain concerns.

Webpage processing is a significant bottleneck. Figure 1
compares load times for popular websites on a 2.4 GHz Mac-
Book Pro to those on a 400MHz iPhone. We used the same
wireless network for the tests: load time is still 9x slower

[iPhone EEEMacBook Pro =#=slowdown =
c n
2 20 20 ~—
° [V}
T 10 10 €
3 (=
[=] T
- ° ° s

Slashdot Yahoo! MySpace Wikipedia -

Figure 1: 400Mhz iPhone vs. 2.4Ghz MacBook Pro load
times using the same wireless network.

WWW 2010 ¢ Full Paper

on the handheld, suggesting the network is not entirely to
blame. Consider the 6x clock frequency slowdown when
switching from a MacBook Pro to an iPhone, as well as
the overall simplification in architecture: the 9x slowdown
in our first experiment is not surprising. Assuming network
advances make mobile connections at least as fast as Wi-Fi,
browsers will be increasingly CPU-bound.

To improve browser performance, we should exploit par-
allelism. The power wall — constraints involving price, heat,
energy, transistor size, clock frequency, and power — is forc-
ing hardware architects to apply increases in transistor counts
towards improving parallel performance, not sequential per-
formance. This includes mobile devices; dual core mobile
devices are scheduled to be manufactured in 2010 and we
expect mobile devices with up to 8 parallel hardware con-
texts in roughly 5 years. We are building a parallel web
browser so that we can continue to rely upon the traditional
hardware-driven optimization path.

Our contributions are for page layout tasks. We measured
that at least 40% of the time in Safari is spent in these tasks
and others report 70% of the time in Internet Explorer [5].
Our paper contributes algorithms for the following presen-
tation tasks in CSS (Cascading Style Sheets [4, 12]):

1. Selector Matching. A rulelanguage is used to asso-
ciate style constraints with page elements, such as declaring
that pictures nested within paragraphs have large margins.
We present a new algorithm to determine, for every page
element, the associated set of constraints.

2. Parallel, Declarative Layout Solving. Con-
straints generated by the selector matching step must be
solved before a renderer can map element shapes into a grid
of pixels. The output of layout solving is the sizes and po-
sitions of elements. We present the first parallel algorithm
for evaluating a flow-based layout.

CSS is informally specified, aggravating use and adher-
ence. In contrast, we separate layout specification from im-
plementation by using attribute grammars. We provide the
first declarative specification of core layout features that are
not presented by the closest previous approach, CCSS [2].
Examples of analytic benefits are our proofs of layout solving
termination in log time and without performing any reflow.

3. Font handling. We optimize use of FreeType 2 [21],
a font library common to embedded systems like the iPhone.

After an overview of browser design (Section 2) and the
roles of our algorithms (Section 3), we separately introduce
and evaluate our algorithms (Sections 4, 5, and 6). We refer
readers to our project site [15] for source code, test cases,
benchmarks, and extended discussion.

2. BACKGROUND

Originally, web browsers were designed to render hyper-
linked documents. Later, JavaScript was introduced to en-
able scripting of simple animations and content transitions
by dynamically modifying the document. Today, AJAX ap-
plications rival their desktop counterparts. Browsers are
large and complex: WebKit’s JavaScript and layout engines
span over 5 million lines of code.

We show the basic data flow within a browser in Fig-
ure 2 [8]. Loading an HTML page sets off a cascade of events:
the page is lexed, parsed, and translated into a tree modeling
the document object model (DOM). Objects referenced by
URLs is fetched and added to the document. Intertwined
with receiving remote resources, the page layout is incre-

712

April 26-30 » Raleigh * NC « USA

request html, images,
css, scripts, app data

web server

dec
image mouse,

keyboard

Figure 2: Data flow in a browser.

mentally solved and painted on to the screen. Script objects
are loaded and processed in a blocking manner, again inter-
twined with the incremental layout and painting processes.
For simplicity, our current algorithms assume resources are
locally available and there is no scripting.

To determine optimization targets, we profiled the latest
release version of Safari (4.0.3), an optimized browser. Using
the Shark profiler to sample the browser’s call stack every
20us, we estimate lower bounds on CPU times when load-
ing popular pages of the tasks shown in Figure 3. For each
page, using an empty cache and a fast network, we started
profiling at request time and manually stopped when the
majority of content was visible. Note that, due to the call
stack sampling approach, we ignore time spent idling (e.g.,
network time and post page load inactivity). We expect at
least a magnitude of performance degradation for all tasks
on mobile devices because our measurements were on a lap-
top that consumes about 70W under load.

We examined times for the following tasks: Flash repre-
sents the Flash virtual machine plugin, the network library
handles HTTP communication (and does not include wait-
ing on the network), parsing includes tasks like lexing CSS
and generating JavaScript bytecodes, and JavaScript time
represents executing JavaScript. We could not attribute all
computations, but suspect much of the unclassified for sam-
ples were in layout, rendering, or CSS selector computations
triggered by JavaScript, or additional tasks in creating basic
HTML and CSS data structures.

jas] 0

—~ [0 ~
2 5 8 + o]
21 = 5 e B =
< | 2 e | 5| 2] &) 5]
n < n 2 ks @ [2 3
1 @ ol 5| 5| 2| 2| 2| %
SITE F 5 O &2 8 8| 8| = &
JovientART | 384 | 110 | 224 | 102 | 1711 65] 29 | 20
Facebook | 400 | 208 | 139 | 130 | 164 | o4 | 41 | 17
Cmail | 881 51 | 404 | 505 | 471 | 437 | 283 | 16
MSNBC | 498 | 130 | 291 | 258 | 133 | 95 | 85 | 23
Netflix | 251 93 130 | 95| 49| 20| 21 | 11
Slashdot | 390 | 1092 | 94 | 109 | 119 | 110 | 63| 6
AV.ms | 405 | 280 | 233 | 104 | 176 | 118 | 72| 19
AV. % | 31 18] 15| 12] 11 7 4 1

Figure 3: Task times (ms) on page load (2.4GHz laptop).

WWW 2010 ¢ Full Paper

2 2

=1 22| B = g s
21212 2 B B <
wn © < = 5] g

- &0 L. = — par
s %| 5| 8] 58] B
SITE El 8| &| 28] 2 $)
doviantART | 13 | 16 | 33 | 14| 57 | 119
Facebook | 10 [23| 20| 17| 91| 208
Cmail | 1|45 | 108 | 239 | 396 51
MSNBC | 10 [36 | 59| 49 | 190 | 130
Netflix | 20| 8| 16| 13| 60 93
Slashdot | 2|42 | 39| 21| 68| 1092
AVERAGE ms | 18 | 30 | 54 | 54 | 150 | 253
AVERAGE% | 3| 5 9 9] 28 44

Figure 4: Page load presentation time (ms), 2.4GHz laptop.

Our performance profile shows bottlenecks. Native library
computations like parsing and layout account for at least
half of the CPU time, which we are optimizing in our par-
allel browser. In contrast, optimizing JavaScript execution
on these sites would eliminate at most 7% of the average at-
tributed CPU time. In this paper, without even counting
the unclassified operations, we present algorithms for 34%
of the CPU time.

3. OPTIMIZED ALGORITHMS

Targeting a kernel of CSS, we redesigned the algorithms
for taking a parsed representation of a page and processing it
for display. In the following sections, we focus on bottlenecks
in CSS selectors (18%), layout (4%), and rendering (12%).
Figure 4 further breaks down these task times in Safari and
presents percentages in terms of the tasks shown. Rendering
is split between text, image, and box rendering. We do not
present algorithms for image rendering as it can handled as
a simplified form of our glyph rendering algorithm nor for
box rendering as an algorithm analogous to our layout one
can be used. While the figure differentiates between text
and box layout, our layout algorithm treats them uniformly.

Figure 5 depicts, at a high level, the sequence of our par-
allel algorithms. For input, a page consists of an HTML
tree of content, a set of CSS style rules that associate lay-
out constraints with HTML nodes, and a set of font files.
For output, we compute absolute element positions. Each
step in the figure shows what information is computed and
depicts the parallelization structure to compute it. Arrow-
less lines show tasks are independent while arrows describe
a task that must complete before the pointed to task may
compute. Generally, HTML tree elements (the nodes) corre-
spond to tasks. Our sequence of algorithms is the following:

Step 1 (selector matching) determines, for every HTML
node, which style constraints apply to it. For example, style
rule div a {font-size: 2em} specifies that an “a” node
descendant from a “div” node has a font size twice of its par-
ent’s. For parallelism, rules may be matched against nodes
independently of each other and other nodes.

Steps 2, 4-6 (box and text layout) solve layout con-
straints. Each step is a single parallel pass over the HTML
tree. Consider a node’s font size, which is constrained as a
concrete value or a percentage of its parent’s: step 2 shows

713

April 26-30 » Raleigh * NC « USA

1. selector matching 2. font (size,

diva{..} pspan{..}diva{..}|pspan{..} color, face),
% width
w|e|alo|s]e
8
3. glyph: (width, 4. preferred width, 5. width

height, kerning), minimum width

pixel map

)[q T /ﬁg\’ /g\’

6. relative (x, y), 7. absolute (x, y),
height pixel map

A A

Figure 5: Parallel CSS processing steps.

that once a node’s font size is known, the font size of its
children may be determined in parallel. Note text is on the
DOM tree’s fringe while boxes are intermediate nodes.

Step 3 (glyph handling) determines what characters
are used in a page, calls the font library to determine char-
acter constraints (e.g., size and kerning), and renders unique
glyphs. Handling of one glyph is independent of handling
another. Initial layout solving must first occur to determine
font sizes and types. Glyph constraints generated here used
later in layout steps sensitive to text size.

Step 7 (painting or rendering) converts each shape
into a box of pixels and blends it with overlapping shapes.

We found parallelism within every step, and, in some
cases, even obtained sequential speedups. While our lay-
out process has many steps, it essentially interleaves four
algorithms: a CSS selector matcher, a constraint solver for
CSS-like layouts, and a glyph renderer. We can now individ-
ually examine the first three algorithms, where we achieve
speedups from 3x to 80x (Figures 8, 13, and 16). Beyond
the work presented here, we are applying similar techniques
to related tasks between steps 1 and 2 like cascading and
normalization, and GPU acceleration for step 8, painting.

4. CSS SELECTOR MATCHING

This section describes and evaluates our algorithm for CSS
selector matching. Our innovations are in parallelization and
in improving memory locality.

4.1 Problem Statement

Recall that CSS rules declaratively associate style con-
straints with document nodes. The input to CSS rule match-
ing is a document tree and a CSS style sheet. A style sheet
is a list of CSS rules. A CSS rule consists of a selector and
a set of style constraints that are to be associated with the
document nodes that match the selector. Consider the rule
p img { margin: 10px; } which specifies that the margin
of images in a paragraph should be 10 pixels. An img node is

WWW 2010 ¢ Full Paper

nested in a paragraph if it is a descendant of a p node. The
term p img is a selector and the term { margin: 10px; }
is the (singleton) set of style constraints. The output of rule
matching is an annotation that maps each DOM node to the
set of CSS rules that match this node.

When multiple rules match a node, conflicting constraints
may be imposed on a node attribute (e.g., on its color).
Conflicting constraints are resolved according to “cascad-
ing” rules [4]. We have not optimized this phase as it is
dominated by selector matching.

The Selector Language. A rule with a selector s matches
a document node n if the path from the document root to
n matches the selector s. We observed that CSS rules in
common use fall into a selector language that is a subset of
regular expressions. This common subset of CSS covers over
99% of the rules we encountered on popular sites listed on
alexa.com. We define our efficient algorithm for this regular
subset of CSS; selectors outside this subset are handled with
an unoptimized algorithm.

The regular subset of CSS selectors is defined in Fig-
ure 6(a). The operator , denotes disjunction: the rule
matches if any of the selectors in the rule matches the
path. A node predicate nodePred matches a node if the
predicate’s tag, id, and class attributes are a subset of the
node’s attributes. There is at least one tag, id, or class
attribute in the predicate. For an example, the node <div
id="account" class="first,on"/>is matched by the sym-
boldiv.first. The operator s1 < s2 signifies that the node
matching the selector s1 must be the parent of the node
matching the selector s2. The operator s1 s2 signifies that
the node matching the selector s1 must a predecessor of the
node matching the selector s2.

The translation of this regular subset of CSS selectors is
given in Figure 6(b). The path from a node to the doc-
ument root is a string, with each character representing a
node. Specifically, the character represents a node match-
ing a node predicate. The regular expression operator “|”
stands for disjunction and “.*” stands for a string of arbi-
trary characters.

4.2 The CSS Matching Algorithm

Popular sites like Slashdot.org may have thousands of
document nodes and thousands of rules to be matched against
each document node. Figure 7 presents pseudocode for our
selector matching algorithm, including many (but not all)
of our optimizations. We one assumptions to simplify the
presentation: we assume the selector language is restricted
to the one defined above.

(a) Selector language (b) Regex subset

rule = sel | rule "," sel rule = sel | rule "|" sel
sel = sel =
nodePred symbol
| sel "<" sel | sel sel
| sel sel | sel ".*x" sel
nodePred =

tag ("#"id)? (.class)*
| "#"id ("."class)*
| ("."class)+

Figure 6: Selector subset to regular expression translation.

714

April 26-30 » Raleigh * NC « USA

INPUT: doc : Node Tree, rules : Rule Set

OUTPUT: nodes : Node Tree where Node =
{id: Token, classes: Token List, tag: Token, //input
rules: Rule Set} //output

idHash, classHash, tagHash = {} //generate lookup tables
for r in rules: //redundancy elimination and hashing
for s in rule.predicates:
if s.last.id:
idDash[s] .map(s.last.id, r) //assume multimap is
else if s.last.classes: //automatically made
classHash[s] .map(s.last.classes.last, r)
else: tagDash[s].map(s.last.tag, r)

random_parallel_for n in doc: //tile 1: ID predicates
n.matchedList [1.preallocate(15) //locally allocate
if n.id: attemptHashes(n, idHash, n.id)

random_parallel_for n in doc: //tile 2: class predicates
for ¢ in n.classes:

attemptHashes(n, classHash, c)

random_parallel_for n in doc: //tile 3: tag predicates

if n.tag: attemptHashes(n, tagHash, n.tag)

random_parallel_for n in doc: //reduction: determine
for rules in n.matchedList: // rules from selectors
for r in rules:

n.rules.insert(r) //note rules is a set

def attemptHashes(n, hash, idx):
for (s, rules) in hash[idx]:
if (matches(n, s)): //tight right-to-left loop
n.matchedList.push(rules) //overlapping sets

Figure 7: Most of our selector matching algorithm kernel.

Our algorithm first creates hash tables associating at-
tributes with selectors that may end with them. It then,
in 3 passes over the document, matches nodes against selec-
tors. Finally, it performs a post-pass to format the results.

Some of our optimizations are adopted from WebKit:

Hash tables. Consider selector “p img”: only images
need to be checked against it. For every tag, class, and id
instance, a preprocessor create a hash table associating at-
tributes with the restricted set of selectors that end with
it, such as associating attribute img with selectorp img. In-
stead of checking the entire style sheet against a node, we
perform the hash table lookups on its attributes and only
check these restricted selectors.

Right-to-left matching. For a match, a selector must
end with a symbol matching the node. Furthermore, most
selectors can be matched by only examining a short suffix of
the path to a node. By matching selectors to paths right-to-
left rather than left-to-right, we exploit these two properties
to achieve a form of short-circuiting in the common case.

We do not examine the known optimization of using a trie
representation of the document (based on attributes). In
this approaches, matches on a single node of the collapsed
tree may signify matches on multiple nodes in the preimage.

We contribute the following optimizations:

Redundant selector elimination. Due to the weak
abstraction mechanisms in the selector language, multiple
rules often use the same selectors. Preprocessing avoids re-
peatedly checking the same selector against the same node.

Hash Tiling. When traversing nodes, the hash table
associating attributes with selectors is randomly accessed.
The HTML tree, hash table, and selectors do not fit in L1

WWW 2010 ¢ Full Paper

80 AVERAGE ===-=|DEAL SCALING
é < 9® msnbc E gmail
2 60 = 2
= < 2 X deviantart X netflix
@ Q =
o 40 Q (=]
g 2| g
@ = -
20 = < ==t
~ , A s |) E
0ol | g0 § W
Safari Naive L2 Cilkl1 Cilk2 Cilk3 Cilk4 Cilks Cilké

April 26-30 » Raleigh * NC « USA

AV. W/OUT GMAIL _ - Y
slashdot /:' O § 4 ; %
facebook __// % § 3 * A
e & § g W = & = = 5
I~ - L_
Cilk7 Cilk8 L1 TBB1 TBB2 TBB3 TBB4 TBBS TBB6 TBB7 TBB8

Figure 8: Selector speedup relative to a reimplementation (column 2) of Safari’s algorithm (column 1). Labels Cilk<:> and
TBB<i> represent the number of contexts. Column Safari on a 2.4GHz laptop, rest on a 4-core X 8-socket 2.3GHz Opteron.

cache and sometimes even L2: cache misses for them have a
10-100x penalty. We instead partition the hash table, per-
forming a sequence of passes through the HTML tree, where
each pass uses one partition (e.g., idHash).

Tokenization. Representing attributes likes tag identi-
fiers and class names as unique integer tokens instead of
as strings decreases the size of data structures (decreasing
cache usage), and also shortens comparison time within the
matches method to equating integers.

Parallel document traversal. Currently, we only par-
allelize the tree traversals. We map the tree into an array of
nodes, and use a work-stealing library to allocate chunks of
the array to cores. The hash tiling optimization still applies
by performing a sequence of parallel traversals (one for each
of the idHash, classHash, and tagHash hashtables).

Random load balancing. Determining which selectors
match a node may take longer for one node than another.
Neighbors in a document tree may have similar attributes
and therefore the same attribute path and processing time.
This similarity between neighbors means matching on differ-
ent subtrees may take very different amount of times, leading
to imbalance for static scheduling and excessive scheduling
for dynamic approaches. Instead, we randomly assign nodes
to an array and then perform work-stealing on a parallel
loop, decreasing the amount of steals.

Result pre-allocation. Instead of calling a memory al-
locator to record matched selectors, we try to preallocate
space. We tune on popular sites to predict space needs.

Delayed set insertion. The set of selectors matching a
node may correspond to a much bigger set of rules because
of our redundancy elimination. When recording a match,
to lower memory use, we only record the selector matched,
only later determining the set of corresponding rules.

Non-STL sets. When flattening sets of matched rules
into one set, we do not use the C4++4 standard template
library (STL) set data structure. Instead, we preallocate a
vector that is the size of all the potential matches (which is
an upper bound) and then add matches one by one, doing
linear (but faster) collision checks.

4.3 Evaluation

Figure 8 reports using our rule matching algorithm on
popular websites Tun on a 2.3 GHz 4-core X 8-socket AMD
Opteron 8356 (Barcelona). Column 2 measures our reimple-
mentation of Safari’s algorithm (column 1, run on a 2.4GHz
Intel Core Duo): our reimplementation was within 30% of
the original and handled 99.9% of the encountered CSS rules,
so it is fairly representative. GMail, as an optimization,
does not significantly use CSS: we show average speedups

715

with and without it (the following discussion of averages is
without it). We performed 20 trials for each measurement.
There was occasional system interference, so we dropped
trials deviating over 3x (less than 1% of the trials).

We first examine low-effort optimizations. Column “L2
opts” depicts simple sequential optimizations such as the
hash table tiling. This yields a 4.0x speedup. Using Cilk++,
a simple 3-keyword extension of C4++4 for work-stealing task
parallelism, we spawn selector matching tasks during the
normal traversal of the HTML tree instead of just recur-
ring. Sequential speedup dropped to 3.8x, but, compensat-
ing, strong scaling was to 3 hardware contexts with smaller
gains up to 7 contexts (“Cilk” columns). Overall, speedup is
13x and 14.8x with and without Gmail.

We now examine the other sequential optimizations (Sec-
tion 4.2) and changing parallelization strategy. The sequen-
tial optimizations (column “L1 opts”) exhibit an average to-
tal 25.1x speedup, which is greater than the speedup from
using Cilk++4, but required more effort. The result of using
Intel’s TBB library for more verbose but efficient task par-
allelism and a randomized for-loop is shown in the “TBB”
columns. Similiar to Cilk++-, parallelization causes speedup
to drop to 19x for sequential code. Strong scaling is again to
3 hardware contexts and does not plateau until 6 hardware
contexts. Speedup variance increases with scaling, but less
than when using the tree traversal (not shown). With and
without Gmail, the speedup is 55.2x and 64.8x, respectively.

Overall, we saw total selector matching runtime dropped
from an average 204ms when run on the AMD machine down
to an average 3.5ms. Given an average 284ms was spent in
Safari on the 2.4GHz Intel Core 2 Duo MacBook Pro, we
predict unoptimized matching takes about 3s on a handheld.
If the same speedup occurs on a handheld, time would drop
down to about 50ms, solving the bottleneck.

5. LAYOUT CONSTRAINT SOLVING

Layout consumes an HTML tree where nodes have sym-
bolic constraint attributes set by the earlier selector match-
ing phase. Layout solving determines details like shape, text
size, and position. Finally, painting converts these shapes
into pixels: while we have reused our basic algorithm for a
simple multicore renderer, we defer examining painting for
future work that exploits data-parallel hardware like GPUs.

In a box layout, intermediate nodes represent rectangles
visually nested within the rectangle of their parent and are
adjacent to boxes of their sibling nodes. With a flow lay-
out, they are also subject to constraints like word-wrapping.
Text and images are fringe nodes with constraints such as

WWW 2010 ¢ Full Paper

letter size or aspect ratio. To solve for one attribute, many
other nodes and their attributes are involved, potentially
with conflicting or cyclic relationships. It is difficult to im-
plement layout correctly, and more so efficiently.

As with selector matching, no special annotations are re-
quired to benefit from our algorithms. Instead, we focus
on finding implicit parallelism in subset of CSS. This subset
is expressive: it includes the key features that developers
endorse for resizable (liguid) layout and reveals diverging
interpretations by different browsers. Ultimately, we found
it simplest to define a syntax-driven transformation of CSS
into a new, simpler intermediate language, which we dub
Berkeley Style Sheets (BSS).

We make three contributions for layout solving:

Performance. We show how to decompose layout into
multiple parallel passes. In Safari, the time spent solving
box and text constraints is, on average, 15% of the time
(84ms on a fast laptop and we expect 1s on a handheld).

Specification. We demonstrate a basis for the declara-
tive specification of CSS. The CSS layout standard is infor-
mally written, cross-cutting, does not provide insight into
even the naive implementation of a correct engine, and un-
derspecifies many features. As a result, designer produc-
tivity is limited by having to work around functionally in-
correct engine implementations. Troubling, there are also
standards-compliant feature implementations with function-
ally inconsistent interpretations between browsers. We spent
significant effort in understanding, decomposing, and then
recombining CSS features in a way that is more orthogonal,
concise, and well-defined. As a sample benefit, we are ex-
perimenting with automatically generating a correct solver.

Proof. We prove layout solving is at most linear in the
size of the HTML tree (and often solvable in log time). Cur-
rently, browser developers cannot even be sure that layout
solving terminates. In practice, it occasionally does not [20].

Due to space constraints, we only detail BSSO, a simple
layout language for vertical and horizontal boxes. It is sim-
ple enough to be described with one attribute grammar, but
complicated enough that there may be long dependencies be-
tween nodes in the tree and the CSS standard does not define
how it should be evaluated. We informally discuss BSS1, a
multipass grammar which supports shrink-to-fit sizing, and
BSS2, which supports left floats (which we believe are the
most complicated and powerful elements in CSS2.1).

5.1 Specifying BSSO

BSS0, our simplest language kernel, is for nested layout of
boxes using vertical stacking or word-wrapping. We provide
an intuition for BSS0 and our use of an attribute grammar to
specify it. Even for a small language, we encounter subtleties
in the intended meaning of combinations of various language
features and how to evaluate them.

Figure 9 illustrates the use of the various constraints in
BSS0 corresponding to the output in Figure 10. The outer-
most box is a vertical box: its children are stacked vertically.
In contrast, its second child is a horizontal box, placing its
children horizontally, left-to-right, until the right boundary
is reached, and then word wrapping. Width and height con-
straints are concrete pixel sizes or percentages of the parent.
Heights may also be set to auto: the height of the horizon-
tal box is just small enough to contain all of its children.
BSS1 [15] shows extending this notion to width calculations
adds additional but unsurprising complexity.

716

April 26-30 » Raleigh * NC « USA

V BOX[wCnstrnt = 200pz, hCnstrnt = 150pz](
VBOX[wCnstrnt = 80%, hCnstrnt = 15%](),
HBOX[wCnstrnt = 100pz, hCnstrnt = auto|(

V BOX[wCnstrnt = 40pz, hCnsntrt = 15pz](),
V BOX[wCnstrnt = 20pz, hCnstrnt = 15pz](),
V BOX[wCnstrnt = 80pz, hCnstrnt = 15pz]()))

Figure 9: Sample BSSO layout constraints input.

VBOX wCnstrnt=200px

VBOX wCnstrt=80% \ o)

= ' 2
g)__ =
z L
= HBOX wCnstrnt=100px a
= %
X

hCnstrnt=shrink

¥

Figure 10: Sample BSS0 layout constraints output.

We specify the constraints of BSSO with an attribute gram-
mar (Figure 11). The goal is, for every node, to determine
the width and height of the node and its x and y position
relative to its parent. The bottom of the figure defines the
types of the constraints and classes V and H specify, for ver-
tical and horizontal boxes, the meaning of the constraints.

In an attribute grammar [11], attributes on each node are
solved during tree traversals. An inherited attribute is di-
rectly dependent upon attributes of its parent node, such as
a width being a percentage of its parent width’s. A synthe-
sized attribute is directly dependent upon attributes of its
children. For example, if a height is set to auto — the sum of
the heights of its children — we can solve them all in an up-
wards pass. Both inherited and synthesized attributes may
be functions of both inherited and synthesized attributes. In
unrestricted attribute grammars, indirect dependencies for
an attribute may be both above and below in the tree: a
traversal may need to repeatedly visit the same node, po-
tentially with non-deterministic or fixed-point semantics!

BSS0 is designed such that inherited attributes are func-
tions of inherited attributes: a traversal to solve them need
only observe a partial order going downwards in the tree.
Topological, branch-and-bound, and depth-first traversals
satisfy it. Similarly, synthesized attributes, except on the
fringe, only depend on synthesized attributes: after inher-
ited attributes are computed, a topologically upwards traver-
sal may compute the synthesized ones in one pass. In Sec-
tion 5.3, we see this simplifies parallelization: parallel down-
wards and then upwards passes suffice for BSSO (steps 2 and
4 of Figure 5). In the node interface (Figure 11), we annotate
attributes with dependency type (inherited or synthesized).

In our larger languages, [15] inherited attributes may also
access synthesized attributes: two passes no longer suffice.
In these extensions, inherited attributes in the grammar
are separated by an equivalence relation, as are synthe-
sized ones, and the various classes are totally ordered: each

WWW 2010 ¢ Full Paper

interface Node // passes
Q@input children, prev, wCnstrnt, hCnstrnt
Qgrammari: // (top-down, bottom-up)
@inherit width // final width
@inherit th // temp height for bad constraint
Q@inherit relx // x position relative to parent
@synthesize height // final height
@synthesize rely // y position relative to parent
class V implements Node // semantic actions
Q@grammarl.inherit
for ¢ in children:
c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)
c.relx =0

// top-down

Qgrammarl.synthesize // bottom-up
height = joinS(th, sum([c.height | ¢ in children]))
if children[0]: children[0]rely = O
for ¢ > 0 in children:
c.rely = c.prev.rely + c.prev.height
class H implements Node // semantic actions
Q@grammarl.inherit
for ¢ in children:
c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)
if children[0]:
children[0]relx = 0
for ¢ > 0 in children:
c.relx = c.prev.relx + c.prev.width > width ? // wrap
0 : c.prev.relx + c.prev.width

// top-down

Q@grammarl.synthesize // bottom-up
if children[0]:
children[0]rely = O
for ¢ > 0 in children:
c.rely = c.prev.relx + c.prev.width > width ? // wrap
c.prev.rely + c.prev.height : c.prev.rely
height =
joinS(th, max([c.rely + c.height | ¢ in children]))

class Root constrains V // V node with hardcoded values
th = 100 // browser specifies all of these
width = 100, height = 100
relx = 0, rely = 0

function sizeS (auto, p %) -> auto // helpers
| (vpx, p%) ->v *x 0.01 *x p px
| (v, p px) —> p px
| (v, auto) -> auto
function joinS (auto, v) -> v
| (p px, v) =>p

R—V|H // types
V- H* |V
H—-V*
V :{wCnstrnt : P | PCNT, hCnstrnt: P | PCNT | auto
children : V' list, prev : V,
th : P | auto,
width = P, relx : P, rely : P, height : P}
H ::{wCnstrnt : P | PCNT, hCnstrnt : P | PCNT | auto

children : V' list, prev :V,
th : P | auto,
width = P, relx : P, rely : P, height : P}
Root ::V where {width : P, height : P, th : P}
P R px
PCNT :: P % where P =[0,1] CR
Figure 11: BSSO passes, constraints, helpers, and structure.

77

April 26-30 » Raleigh * NC « USA

class corresponds to a pass. All dependency graphs of at-
tribute constraints abide by this order. Alternations be-
tween sequences of inherited and synthesized attributes cor-
respond to alternations between upwards and downwards
passes, with the total amount of passes being the number of
equivalence classes. Figure 5 shows these passes. The order-
ing is for the pass by which a value is definitely computable
(which our algorithms make a requirement); as seen with
the relative x coordinate of children of vertical nodes, there
are often opportunities to compute in earlier passes.

5.2 Surprising and Ambiguous Constraints

Even for a seemingly simple language like BSSO, we see
scenarios where constraints have a surprising or even unde-
fined interpretation in the CSS standard and browser imple-
mentations. Consider the following boxes:

V[hCnstrnt=auto](V[hCnstrnt=50%](V[hCnstrnt=20pxz]))

Defining the height constraints for the outer 2 vertical
boxes based on their names, the consistent solution would
be to set both heights to 0. Another approach is to ignore
the percentage constraint and reinterpret it as auto. The
innermost box size is now used: all boxes have height 20px.
In CSS, an analogous situation occurs for widths. The stan-
dard does not specify what to do; instead of using the first
approach, our solution uses the latter (as most browsers do).

Another subtlety is that the width and height of a box
does not restrict its children from being displayed outside of
its boundaries. Consider the following:

V[hCnstrnt=50pz|(V[hCnstrnt=100pz])

Instead of considering such a layout to be inconsistent and
rejecting it, BSSO (like CSS) accepts both constraints. Lay-
out proceeds as if the outer box really did successfully con-
tain all of its children. Depending on rendering settings, the
overflowing parts of the inner box might still be displayed.

We found many such scenarios where the standard is un-
defined, explicitly or possibly by accident. In contrast, our
specification is well-defined.

5.3 Parallelization

Attribute grammars expose opportunities for paralleliza-
tion [9]. First, consider inherited attributes. Data depen-
dencies flow down the tree: given the inherited attributes of
a parent node, the inherited attributes of its children may be
independently computed. Second, consider synthesized at-
tributes: a node’s childrens’ attributes may be computed in-
dependently. Using the document tree as a task-dependency
graph, arrows between inherited attributes go downwards,
synthesized attribute dependencies upwards, and the fringe
shows synthesized attributes are dependent upon inherited
attributes from the previous phase (Figure 5).

Many parallel algorithms are now possible. For exam-
ple, synthesized attributes might be computed with prefix
scan operations. While such specialized operators may sup-
port layout subsets, we found much of the layout time in
Safari is spent in more general operations (e.g., isSVG()).
We instead take a task-parallel approach (Figure 12). For
each node type and grammar, we define general (sequen-
tial) functions for computing inherited attributes (calcInher-
ited()) and synthesized attributes (calcSynthesized()). Schedul-
ing is orthogonally handled as follows:

We define parallel traversal functions that invoke layout
calculation functions (semantic actions [11]). One grammar
is fully processed before the next. To process a grammar,

WWW 2010 ¢ Full Paper

class Node
def traverse (self, g):
self [’calcInherited’ + gl ();
Qautotune (c.numChildren) //sequential near fringe
parallel_for ¢ in self.children:
c.traverse(g) //in parallel to other children
self [’calcSynthesized’ + gl();
class V: Node
def calcInheritedGl (self):
for ¢ in self.children:
c.th = sizeS(self.th, c.hCnstrnt)
c.width = sizeS(self.tw, c.wCnstrnt)
def calcSynthesizedGl (self):
self.height =
joinS(self.th,
sum([c.height where ¢ in self.children]))
if self.children[0]: self.children[0].rely = 0
for ¢ > 0 in sel.children:
c.rely = c.prev.rely + c.prev.height
self.prefWidth =
join(self.tw,
max([c.prefWidth where c¢ in self.children]))
self.minWidth =
join(self.tw,
max ([c.minWidth where ¢ in self.children]))

for g in [’G1°, ...]:
rootNode. traverse (g)

//compute layout

Figure 12: BSS0 parallelization pseudocode. Layout calcu-
lations are implemented separately from the scheduling and
synchronization traversal function.

a recursive traversal through the tree occurs: inherited at-
tributes are computed for a node, tasks are spawned for pro-
cessing child nodes, and upon their completion, the node’s
synthesized attributes are processed. Our implementation
uses Intel’s TBB, a task parallel library for C4++4. Tradi-
tional optimizations apply, such as tuning for when to se-
quentially process subtrees near the bottom of the HTML
tree instead of spawning new tasks. Grammar writers define
sequential functions to compute the attributes specified in
Figure 11 given the attributes in the previous stages; they
do not handle concerns like scheduling or synchronization.

5.4 Performance Evaluation

Encoding a snapshot of slashdot.org with BSS1, we found
that box layout time takes only 1-2ms with another 5ms for
text layout. In contrast, our profile of Safari attributes 21ms
and 42ms, respectively (Figure 4). We parallelized our im-
plementation, seeing 2-3x speedups (for text; boxes were too
fast). We surmise our grammars are too simple. We then
performed a simple experiment: given a tree with as many
nodes as Slashdot, what if we performed multiple passes as
in our algorithm, except uniformly spun on each node so
that the total work equals that of Slashdot, simulating the
workload in Safari? Figure 13 shows, without trying to op-
timize the computation any further and using the relatively
slow but simple Cilk++ primitives, we strongly scale to 3
cores and gain an overall 4x speedup. The takeaway is that
our algorithm exposes exploitable parallelism; as our engine
grows, we will be able to tune it as we did with selectors.

718

Speedup

S B N W b

April 26-30 » Raleigh * NC « USA

—IDEAL

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Hardware Contexts (2.3Ghz 8-socket x 4-core AMD Opteron 8356)

Figure 13: Simulated layout parallelization speedup.

(a) speculations

hello
hello | /\/\
1V (T U wona
-»> Eorid ok ok bk ok ok ok ok ok ok ok
contents
(relxrely) /\/\\ world /\/\\ world
Y ok ok AT Y ok ok
ok ok ok ok ok ok

hello

L ZNIN

orld ok ok

bk ok ok

world
ok ok

ok ok

ok

(b) evaluation

(c) mispeculation checking (d) reevaluation

Figure 14: Speculative evaluation for floats.

5.5 Floats

Advanced layouts such as multiple columns or liquid (mul-
tiresolution) flows employ floating elements. For example,
Figure 14(d) depicts a newspaper technique where images
float left and content flows around them. Floats are am-
biguously defined and inconsistently implemented between
browsers; our specification of them took significant effort
and only supports left (not right) floats. We refer to our
extended version [15] for more detailed discussion.

A revealed weakness of our approach in BSSO and BSS1 is
that floating elements may have long sequential dependen-
cies. For example, attempting to solve the second paragraph
in Figure 14(b) without knowing the positions of elements
in the first leads to an incorrect layout. Our solution is to
speculatively evaluate grammars (Figures 14(a), (b)) and
then check for errors (Figure 14(c)), rerunning grammars
that misspeculate (Figure 14(d)). Our specification-driven
approach makes it clear which values need to be checked.

5.6 Termination and Complexity

Infinite loops occasionally occur when laying out web-
pages [20]. Such behavior might not be an implementation
bug: there is no proof that CSS terminates! Our specifica-
tion approach enables proof of a variety of desirable proper-
ties. At hand are termination and asymptotic complexity.

We syntactically prove for BSSO that layout solving ter-
minates, computes in time at worst linear in HTML tree
size, and for a large class of layouts, computes in time log

WWW 2010 ¢ Full Paper

of HTML tree size. Our computations are defined as an
attribute grammar. The grammar has an inherited compu-
tation phase (which is syntactically checkable): performing
it is at worst linear using a topological traversal of the tree.
For balanced trees, the traversal may be performed in par-
allel by spawning at nodes: given log(]iree|) processors, the
computation may be performed in log time. A similar ar-
gument follows for the synthesized attribute pass, so these
results apply to BSSO overall. A corollary is that reflow
(iterative solving for the same attribute) is unnecessary.
Our extended version [15] discusses extending these tech-
niques to richer layout languages. An exemption is that we
cannot prove log-time speculative handling of floats.

6. FONT HANDLING

Font library time, such as for glyph rendering, takes at
least 10% of the processing time in Safari (Figure 4). Calls
into font libraries typically occur greedily whenever text is
encountered during a traversal of the HTML tree. For ex-
ample, to process the word “good” in Figure 14, calls for
the bitmaps and size constraints of ’g’, ’0’, and o’ would be
made at one point, and, later, for 'd’. A cache is used to
optimize the repeated use of ’o’.

Figure 15 illustrates our algorithm for handling font calls
in bulk. This is step 3 of our overall algorithm (Figure 5): it
occurs after desired font sizes are known for text and must
occur before the rest of the layout calculations (e.g., for
prefWidth) may occur. First, we create a set of necessary
font library requests — the smallest abstract request is the
combination of (character, font face, size, and style) — and
then organize and perform parallel calls for these requests.
Our algorithm currently perform the pooling step sequen-
tially, but there might be exploitable concurrency as it can
be described as a parallel reduction that takes the unions
of sets. Finally, our algorithm makes nested parallel_for
work-stealing calls using TBB, hierarchically encoding affin-
ity based on font file and creating tasks at the granularity
of (font, size).

Figure 16 shows the performance of our algorithm on sev-
eral popular sites. We use the FreeType2 font library[21], In-
tel’s TBB for a work stealing parallel_for, and a 2.66GHz
Intel Nehalem with 4 cores per socket. For each site, we
extract the HTML tree and already computed font styles
(e.g., bold) as input for our algorithm. We see strong par-
allelization benefits for up to 3 cores and a plateau at 5. In
an early implementation, we also saw about a 2x sequential
speedup, we guess due to locality benefits from staging in-
stead of greedily calling the font library. Finally, we note

—

es stnat 1t. Se actenterit Catur
dem Pala vent vium turs egin |
sty nirtem iam quod inatc
D SeTTeTHNees estus > I
L, arial, 18 Thread 1
"~ _)|E|
4 N
L, courier, 10
Thread 2
< /

Figure 15: Bulk and parallel font handling.

719

April 26-30 » Raleigh * NC « USA

1. msnbc 2, gmail 3. slashdot
i 4, deviantart 5. netflix 6. facebook
——AVERAGE ——IDEAL
4
MacBook Pro| Nehalem
o
@
D.Z f . - - - = = L
v
ol 10 T
o ik Ik kR

MB1 MB2 N1 N2 N3 N4 N5 N6 N7 N8
Hardware Contexts (MB=MacBook Pro, N=Nehalem)

Figure 16: Glyph rendering parallelization speedup. Col-
umn label shows number of hardware contexts used.

the emergence of Amdahl’s Law: before parallelization, our
sequential processor to determine necessary font calls took
only 10% of the time later spent making calls, but, after
optimizing elsewhere, it takes 30%. Our font kernel paral-
lelization succeeded on all sites with a 3-4x speedup.

7. RELATED WORK

Multi-process browsers. Browsers use processes to iso-
late pages, hardening against attacks and fairly apportioning
resources [22]. Such process-based browser architecture al-
lows pipeline-style parallelism between components but does
not parallelize the layout computation which remains con-
fined into a component.

CSS Selectors. Our selector matching algorithm incor-
porates two sequential optimizations from WebKit. Using a
similar base algorithm to that of WebKit, Haghighat et al [6]
speculatively parallelize the task of matching one selector
against one node, achieving two-fold speedups. Our results
suggest that executing this task sequentially, but with many
instances in parallel, leads to higher speedups.

Bordawekar et al [3] study matching XPath expressions
against XML trees. They experiment with data partitioning
(spreading the tree across multiple processors and concur-
rently matching the full query against the partitions) and
query partitioning (partitioning the parameter space of a
query across processors). Their problem is biased towards
single queries and large files while ours is the opposite. We
partition data by randomly distributing tree leaves, parti-
tion queries by splitting disjunctions, and we introduce (tem-
poral) tiling of the set of selectors.

Glyph rendering. Parallelism has been previously pro-
posed for rendering an individual glyph [17]. We divide ini-
tial glyph rendering from compositing, lessoning this need.
Furthermore, we use the layout engine to schedule concur-
rent glyph renderings and can reuse sequential glyph ren-
dering engines.

Specifying layout. Most document layout systems, like
TEX and CSS, have informal specifications [12, 4], if any. For
performance reasons, they are typically implemented in low-
level languages. Increasingly, high-level languages like Ac-
tionScript are used, as in Adobe Flex, but that does not suf-
ficiently elevate the level of implementation abstraction. Ex-
ecutable declarative specification of flexible document lay-
outs is a difficult problem. Heckmann et al [7] provide an
implementation of BTEX formula layout in functional sub-
set of SML. The Cassowary project [2] shows how to model

WWW 2010 ¢ Full Paper

cascading, inheritance, and a simplified view of tables using
linear and finite-domain constraints. Unfortunately, the rest
of the box model is handled by a native CSS engine. Swier-
stra et al [19] show how to use attribute grammars to encode
a simplification of the fixed (non-default) HTML table al-
gorithm. This task is similar to the table model supported
by Cassowary. To encode a basic box model extended with
word-wrapping but no features like floats, Lin [13] proposes a
pipeline of linear solvers mixed with native engines. In con-
trast, we provide a declarative, executable specification with
attribute grammars for a representative set of CSS-like fea-
tures and without external engines. Our performance simu-
lation seems promising (see Section 5) and we have demon-
strated analytic benefits of our restricted modeling language.
Attribute grammars. Attribute grammars are a well-
studied model [11]. They have primarily been examined
as a language for the specification and implementation of
compilers. Parallel evaluation of attribute grammars is well
understood. Jourdan provides a survey [9] of techniques for
finding and exploiting parallelism. We contribute a layout
encoding for CSS that is parallelizable and the technique of
speculative attributes to improve parallelization.

8. CONCLUSION

We have demonstrated algorithms for three bottlenecks of
loading a webpage: matching CSS selectors, laying out gen-
eral elements, and text processing. Our sequential optimiza-
tions feature improved data locality and lower cache usage.
Browsers are seeing increasingly little benefit from hardware
advances; our parallel algorithms show how to take advan-
tage of advances in multicore architectures. We believe such
work is critical for the rise of the mobile web.

Our specification of layout as attribute grammars is of
further interest. We have proved that, not only does lay-
out terminate, but it is possible without reflow and often
in log time. We expect further benefits from achieving a
declarative specification of the core of a layout system.

Overall, our approach simplifies tasks for browser devel-
opers and web designers dependent upon them. This work is
a milestone in our construction of a parallel, mobile browser
for browsing the web on 1 Watt.

9. SUPPORT

Krste Asanovic, Chan Siu Man, Chan Siu On, Chris Jones,
Robert O’Callahan, Heidi Pan, Ben Hindman, Rajesh Nish-
tala, Shoaib Kamil, and Andrew Waterman have provided
valuable help through various stages of this work.

10. REFERENCES

[1] Apple, Inc. iPhone Dev Center: Creating an iPhone
Application, June 2009.

[2] G. J. Badros. Eztending Interactive Graphical
Applications with Constraints. PhD thesis, University
of Washington, 2000. Chair-Borning, Alan.

[3] R. Bordawekar, L. Lim, and O. Shmueli.
Parallelization of XPath Queries using Multi-Core
Processors: Challenges and Experiences. In EDBT
’09: Proceedings of the 12th International Conference
on Extending Database Technology, pages 180-191,
New York, NY, USA, 2009. ACM.

[4] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading
Style sheets, Level 2 CSS2 Specification, 1998.

April 26-30 » Raleigh * NC « USA

[5] S. Dubey. AJAX Performance Measurement
Methodology for Internet Explorer 8 Beta 2. CODE
Magazine, 5(3):53-55, 2008.

[6] M. Haghighat. Bug 520942 - Parallelism Opportunities
in CSS Selector Matching, October 2009.
https://bugzilla.mozilla.org/show_bug.cgi?id=520942.

[7] R. Heckmann and R. Wilhelm. A functional
description of tex’s formula layout. J. Funct.
Program., 7(5):451-485, 1997.

[8] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and
R. Bodik. Parallelizing the web browser, 2009.

[9] M. Jourdan. A Survey of Parallel Attribute
Evaluation Methods. In Attribute Grammars,
Applications and Systems, volume 545 of Lecture
Notes in Computer Science, pages 234—255. Springer
Berlin / Heidelberg, 1991.

[10] N. Kerris and T. Neumayr. Apple App Store
Downloads Top T'wo Billion. September 2009.

[11] D. E. Knuth. Semantics of Context-Free Languages.
Theory of Computing Systems, 2(2):127-145, June
1968.

[12] H. W. Lie. Cascading Style Sheets. Doctor of
Philosophy, University of Oslo, 2006.

[13] X. Lin. Active Layout Engine: Algorithms and
Applications in Variable Data Printing.
Computer-Aided Design, 38(5):444-456, 2006.

[14] M. Mayer. Google I/O Keynote: Imagination,
Immediacy, and Innovation... and a little glimpse
under the hood at Google. June 2008.

[15] L. Meyerovich. A Parallel Web Browser. http://www.
eecs.berkeley.edu/ lmeyerov/projects/pbrowser/.

[16] L. Meyerovich. Rethinking Browser Performance.
Login, 34(4):14-20, August 2009.

[17] J. L. Recker, G. B. Beretta, and 1.-J. Lin. Font
rendering on a gpu-based raster image processor.
Technical Report 181, HP Laboratories, August 2009.

[18] C. Stockwell. IE8 What is Coming.

http://en.oreilly.com/velocity2008 /public/schedule/detail /32

90, June 2008.

[19] S. D. Swierstra, P. R. A. Alcocer, J. Saraiva,

D. Swierstra, P. Azero, and J. Saraiva. Designing and
Implementing Combinator Languages. In Third
Summer School on Advanced Functional Programming,
volume 1608 of LNCS, pages 150—206.
Springer-Verlag, 1999.

[20] G. Talbot. Confirm a CSS Bug in IE 7 (infinite loop).
http://bytes.com/topic/html-css/answers/615102-
confirm-serious-css-bug-ie-7-infinite-loop, March
2007.

[21] D. Turner. The Design of FreeType2. The FreeType
Development Team, 2008.
http://www.freetype.org/freetype2/docs/design/.

[22] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,

P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In 18th
Useniz Security Symposium, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

