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ABSTRACT

We propose a novel method, based on concepts from ex-
pander graphs, to sample communities in networks. We
show that our sampling method, unlike previous techniques,
produces subgraphs representative of community structure
in the original network. These generated subgraphs may be
viewed as stratified samples in that they consist of members
from most or all communities in the network. Using sam-
ples produced by our method, we show that the problem of
community detection may be recast into a case of statistical
relational learning. We empirically evaluate our approach
against several real-world datasets and demonstrate that
our sampling method can effectively be used to infer and
approximate community affiliation in the larger network.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Applications—
Data Mining

General Terms

Algorithms; Experimentation

Keywords

sampling, social network analysis, community detection, com-
plex networks, graphs, clustering

1. INTRODUCTION AND MOTIVATION
In this work, we present a method to produce subgraph

samples from networks such that these samples are repre-
sentative of community structure, a characteristic prevalent
in many complex networks under study today, from online
social networks to telecommunication call graphs to biolog-
ical systems. With advances in technology, pervasive use
of the Internet, and the proliferation of location-aware de-
vices, there is an ever increasing availability of these social
and biological network data. Many web-based services, from
LinkedIn to Wikipedia, produce large amounts of data on
interactions and associations among entities [7, 23]. In the
same vein, location-aware devices such as mobile phones pro-
duce copious amounts of data on physical proximity between
individuals (i.e. associations and interactions) [6]. In the do-
main of biology also, from neurons to proteins to food webs,
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there is now access to large networks of associations among
various entities and a need to analyze and understand these
data [3,21].

Whether the beginning of network science is taken to be
the birth of graph theory or the dawn of social network anal-
ysis, it is clear that the networks under analysis in the past
were relatively small as compared to those of today. The net-
works of today can be so large that analysis of the network in
its entirety can be intractable and impractical. How, then,
should one proceed in analyzing and mining these networks?
Traditional approaches include designing more efficient algo-
rithms or leveraging computing power through paralleliza-
tion or distributed computing. Unfortunately, these exist-
ing methods are not always easily available as an option.
Another approach that has received very little attention is
sampling.

1.1 Sampling Networks
Sampling is fundamental to statistics and employed when

there is a need to study a population and direct analysis
of the entire population is infeasible due to sheer size and
inaccessibility. In these cases, random samples are taken,
the samples are analyzed, and results are generalized to the
population from which the samples were drawn. Can this
approach be applied to networks?

Networks are normally represented as graphs with the ver-
tices (or nodes) representing entities and the edges (or links)
representing interactions or associations between the enti-
ties. In a social network, for instance, the nodes represent
individuals and edges may represent associations such as
social interactions, emails sent or received, physical prox-
imity, or demographic similarity. Simply mimicking tradi-
tional statistical sampling approaches would entail taking a
random sample of nodes. However, the induced subgraph
on the sampled nodes may very well be collection of dis-
connected isolated singletons, which is essentially useless for
any meaningful analysis. The task, then, must be to sample
a subgraph in such a way that the subgraph is representa-
tive of the original or global graph. The question of what
it means for a sample to be representative of the original
network must be addressed. Existing works consider such
measures as similarity in degree distributions and clustering
coefficients [20, 24]. We argue that the measure of repre-
sentativeness should vary and depend on the analysis being
performed. We further argue that existing subgraph sam-
pling techniques and corresponding measures of representa-
tiveness are inadequate for a key analysis task in social and
biological networks: representing and identifying community
structure.
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1.2 Communities in Networks
A community in a network is a subgroup of relatively

densely connected nodes [33]. The discovery of communities
in networks is important as they often correspond to real
social groups, functional groups, or similarity [15]. Many
popular community detection algorithms considered to be
accurate are also computationally expensive [8, 11]. Repre-
sentative subgraph sampling, then, provides a potential solu-
tion for inferring and approximating global, latent properties
such as these in large graphs. By sampling a representative
subgraph, analysis can be performed on the sample instead
of the larger network. Results could, then, be generalized
to the larger population, which, in this case, is the original
network. In this work, we focus on two specific tasks: rep-
resenting global community structure in samples and using
these samples to infer community affiliation in the larger
network.

1.3 Contributions
In this paper, we propose a sampling algorithm capable of

representing and inferring community structure in the origi-
nal network. Specifically, our contributions in this paper are
as follows:

• We propose a novel method for representative sub-
graph sampling based on concepts from expander graphs
and show that our approach produces subgraphs rep-
resentative of community structure in the original net-
work.

• Using subgraph samples produced by our method, we
show that the problem of community detection can
be recast into a case of statistical relational learning,
or more specifically, univariate collective inference. In
doing so, we show that subgraph samples may be used
to infer the community affiliation of nodes not present
in the sample.

• We empirically demonstrate our sampling method can
be used to represent global community structure and
infer community affiliation on several real-world datasets.

To the best of our knowledge, this is the first work using
sampling to make non-trivial inferences of latent properties
such as community structure in the larger network and to
apply statistical relational learning and collective inference
to the problem of community detection. Before describing
our sampling method and approach, we first discuss the ex-
isting related work in this area.

2. RELATED WORK
Leskovec and Faloutsos [24] authored what may be the

first real study on representative sampling in real-world net-
works. They tested a number of different sampling methods
to assess the ability of these algorithms to match various
properties of the original network such as degree distribu-
tion, clustering coefficient, and the distribution of compo-
nent sizes. More recently [20], an innovative subgraph sam-
pling technique based on the Metropolis algorithm [29] was
proposed and again tested to assess the degree of consistency
with graph properties. The results reported in [20] indi-
cate that this approach outperforms all previous approaches
and would seem to be the current state-of-the-art for repre-
sentative subgraph sampling. Although there is little other

work in sampling representative subgraphs with the intent
of matching properties of the original network, there are
contributions involving sampling graphs for other purposes
such as graph compression [1,10,14], visualization [31], soci-
ology [12], and epidemiology [16]. Also related to our work
is the vast body of research in community detection, a dis-
cussion of which is well beyond the scope of this paper but
is excellently surveyed in [11]. Finally, in [28], under the
assumption that a network sample already exists and con-
tains nodes from a single community, a method is proposed
to grow the sample to include all members of this single
community in question.

Our contributions in this paper differ from existing work
on several fronts. First, the work in [20, 24] only assessed
the degree to which subgraph samples are representative of
explicit graph properties, many of which are relatively easy
to compute on the original network in the first place (e.g.
the degree distribution). To date and to the best of our
knowledge, there is little or no work on how to sample sub-
graphs for inference of implicit or latent properties in the
original network. Second, sampling has not previously been
applied to the problem of community detection, despite the
vast amount of literature in this area. Our work is wholly
different from work by Mehler et al. [28] in that they 1) did
not propose how to produce a subgraph sample from a net-
work and 2) only show how to determine members of a single

community in the network. In contrast, our aim is to show
how best to produce samples representative of all or most of
the communities in the network and further show how these
samples may be used to infer the community affiliation of
nodes not present in the sample. We begin a discussion of
our work with some preliminaries.

3. PRELIMINARIES

3.1 Notations and Definitions

Definition 1. G = (V, E) is a network or graph where V

is set of vertices (or nodes) and E ⊆ V × V is a set of edges
(or links between the nodes). We will use the terms network

and graph interchangeably.

Definition 2. S is a sample of nodes where S ⊂ V .

Definition 3. G(S) is the induced subgraph of G based on
the sample S. That is, G(S) = (S, ES) where S ⊂ V is the
vertex set and the edge set ES = (S × S) ∩ E.

Definition 4. A graph (or subgraph) is connected if and
only if there is a path of edges from v to w for every pair of
nodes v and w in the graph.

Definition 5. N(S) is the neighborhood of S. That is,
N(S) = {w ∈ V − S : ∃v ∈ S s.t. (v, w) ∈ E}.

Definition 6. The expansion factor, X(S), of a sample S

is:

X(S) =
|N(S)|

|S|

The terms expansion ratio and expansion parameter are syn-
onyms for the expansion factor1.
1In this paper, we focus our attention on vertex expansion
(the number of nodes connected to a sample) rather than
edge expansion (the number of edges emanating from a sam-
ple).
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Definition 7. The maximum expander set of size k is a
sample S of size k with the maximal expansion factor:

argmax
S: |S|=k

|N(S)|

|S|

3.2 Problem Formulation
Having stated the necessary definitions of terms and no-

tation, we are now ready to formulate the specific problem
addressed in this paper. In this work, our primary goal is to
sample subgraphs representative of community structure. As
stated previously, a community is a set of relatively densely
connected nodes in a network G [33]. Although there are
many ways to represent community structure depending on
various factors such as whether or not overlapping is al-
lowed, in this paper, we represent community structure as
a partition: a collection of disjoint subsets whose union is
the vertex set V . Under this representation, each subset in
the partition represents a community. The task of a com-
munity detection algorithm, then, is to identify a partition
such that vertices within the same subset in the partition
are more densely connected to each other than to vertices in
other subsets.

As mentioned in Section 2, there is a large body of work
on the identification of community structure in networks.
Nevertheless, the problem of community detection is still
considered a very much open problem for a number of differ-
ent reasons. While there are many different community de-
tection algorithms, they often produce different answers on
the same graph [17]. Furthermore, many community detec-
tion algorithms are computationally expensive making them
unscalable [11, 15]. At the same time, there is also some
evidence to suggest that these more expensive algorithms
tend to be more accurate than faster, less costly alterna-
tives [8, 11]. These issues necessitate the very problem of
representative subgraph sampling we address in this work.

Given a graph G = (V, E), our goal is to sample a set of
nodes, S, such that the sampled subgraph, G(S), is repre-
sentative of community structure in the larger network, G.
What do we mean by “representative of community struc-
ture” in the larger network? First, we would like the sam-
pled subgraph to contain nodes from all (or most) of the
communities present in the larger network (i.e. a stratified

sample of community structure). Second, if executing a com-
munity detection algorithm separately on both the sampled
subgraph and the original network, we would like vertices
grouped together in the subgraph to be also grouped to-
gether in the larger network. To measure this, we employ a
measure of partition distance with the distance being low if
groupings of vertices are consistent between the two parti-
tions. This can be formally defined as follows:

Definition 8. A sample S ⊂ V is a community represen-

tative sample if, given a graph G = (V, E), a sample size k,
a community detection algorithm A, and a measure of par-
tition distance D [·, ·], S is a sample of size k that satisfies
the following two conditions:

• Condition 1: S minimizes D [PS (G(S)) , PS (G)] where
PS (G (S)) is the partition of S produced by A on G(S)
and PS (G) is the partition of S produced by A on G.

• Condition 2: The number of non-empty intersections
between S and each partition set of P (G) is maxi-

mized, where P (G) is the partition of V produced by
A on G.

As will be shown later, such a sample can be used to infer
the community affiliation of nodes not present in the sample.
The approach we employ to produce these representative
samples is rooted in work on expander graphs, which we
describe in the next section.

4. PROPOSED METHOD
At its core, our method is based on the conjecture that

samples with good expansion properties tend to be more
representative of community structure in the original net-
work than samples with worse expansion. This approach is
derived from concepts on expander graphs. Expander graphs
are highly connected graphs which, at the same time, are rel-
atively sparse [19]. Formally, a graph is a (k, α)-expander if
|N(S)| ≥ α|S| for each S ⊂ V where |S| ≤ k. The expansion
factor of an entire graph, then, is defined as:

min
S:|S|≤k

|N(S)|

|S|

For our purposes, rather than finding the sample with the
minimum expansion factor, we are interested in finding the
sample with the maximum expansion factor:

argmax
S: |S|=k

|N(S)|

|S|

Moreover, we are interested in the specific sample that
produces the maximum expansion factor rather than the
value of the expansion factor itself (hence, we employ argmax
instead of max above). As defined in Definition 7, we refer
to this sample as the maximum expander set. We refer to our
sampling approach as Expansion Sampling. Intuitively, by
including nodes in our sample that best contribute to the
expansion factor, we are essentially sampling nodes which
act as bridges to new clusters (i.e. communities). And, by
including these “bridge” nodes (and surrounding nodes), we
hope to produce a sample which 1) contains most or all of
the communities from the network and 2) is a condensed
representation of the overall community structure of the en-
tire graph. We propose two methods to approximate the
maximum expander set. The first is a greedy algorithm us-
ing snowball sampling. The second employs Markov Chain
Monte Carlo simulation (MCMC). Before describing these
methods, we first examine the relationship between expan-
sion and community structure in greater depth.

4.1 Expansion and Community Structure
The approach we employ to sample community structure

in networks is based upon finding samples with the best ex-
pansion in the network. The rationale is that better expan-
sion equates to better community representativeness. Intu-
itively, as sampling progresses and nodes are added to the
sample, the expansion factor of the sample changes. Nodes
belonging to new communities not already represented in
the sample should result in a relatively larger expansion than
nodes belonging to existing communities already represented
in the sample. By sampling to maximize expansion, we in-
clude more communities into the sample. To verify this, we
first show the criteria for changes in expansion as sample
size grows. It is clear that changes in the magnitude of ex-
pansion are a function of the number of new neighbors each
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node contributes to the sample (because the denominator

of |N(S)|
|S|

only ever increases by one as nodes are added to

the sample). It is also trivial to show the specific criteria
for increases and decreases in the expansion as sample size
grows.

Proposition 1. There exist networks for which the ex-

pansion factor,
|N(S)|

|S|
, is non-monotonic as the sample size

|S| grows.

Proof. Consider a current sample, S. Assume that the
next node selected for inclusion in the sample is v and let
N({v}) be the neighbors of v. Then, the new sample is
S ∪ {v}. By Definition 6 in Section 3, the expansion of S is
|N(S)|

|S|
and the expansion of S ∪ {v} is |N(S∪{v})|

|S∪{v}|
.

The expansion will increase when:

|N(S ∪ {v})|

|S ∪ {v}|
>

|N(S)|

|S|

|N(S ∪ {v})| > |N(S)| ·
|S ∪ {v}|

|S|

|N(S ∪ {v}| − |N(S)| > |N(S)| ·
(|S| + 1)

|S|
− |N(S)|

|N({v}) − (N(S) ∪ S)| >
|N(S)|

|S|
(1)

Conversely, expansion will decrease when:

|N({v}) − (N(S) ∪ S)| <
|N(S)|

|S|
(2)

The increase or decrease in expansion, then, is a func-
tion of the number of new neighbors contributed by v (i.e.
(|N({v}) − (N(S) ∪ S)|) relative to the current expansion

factor.

We now examine how networks exhibiting community struc-
ture affect changes in expansion. Recall from Section 3.2
that a community is a set of relatively densely connected
nodes in a network. A network is said to exhibit community
structure if it divides into sets of nodes with dense connec-
tions within sets and sparse connections between sets. From
proof of Proposition 1, we see that expansion is lower when
|N({v}) − (N(S) ∪ S)| is sufficiently small. For a network
exhibiting community structure, this, in fact, happens pre-
cisely when v is affiliated with an existing community in-
cluded within S (as v will have few new neighbors if it is
already densely connected to nodes in N(S) ∪ S). Con-
versely, by similar reasoning, when v is affiliated with a
new community (i.e. a community not already included in
S), |N({v}) − (N(S) ∪ S)| will be relatively larger resulting
in larger expansion. By the intuitive definition of what it
means to be a community in a network, the expansion of a
sample is directly related to community structure. Figure 1
shows a simple example illustrating this connection.

We conclude this section with two final points. First, the
extent to which expansion and community structure are re-
lated depends on the strength of community structure within
a network and the “tightness” of communities. The connec-
tion between the two is stronger when the community struc-
ture of the network is stronger. A widely used measure for
the“goodness” or the strength of a community in graph clus-
tering and community detection is conductance [22], which

(a) Step 1: D added to S. S = {D}, N(S) = {A, B, C}

(b) Step 2: B added to S. S = {D, B}, N(S) = {A, C, E}

Figure 1: [Best viewed in color.] A simple illustration
showing two 4-node communities: green nodes are in S and
red nodes are in N(S). Numbers in parentheses beside each
node v ∈ N(S) show the value of |N({v}) − (N(S) ∪ S)|
or the expansion contribution of v (denoted as EC ). Notice
that nodes in new communities (and nodes that lead to new
communities) have relatively better expansion contributions
at each step.

is a function of the fraction of total edges emanating from a
sample (lower values mean stronger communities):

ϕ(S) =

P

i∈S,j∈S
aij

min(a(S), a(S))

where aij are entries of the adjacency matrix representing
the graph and a(S) =

P

i∈S

P

j∈V
aij , which is the total

number of edges incident to S. It is easy to prove that
when the conductance is sufficiently low (and clustering is
sufficiently high), the aforementioned relation between ex-
pansion and community structure is stronger.

For the second and final point, we also note here that
there is no direct correspondence between the degree cen-
trality of a node (i.e. number of neighbors) and the extent
to which that node contributes to the expansion. A node
v with high degree (|N({v})|) will have low expansion if
|N({v}) − (N(S) ∪ S)| is sufficiently small. By explicitly
selecting nodes that best contribute specifically to the ex-

pansion, we incorporate more communities into the sample,
thereby producing a sample representative of community
structure in the larger network. In the following two sec-
tions, we describe two specific methods for finding samples
with the best expansion in a network: a “snowball” sampling
approach based on neighborhood dissimilarity (Section 4.2)
and an MCMC-based method (Section 4.3).

4.2 Expansion Sampling: Snowball
The Snowball approach to Expansion Sampling (XSN) is

shown in Algorithm 1. We use the term “snowball” for this
technique because subsequent members of the sample, S,
are selected from the current neighborhood set N(S). In
this way, the sample grows like a snowball. We select the
first node of the sample uniformly at random from the en-
tire graph, G. Subsequent elements of the sample are cho-
sen based on the degree to which a node v ∈ N(S) con-
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Algorithm 1 Snowball Expansion Sampler (XSN)

1: Input:
Graph G = (V, E)
k, the sample size.

2: S = ∅ // initialize sample to empty set
3: v = random(V ) // choose node from V at random
4: S = S ∪ {v}
5: while |S| ≤ k do
6: Select new node v ∈ N(S) based on maximization of:

|N({v}) − (N(S) ∪ S)|
7: S = S ∪ {v}
8: end while

tributes to the expansion factor of the currently constructed
sample S, which is expressed as |N({v}) − (N(S) ∪ S)|.
(Recall that this is precisely the expression discussed in
Proposition 1.) New sample members may be chosen ei-
ther deterministically or probabilistically. In the determin-
istic version, the new sample member, v, is selected us-
ing argmaxv∈N(S) |N({v}) − (N(S) ∪ S)|. Alternatively, a
probabilistic approach may also be employed to account for
occasional scenarios in which it is the near-highest expan-
sion (rather than the absolute highest) that better leads to
the most new communities. For instance, a new sample
member, v, can be chosen with probability proportional to
β|N({v})−(N(S)∪S)| where β is some constant. We did not
find significant performance differences between the two, so
we only describe results for the deterministic version.

The Snowball approach to Expansion Sampling always
produces connected samples. For many analysis tasks such
as community inference, connected samples are, in fact, de-
sirable. In addition to this greedy approach, we also propose
a Monte Carlo-based approach for finding samples with high
expansion, which we describe in the next section.

4.3 Expansion Sampling: MCMC
An alternative approach to Expansion Sampling is Markov

Chain Monte Carlo simulation (MCMC), a standard tech-
nique to sample and evaluate probability distributions (see
Chapter 29 in [26] for an excellent introduction to Monte
Carlo methods). Our MCMC method to approximate the
maximum expander set employs the well-known Metropolis
algorithm2 [29], which has recently been applied to subgraph
sampling [20].

4.3.1 Overview

Given a graph G = (V, E), the idea behind the MCMC

Expansion Sampler (XMC) is to construct a Markov chain
in which each state represents a subgraph of size k where
k ≪ |V |. A quality measure is chosen to determine the de-
gree of representativeness of each subgraph sample. Starting
with a randomly selected sample, we randomly perturb the
sample by one node and accept or reject the new sample
based on the change in quality score (this is the standard
random-walk Metropolis-Hastings method [26]). Upon con-
vergence to a stationary distribution, sampling the Markov
chain is equivalent to sampling subgraphs with probability
proportional to the quality scores of the subgraphs. By sam-
pling the Markov chain and retaining the subgraph with the

2The Metropolis algorithm was selected as one of the top 10
algorithms of the twentieth century [4].

maximum quality score, a representative subgraph is ob-
tained.

4.3.2 Quality Measure

Different quality measures may be used depending on the
graph property of interest (e.g. distance between degree
distributions which was employed in [20]). In this work,
however, we are interested in a very specific property: the
expansion factor. Notice that, given a sample S, the max-
imum possible expansion factor on any graph of |V | nodes

is: |V −S|
|S|

. Therefore, a normalized quality measure to deter-

mine the relative expansion ability of samples can be defined

as: |N(S)|
|V −S|

, with higher quality scores equating to better ex-

pansion. We refer to this measure as the expansion quality.
The expansion quality measures the degree to which a sam-
ple acheives the maximum possible expansion on any net-
work of |V | nodes. A score of 1 indicates that the sample
“touches” or is one hop away from every other node in the
network.

4.3.3 Acceptance Probability

After perturbing the current sample by one node, if the
quality score has increased, then we accept the transition to
the new subgraph sample (i.e. Markov state) with proba-
bility 1. If the quality score has decreased, we employ the
acceptance probability proposed in [20]:

»

quality(Snew)

quality(Scurrent)

–p

where p = 10 |E|
|V |

log10 |V | and quality(·) is the expansion

quality. For networks with many nodes and many connected
samples, there can be a large quantity of medium-quality
samples and few high-quality samples [20]. In these cases,
good samples must be rewarded to a greater extent in order
to reach these high quality samples, and p, consequently,
must be higher. Hence, this setting proposed for p is a func-
tion of both the number of nodes (which captures the size
of the network) and the edge-to-node ratio (which captures
the number of possible connected samples) [20].

5. EXPERIMENTAL EVALUATION

5.1 Datasets
We evaluate and compare our aforementioned sampling

algorithms on several network datasets used extensively in
the literature as standard testbeds for community detection.
Summary statistics for each dataset are shown in Table 1,
and the datasets are briefly described below. For the pur-
poses of this paper, all networks are treated as undirected
and unweighted graphs.

Dataset Vertices Density CC
Net Science 379 0.0127 0.4306
C. elegans Metabolic 453 0.0449 0.1244
PGP 10680 0.0004 0.3780
HepTh 27400 0.0009 0.1196
HepPh 34401 0.0007 0.1457
Epinions 75877 0.0001 0.0657

Table 1: Vertex count, density, and clustering coefficient
(CC) for each dataset
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Network Science Collaboration Network [30] is a
collaboration network of researchers within the network sci-
ence community. Nodes represent authors and edges exist
between authors if coauthoring a paper.

C. elegans Metabolic Network [9] consists of the
metabolic network of the C. elegans worm: nodes are sub-
strates and edges are reactions among the substrates.

PGP Key-Signing Network [2] is a social network con-
sisting of users of the Pretty Good Privacy (PGP) encryp-
tion system. Nodes represent users with digital keys and
edges represent a key-signing between the users, also referred
to as the “Web of Trust”.

HepTh [13, 25] is a citation network between papers in
Arxiv HEP-TH (high energy physics theory) from the e-print
archive, arxiv.org.

HepPh [13,25] is another citation network from arxiv.org.
These citations cover papers published in Arxiv HEP-PH
(high energy physics phenomenology).

Epinions.com [32] is a trust-based online social network
of the consumer review site, Epinions.com.

As shown in Table 1, some datasets we evaluate, such as
the Network Science dataset, are smaller networks. Clearly,
sampling is not required for networks this small. We include
these and the other networks in our analysis due to the fact
that these datasets are standard testbeds for community de-
tection for which some community structure is known to
exist.

5.2 Experimental Setup
We compare our Snowball Expansion Sampler (referred to

hereafter as XSN) and our MCMC Expansion Sampler (re-
ferred to hereafter as XMC) against two state-of-the-art ap-
proaches described in Section 2:

• Metropolis Using Degree Distribution (MDD) [20]

• Metropolis Using Clustering Coefficient (MCC) [20]

In [24], it is implied that, if producing samples with clus-
tering coefficients matching the larger network, these sam-
ples will be representative of community structure, and one
of our aims is to investigate this claim. The authors of [20]
report the MCC method as the best method for producing
samples with consistent clustering coefficients. Also in [20],
the MDD method is reported to be the best overall method
for producing representative subgraphs samples, beating out
all other existing methods in general performance. Hence,
these two methods are chosen as a basis for comparison, as
they represent the current state-of-the-art.

For each dataset described in Section 5.1, using each of
these sampling approaches, we sample 15% of the nodes in
the network and produce 25 samples from each sampling
algorithm on each dataset (a sample size of 15% is chosen
based on experimental findings in [24]). For the approaches
based on the Metropolis algorithm, we perform 10,000 iter-
ations to produce each sample. Next, we execute a commu-
nity detection algorithm on each of the subgraph samples
in addition to the original network. Finally, we compare
the community structure of the samples with the commu-
nity structure in the original network to evaluate each of
the sampling algorithms. (The exact evaluation criteria for
this comparison are described in Section 5.2.2.) Compar-
isons consider averages over all the 25 samples produced by
each algorithm.

5.2.1 Detecting Communities

The question of which community detection algorithms
to evaluate must be addressed, as the number of such algo-
rithms are numerous. For a thorough evaluation, we evalu-
ate multiple community detection algorithms including:

• Girvan-Newman algorithm (GN) [15]

• Newman’s leading eigenvector method (NLE) [30]

• An algorithm based on greedy optimization (CNM) [5]

Of these three algorithms, only the CNM algorithm is
executable on the larger networks we evaluate in our exper-
iments. For instance, the Girvan-Newman algorithm, one
of the most well-known and well-cited community detection
algorithms proposed, is notorious for being computationally
expensive and starts to become unusable when the size of the
network exceeds 10,000 nodes. The algorithm iteratively re-
moves edges with the highest edge betweenness to identify
communities with the running time being O(n2m) where n is
the number of vertices and m is the number of edges [11,15].
Interestingly, on networks for which all algorithms do run,
the detected community structures are not identical. As
mentioned in Section 3.2, these issues with scalability and
inconsistency necessitate the very task of subgraph sampling
we address in this work.

5.2.2 Recognizing Good Samples of Communities

We now describe the precise evaluation criteria we employ
to assess how representative samples are of global commu-
nity structure in the larger network. As mentioned in Sec-
tion 3.2, one way to view community structure of a network
is as a partition on the nodes with each subset representing
a single community, and this is the representation employed
in this paper. A measure of partition distance may be used
to evaluate the degree to which a sample is representative
of the community structure in the original network. We
employ the measure of partition distance proposed by Gus-
field [18], which is essentially the minimum number of ele-
ments that would need to be removed in order to make the
partitions identical. Using this measure, we calculate the
distance between the community structure of a sample and
the community structure in the larger network. The parti-
tion distance will be low if nodes grouped together in the
sample’s community structure are also grouped together in
the community structure of original network with lower dis-
tances corresponding to better representativeness (and high
otherwise).

There is, however, an issue with only considering parti-
tion distance when measuring the degree to which samples
are representative community structure. Consider a network
and two samples from the network. The first sample con-
tains nodes from multiple communities. But, in the second
sample, all the nodes belong to a single community. Let
us assume that, when running a community detection algo-
rithm on the samples, nodes are grouped together correctly
in both samples. That is, nodes grouped together in the
sample are also grouped together in the larger network. In
this case, the partition distance for both samples will be low
even though the first sample is clearly a substantially bet-
ter representative of the overall community structure in the
larger network. In fact, a sample containing a single com-
munity will always have a perfect partition distance of zero.
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Moreover, lower (or better) partition distances are harder
to achieve as more communities are incorporated into the
sample. Observing, then, that two samples exhibit similar
partition distances may not tell the whole story. Therefore,
we must not only consider partition distance when evaluat-
ing the representativeness of samples, but also consider the
number of communities represented in the sample. Specif-
ically, we measure the fraction of total communities in the
larger network represented in each sample, a number rang-
ing in value from 0 to 1. By considering both measures,
we obtain a better picture of the true representativeness of
samples.

The fraction of communities in the sample (FRAC ) is a
normalized value ranging from 0 to 1 (higher values are bet-
ter). For ease of illustration, the partition distance (PART ),
is also converted to an accuracy score ranging from 0 to 1
by normalizing and subtracting from one (also resulting in
higher values being better). Finally, in addition to consid-
ering each measure individually, we compute a composite

score, which is the harmonic mean (or F-score) of the two
measures3:

Composite =
2 · FRAC · PART

FRAC + PART

We are left with three performance indicators to consider:

• Fraction of Communities Represented in Sample

• Partition Accuracy

• Composite Score

The composite score, as with the other measures, also
ranges in value from 0 to 1 with higher values being bet-
ter.

5.3 Main Results
We now discuss our results, focusing on two areas of anal-

ysis:

• Community Representativeness: the degree to which
samples are representative of community structure in
the larger network

• Community Affiliation Inference: the degree to which
samples can be used to infer community affiliation of
nodes not present in the sample

5.3.1 Community Representativeness

As mentioned in Section 5.2, we consider three perfor-
mance measures to evaluate the degree to which samples
are representative of community structure in the larger net-
work. Figure 2 shows results on each of these measures. As
can be seen, the Expansion Sampling approaches (XSN and
XMC) outperform other sampling methods. We also see that
the Expansion Sampling methods not only have the highest
composite score, but also dominate on each of the measures
individually. This is striking, as higher partition accuracies
are more difficult to achieve as more communities are incor-
porated into the sample (as discussed in Section 5.2.2).

In addition, we see that the XSN algorithm, in particu-
lar, dominates the remaining three Metropolis-based algo-
rithms including the XMC method. We further find that

3PART and FRAC can be viewed in terms of precision and
recall, respectively.

the XMC method continues to improve the expansion of the
sample to the very last iteration. (Recall that we execute
all Metropolis-based algorithms for 10, 000 iterations.) The
ability of the XMC method to find the sample with maxi-
mum expansion, then, might be improved by executing for
more iterations or fine-tuning the MCMC parameters (e.g.
the acceptance probability), resulting in performance more
comparable to the XSN algorithm.

These results in Figure 2, then, show empirically what
was illustrated theoretically in Section 4.1. By sampling to
maximize expansion, we incorporate more communities from
the network into samples, thereby producing samples repre-
sentative of community structure in the larger network. In
the next section, we show how these representative samples
may be used to infer the community affiliation of nodes not

included in the sample.

5.3.2 Inferring Community Affiliation from Samples

In the previous section, we assessed the extent to which
samples are representative of community structure in the
original network using partition accuracy and fraction of
communities represented in the sample. A supplementary
approach to assessing the representativeness of samples is
population inference. If samples are truly representative of
the larger population, analysis on the sample should gener-
alize well to members of the population not present in the
sample. In our case, we assess the degree to which samples
can be used to infer the community affiliation of nodes not

present in the sample. In other words, using a sample S and
its induced subgraph G(S), we attempt to infer the commu-
nity affiliation for all nodes v such that v ∈ V −S. In order to
do this, we recast the problem of community detection into
a problem of statistical relational learning, or, more specif-
ically, univariate collective inference. Univariate Collective

Inferencing was formally defined in [27]. We restate their
definition here directly:

Definition 9. Given a graph G = (V, E, X) where xi ∈ X

is the single attribute of vertex vi ∈ V and given known
values xi ∈ X for some subset of vertices S ⊂ V , univariate

collective inferencing is the process of simultaneously infer-
ring the values xi ∈ X for the remaining vertices, S = V −S,
or inferring a probability distribution over those values for
each vertex.

In our case, X is the set of community assignments to the
vertices. For any two vertices vi, vj ∈ V , xi = xj if and only
if vi and vj are members of the same community. As be-
fore, we sample a set of nodes S and execute the community
detection algorithm on the induced subgraph G(S). Using
these community assignments to S, we infer the community
affiliation for the remaining vertices S = V − S with col-
lective inferencing. As before, we also execute a community
detection algorithm on the entire graph G, which leaves us
with two sets of community assignments to the nodes S: one
resulting from collective inferencing and the other resulting
from execution of the community detection algorithm on
the entire, original network. For all nodes in S, we compare
these two sets of community assignments using the measures
of partition accuracy described previously. In [27], a num-
ber of different collective inferencing schemes were tested
and compared. Some of the best results were obtained from
relaxation labeling combined with what the authors’ refer
to as a weighted majority relational model [27]. For this
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Figure 2: Representativeness of samples produced by each sampling algorithm on each dataset. Plots show the accuracy
of each of the four sampling algorithms by various performance measures (standard error is also shown). The Expansion
Sampling approaches (most notably XSN) outperform other methods on the three performance measures of community
representativeness.

reason, it is this collective inferencing scheme4 that we em-
ploy in our tests. For more information on this and other
univariate collective inferencing schemes, one may refer to
the original case study by Macskassey et al. [27].

Figure 3 shows the results. As shown, our XSN and
XMC approaches outperform others on inference accuracy.
These results again show that Expansion Sampling produces
samples most representative of community structure in the
larger network and points to an intriguing yet previously
uninvestigated approach to community inference in complex
networks.

It is also interesting to note that the collective inferenc-
ing scheme employed (relaxation labeling with a weighted
majority relational model) produces a probability distribu-
tion over the possible community assignments for each node.
The output of this scheme, then, is a soft clustering of the
nodes, rather than a hard clustering produced by most com-
munity detection algorithms. This soft clustering holds the
potential for additional knowledge discovery. For instance,
these probability distributions may be useful in assessing the
strength of community affiliation for specific individuals and
identifying the individuals most and least representative of
the communities to which they belong. The Zachary Karate
network [34] is social network of a karate club consisting
of thirty-four members. In this social network (for which
ground truth is known to some degree), individual 3 is often
misclassified by community detection algorithms (e.g. [15]).
When executing our sample method on this network and ex-
amining community affiliation distributions produced by the
relaxation labeling method employed, we see that the proba-
bility distribution over the community assignments for node
3 is the closest to a uniform distribution. There is, then, the
most uncertainty associated with the community assignment
of node 3 – information absent from traditional approaches

4For collective inferencing, we use the NetKit-SRL toolkit
[27].

to community detection (most noticeably in the three com-
munity detection algorithms we tested). This represents an
interesting avenue for future research, as effective commu-
nity detection is still an open problem.
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Figure 3: Inference accuracy of each sample on each dataset.
The XSN and XMC approaches outperform the remaining
sampling algorithms when being used to infer the commu-
nity affiliation of nodes in the unsampled, original network.

5.4 Additional Findings
We now return to our earlier claim that the measure of

representativeness for samples may have to vary and depend
on the analysis being performed. In this section, we exam-
ine other graph-theoretic properties of samples. Specifically,
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we look at the extent to which samples are representative of
degree distributions and clustering coefficients in the larger
network. For evaluating the similarity in degree distribu-
tions, we employ the Kolmogorov-Smirnov D-statistic also
used in both [24] and [20]. For evaluating the similarity in
clustering coefficients, we employ the distance measure used
in [20] based on the L1 norm. As we did with the parti-
tion distance measures, we convert these distance measures
to accuracy scores by subtracting the distances from 1 and
plot the performance measures in Figure 4 (higher bars are
better).
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Figure 4: Degree Distribution and Clustering Coefficient of
Samples. For each bar, the standard error is also shown.

Figure 4 shows the extent to which samples from each
sampling method are representative of degree distributions
and clustering coefficients in the original network. Surpris-
ingly, the Expansion Sampling approaches seem to match
the clustering coefficients and degree distributions better on
larger datasets than smaller ones. Also, as one would pre-
dict, the MDD method performs best for degree distribution
accuracy and the MCC method performs best for clustering
coefficient performance (albeit, only slightly in some cases).
We see that, although the Expansion Sampling algorithms
outperform other methods in terms of community repre-
sentativeness, they do not do as well in matching degree
distributions and clustering coefficients of the larger net-
work as other sampling methods. Similarly, the MDD and
MCC methods that focus on producing samples consistent
with degree distributions and clustering coefficients, respec-
tively, do not do as well in representing community struc-
ture. There is, then, some evidence to indicate that samples
most consistent with one property, such as degree distribu-
tions on the original network, may not be representative of
other properties especially in terms of community represen-
tativeness. Additionally, the ability to match degree distri-
bution and clustering coefficient seems to vary significantly
across different networks of different sizes. More investi-
gation, however, is required to draw firm conclusions. An
open question is how best to capture multiple properties of

the original network in a single sample, which we plan to
address in future work.

6. CONCLUSION
We have proposed a novel approach based on concepts

from expander graphs to produce subgraph samples repre-
sentative of community structure in the original network.
We referred to this approach as Expansion Sampling and
described two different methods following this approach: a
Snowball Expansion Sampler (XSN) and an MCMC Ex-
pansion Sampler (XMC). We empirically evaluated our ap-
proach against two state-of-the-art sampling methods on
several real-world datasets. We showed that subgraph sam-
ples produced by our methods are more representative of
community structure in the larger network than samples
produced by existing methods. Further, with sample sizes
of only 15% of the original network, we demonstrated that
our sampling method outperforms the existing methods in
terms of the ability to infer community affiliation of nodes
in the larger network.

For future work, we plan to further investigate the ca-
pability of subgraph samples to infer community affiliation
by assessing the relationship between sample size and infer-
ence accuracy in addition to examining how best to capture
multiple graph properties (both latent and not) in a single
subgraph sample. One approach to this is to couple Ex-

pansion Sampling with other methods known to sample dif-
ferent properties well. For instance, there is some evidence
(e.g. [24]) to suggest that strategies based on breadth-first
searches (BFS) may sample degree distributions well. In
other experiments we have conducted, we found that sam-
ples produced by Expansion Sampling exhibited a signifi-
cantly high expansion quality with relatively small sample
sizes (smaller than 15% in many cases). We conjecture
that, by tracking the expansion and switching to an alter-
nate strategy (e.g. BFS-based sampling) when the expansion

quality is reasonably high, the precision (i.e. partition accu-
racy) might be improved while simultaneously maintaining
a high recall (i.e. fraction of communities represented in
the sample). Finally, we also plan to investigate the inter-
play between subgraph sampling and various other network
characteristics such as directed and weighted edges, overlap-
ping communities, and soft clustering. Overall, our results
indicate that representative sampling in networks may be a
promising new approach to complex network analysis.
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