
Smart Caching for Web Browsers
Kaimin Zhang

University of Science and Technology
Hefei, China

coming@mail.ustc.edu.cn

Lu Wang
Hong Kong University of Science
and Technology, Hong Kong

luwang@cse.ust.hk

Aimin Pan, Bin B. Zhu
Microsoft Research Asia,

Beijing, China
{aiminp, binzhu} @microsoft.com

ABSTRACT
In modern Web applications, style formatting and layout calculation
often account for a substantial amount of local Web page processing
time. In this paper 1 , we present two novel caches, smart style
caching and layout caching, for Web browsers. They cache stable
style data and layout data for DOM (Document Object Model)
elements, and apply directly without re-calculation when the same
data is subsequently processed, possibly across different visits of a
Web page. Redundant computations in both style formatting and
layout calculation could be eliminated, resulting in more efficient
local Web page processing. The proposed cache schemes are still
applicable and effective even there are changes in the DOM
structure or style rules of a Web page. Experiments on the Web
pages of the Top 25 Web sites show that, in a subsequent visit of the
same Web page, the smart style caching scheme could reduce the
style formatting time by about 64% on average, and the
combination of both caching schemes could reduce the layout
calculation time by about 61% on average, with about 46% overall
performance improvement on the local Web page processing time.
For the overall performance when networking, Web servers, and
local Web page processing were all included, our cache schemes
could improve up to 56% when browsing these Web sites on a
desktop PC and up to 60% when browsing on a netbook.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information Browsers;
I.7.m [Document and Text Processing]: Miscellaneous.

General Terms
Performance, Algorithms.

Keywords
Web, Browser, CSS, cascade style sheet, caching, JavaScript.

1. INTRODUCTION
Web tends to become a platform for modern applications. An
increasing amount of data has been moved to the cloud as cloud
computing is becoming a reality. In Web applications, the client side
is a Web browser or a thin application with a Web browser engine
embedded. Modern Web applications, e.g., Bing Maps [1] and
Google Docs [2], have become increasingly complex and powerful
that can rival desktop applications. This poses a challenge to Web
browsers. A Web browser with a lousy performance would not be

1 This work was done when Kaimin Zhang and Lu Wang were working as

interns at Microsoft Research Asia.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

able to provide a user experience comparable to desktop
applications. Current Web browsers may not meet this demanding
performance requirement yet, particularly when rendering complex
Web pages.
In loading a Web page, a Web browser does basically two tasks:
fetching the Web content through the Internet and performing local
computations to process the content. Networking is a performance
bottleneck if data transmission is slower than local processing. This
occurs typically when a lot of data need to be fetched over a
network of limited bandwidth available. Network bandwidths have
been improved dramatically in recent years. For example, 3.5G
mobile networks, already available in some countries, provide a
bandwidth up to 14.4Mbps for mobile Internet users. In addition,
local cache has been widely used by modern Web browsers to
reduce the amount of data that needed to be fetched over the Internet.
On the other hand, Web pages become increasingly more complex
that substantial computation resources are required to parse, format,
and render properly [3]. Local Web content processing may not get
much benefit from recent advances of hardware processing power
which is mainly through parallel processing by including multiple
cores in a single chip but the chip frequency remains the same or
even reduced as compared to single-core chip. Web content is
processed essentially in a single thread manner in order to get a
proper result. It is still unclear in practice how to use parallelization
capacity in a chip to render Web content, which is a new research
topic [3]. In conclusion, the trend is that local Web content
processing plays an increasingly important role in the performance
of a Web browser at the cost of diminished impact from networking.
In other words, Web browsing tends to be computation-intensive
instead of network-intensive.
The results reported in [4] by profiling popular Web sites as well as
our own experiments with the Webkit engine [5] indicate that the
combination of layout calculation and style formatting account for
more than half of the total computation time in a local Web page
processing. Many modern Web pages use the cascade style sheet
(CSS) [6] heavily due to its flexibility in supporting various visual
effects. Computing style properties and applying them to Document
Object Model (DOM) [7] elements are essentially a recursive, time-
consuming process. Current Web browsers have to perform both
tasks every time when a Web page is browsed. In addition, any
change in style properties of an HTML element leads to re-
calculation of its layout, which may affect its descendant elements
in the DOM tree.
Existing efforts to reduce style computation include providing a
guideline for writing JavaScript [8][9] and optimizing layout
engines [10]. These approaches can minimize the effects of DOM
modifications and localize the reflow scope, particularly when
JavaScript code manipulates DOM elements [11].
In this paper, we propose a novel method to improve Web browsing
performance by caching intermediate results in vital stages of Web
page processing and applying the cached results whenever
applicable in subsequent processing of the same data to avoid

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

491

repeating the same local computations. Repeated local computations
typically occur when revisiting a Web page. They may also occur
when processing a new Web page due to redundancy in the Web
page. In particular, we construct a style cache and a layout cache to
record the stable results of style formatting and layout calculation,
and apply direct directly without re-calculation when the same data
is subsequently used for style formatting or layout calculation. The
combination of style formatting and layout calculation typically
accounts for a substantial portion of the local Web page processing
time in a modern Web application. Our caches can effectively
eliminate redundant calculations in those operations, resulting in
improved browsing performance. There are two challenges in this
method: 1. What information is stable across different visits of a
same page and also requires heavy computations to generate? 2.
How to make cache still effective when there are changes in a Web
page? Our cache schemes address these two challenges well. Our
cache schemes can identify when cached data can be applied, and
the caches are dynamically updated. They are still effective when
there is reasonably large gap in time between two visits of a same
Web page, and also when there are changes in the DOM structure or
style rules of a Web page.
We have implemented a prototype of the proposed caching schemes
based on Webkit [5], an open-source browser engine. Our
experimental results on the Web pages of the Top 25 Web sites from
comscore.com (2008) show that, in a subsequent visit of the same
Web page, the smart style caching scheme could reduce the style
formatting time by about 64% on average, and the combination of
both caching schemes could reduce the layout calculation time by
about 61% on average, with about 46% overall performance
improvement on the local Web page processing time. For the overall
performance when networking, Web servers, and local Web page
processing were all included, our cache schemes could improve up
to 56% when browsing these Web sites on a desktop PC and up to
60% when browsing on a netbook. The experiments on two typical
dynamically changed Web pages show that most data in the style
and layout cache can be valid in several hours. For some Web sites,
they may be valid for several days to several weeks, or even longer.
This paper has the following major contributions: We propose the
first style caching scheme and layout caching scheme for Web
browsers to effectively reduce redundant local style and layout
computations. Both cache mechanisms are based on the workflow
of Web page processing and Web standards like HTML, DOM and
CSS. They are therefore applicable in any Web browser.
Furthermore, the two caching schemes are still effective even if the
styles or content of a Web page is dynamically modified over time.

The rest of this paper is organized as follows. In Section 2, we
introduce briefly the background of local Web page processing in a
Web browser, and then describe the main ideas behinds our method.
The smart style caching scheme and the layout caching scheme are
presented in detail in Section 3 and Section 4, respectively. The
experimental results are reported in Section 5. Discussion and future
work are presented in Section 6. Related work is presented in
Section 7. We conclude the paper with Section 8.

2. BACKGROUND AND OUR METHOD
Web applications are built on top of HTML along with other Web
standards [12] such as CSS and DOM. Web browsers process Web
pages based on the syntax and semantics specified in the standards.
This leads to the result that most browsers have a similar framework
and internal representation of a Web page. In this section, we

introduce briefly such a general framework, and then discuss how
caching mechanisms can be introduced in the framework.

2.1 Workflow of Web Page Processing
Figure 1 shows the general workflow that a Web page is processed
by modern Web browsers. After receiving a Web page, either from
a remote Web server or a local store, a Web browser parses the page
in the form of HTML data, and represents the parsed HTML data as
a DOM tree in memory. The style properties are then generated for
the elements in the DOM tree. These properties determine how the
elements are presented in the screen. In order to render them, the
browser must trigger a process to calculate the layout for each
element in the DOM tree. It can then render those elements
correctly to the screen.

Page
Parsing

Style
Formatting

Layout
Calculation

Rendering

Internet

Display

JavaScript
Execution

Local store

User’s interactions

Figure 1. Workflow of Web page processing

These stages may not be done strictly one stage after another in the
order as shown in Figure 1. They may occur concurrently in order to
provide a better user experience, allowing a user to see a partially
rendering result before finishing download and parsing of the whole
page. This processing is essentially a sequential process since any
change in a previous stage will incur execution of the following
stages.

Scripts in Web pages are often in the form of JavaScript code
because JavaScript is supported by almost all the existing Web
browsers. The JavaScript code can be triggered either in the stage of
page parsing or by user’s interactions. If the JavaScript code
manipulates DOM elements, the stages of style formatting and
layout calculation may also be triggered in order to render the
elements correctly on the display. These triggered operations are
most likely a reason why JavaScript code is executed inefficiently.

2.2 Caching in Web Page Processing
The data flow is formed based on the workflow of page processing
in a Web browser, as shown in Figure 2. The original HTML data is
parsed to form a DOM tree in memory for a Web page, which
should comply with W3C DOM standard [7]. Then the styles are
applied to the elements in the DOM tree after the style rules in the
page are processed. This often forms a data structure separate from
DOM, for example, called a render tree in Firefox [10]. Each node
in the render tree has a corresponding element in the DOM tree. Its
purpose is to make DOM elements visible on the screen. The render
tree is further processed to calculate the layout for each node in the
stage of layout calculation. Finally, each node in the render tree is
rendered to the screen in the rendering stage.

HTML
data

Page
parsing

DOM
tree

Render tree
with layout

Render
tree

Bitmap

Style
formatting

Layout
calculation

Rendering

Figure 2. Data flow of Web page processing

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

492

Now we look at possibilities to cache data in the workflow of Web
page processing. One extreme is the most straightforward HTML
data cache (i.e. HTTP cache), which has been widely supported by
almost all Web browsers. Another extreme is a render cache, which
is the bitmap of the rendering result of a Web page. These two types
of caches are effective if the cached Web pages do not change
frequently. Note that the render cache is invalid even if only the
window size changes for the same URL. A large number of Web
pages, however, changes quickly because of real-time news, ads,
and other dynamic data sources. In this case, the HTML cache and
the render cache do not work. Pages requested via a same URL at
different times are typically not exactly the same, but most contents
of these pages may be identical. If we build caches in the middle of
the data flow in Figure 2, the cached data may be still useful if the
unchanged parts can be identified, then the subsequent computation
for the cached data can be saved. Therefore, different types of
caches can be developed for different stages. These caches are
partially effective when a Web page changes over time: only the
cached data of unchanged part is valid.

In this paper, we propose two types of intermediate caches. One is
called a smart style cache, which contains the results after the stage
of style formatting. The smart style cache works in a granularity of
DOM elements. The cached data for a DOM element is valid only if
both its path to the DOM root and its style properties do not change
when users visit a Web page again. The content in a DOM element
is not taken into account when checking validation of the cached
elements. The other is called a layout cache, which contains the
intermediate results after the stage of layout calculation. Unlike the
style cache, the layout cache is content based. The data for a DOM
element is used to both compute the cache and check validation of
the cached layout data. If the cached layout data for an element is
valid, it is passed to render the element without any re-calculation.

These two types of caches are chosen to save computations for style
formatting and layout calculation of DOM elements. In the
workflow of Web page processing, a change of style properties may
trigger computations at the subsequent stages shown in Figure 1,
including layout calculation and rendering when a page is processed.
Thus, caching the style data can not only reduce the frequency of
style calculation, but also computations at the subsequent stages. As
reported in [4], the layout calculation accounts for the most of
computing time among all the stages in the workflow. This agrees
with our measurements with the Webkit engine. A layout cache is
expected to reduce the time needed for layout calculation, which
motivated us to build the layout cache.

3. SMART STYLE CACHING
Most modern Web browsers comply with CSS Standard 2.1 [6] in
interpreting style information for HTML elements. In this section,
we first briefly introduce the process of style formatting, and then
describe our style caching scheme and the key algorithms in the
scheme.

3.1 Style Formatting for Web Pages
There is one CSS style sheet for each web page. A CSS style sheet
consists of a set of CSS rules. Each CSS rule consists of two parts: a
selector and a declaration. The selector of a CSS rule determines
which kind of elements will match the rule. The selector can be
either simple, such as ID selector and class selector, or complex,
such as the ones that refer to any attribute of a DOM element.
Therefore, developers of Web pages can define a scope of elements
via a selector and then assign specific style values to them. In

practice, this kind of capability can be exploited to achieve some
special visible effects. However, one side effect is that a browser
must deal with possible complex selectors in order to render a Web
page correctly. The second part, i.e., the declaration of a CSS rule, is
a set of values of pre-set style properties, which determine the way
how the selected element will look like. For example, in the CSS
rule “p em { color: red }”, the selector part is “p em”, which
indicates that all the elements which are a descendant of a
<p> element are selected as the target elements of this rule. The
declaration part, in this example, is “{ color: red }”, which defines
the color property of all the selected elements as red.
CSS formatting usually happens when a browser needs to determine
the style of a newly created or modified element. It typically
consists of two steps. First, the browser checks each CSS rule
against the element. The selector of a rule determines whether the
rule is a match to the element or not. Second, all the matched rules
are applied to the element in a proper order defined in the CSS
specification, to generate the style properties of the element.
Basically, the applying process is to collect the declarations of all
the matched rules and then merge them. Since one style property
may appear in multiple matched rules, the value declared in the rule
with highest priority is used as the final result.
There are lots of style properties which may affect the visual effect
of an element. It is often tedious for Web authors to specify each
property of an HTML element in CSS. Fortunately there is a
mechanism called derivation in CSS, which can be used to
determine the value of properties that are not explicitly declared. If a
style property is not defined for an element, its value is either
derived from the style of its parent element, or is set to a default
value by the browser, depending on the type of that property. This
requires that the style of a parent element is always determined
before all of its children. Furthermore, a browser should always
define a default style sheet (called UA rules).
Therefore, the process of style formatting depends on not only the
set of style rules and DOM elements, but also the structure of the
DOM tree. DOM structure must be taken into account when
implementing or optimizing the algorithm of style formatting.

In order to concretize the process of CSS formatting, let’s look at an
example. Suppose there is an HTML file as following:

<html>
<head>
 <style>
 p em { color : red }
 p { color : green }
 em { color : blue }
 </style>
</head>
<body>
 <p> The first part The second part </p>
</body>
</html>

In the example, there are three rules which are bracketed by the
<style> and </style> tags. In order to render the element, a
browser needs to determine its style. The browser first checks all the
CSS rules provided in the HTML file against the element, and
finds that both the first and the third rules are a match. Those two
rules as well as the default rules provided by the browser are then
merged according to the CSS specification. In this case, only the
‘color’ property is specified by the page author, while other style
properties are set as a default value. In this example, both matched

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

493

rules specify the color property, and according to the CSS
specification, the value declared in the first rule is used because the
first rule is more special and thus has a higher priority. Therefore the
text “The second part” is in red.

3.2 Smart Style Caching Scheme
If a Web page, including its content and style sheet, does not change
over time, a simple yet effective style caching algorithm is to record
the style properties for each element in a page at the first visit to the
page, and then to restore them at a subsequent visit to the same page.
No style calculation is needed for the subsequent visit. Obviously,
this is an ideal case, and this algorithm works for only a small
percentage of Web pages.
In practice, most Web pages have dynamic content, e.g. live news,
search results, or ads. Therefore a practical algorithm must address
possible changes in the DOM tree and CSS rules for a page. The
goal is to reuse the style properties for the DOM elements that have
not changed, compute the style properties only for new and
modified elements in order to minimize re-calculation.
Our smart style caching (SSC) scheme takes only the following
selectors into consideration: the selectors involving ID, Class,
TagName attributes of a single element as well as the basic
descendant & child relationship in the DOM tree. These types of
selectors are referred to as normal selectors in this paper. This
means that our SSC scheme does not cache any element that is
selected by any non-normal selector. It is possible to include
elements selected by non-normal selectors in our SSC scheme. This
is a tradeoff between the caching scope and the complexity of
caching implementation. According to our statistical results of
occurrences of different selectors in the homepages of the Top 25
Web sites from comscore.com (see Section 5.1 for the list), more
than 95% of selectors are normal selectors. Therefore, we decided to
cache only the elements selected by normal selectors.
In order to identify the elements covered by our SSC scheme, we
construct an SSC tree, which is similar to a DOM tree but only the
structure information of the DOM tree is recorded. Only the DOM
elements matched by normal selectors have corresponding elements
in the SSC tree. In a SSC tree, the sibling elements with the same
triple <ID, class, TagName> are merged into one element. Figure 3
shows an example of SSC tree. In this example, the first and second
 elements in the DOM tree share the same SSC element
since “foo” is not a style property that would affect identification of
an SSC element. However, since the third element has a special
value for the “class” property, there is a separate SSC element
corresponding to that element, as shown in Figure 3(c).
The style cache for a Web page consists of:

• The rule set of its cascading style sheet;

• The SSC tree, and the style properties and matched rule list for
each element.

For any element in the SSC tree, if no change is detected for its
matched style rules during a page loading, the style properties are
retrieved from the style cache recorded in a previous visit to the
page; otherwise the style properties need to be re-computed. Note
that if a DOM element is selected by any non-normal selector, then
it is not recorded in the SSC tree or style cache.

html

body

<html>
<body>

 First Line </ li>
 <li foo=”bar”> Second Line </ li>
 <li class=”specl”> Special </ li>
</ ul>

</ body>
</ html>

ul

li li li

html

body

ul

li li,class=”specl”

(a) HTML

(b) DOM tree (c) SSC tree
Figure 3. A Web page and its DOM tree and SSC tree

3.3 Key Algorithms in SSC Scheme
In this section, we first describe the algorithm of maintaining SSC
elements for DOM elements, and then discuss how the SSC scheme
tolerates changes in the DOM tree or CSS rule set of a Web page.
These algorithms can guarantee correctness of the final DOM
elements, i.e. the style properties for each DOM element are
equivalent to the original ones when the SSC cache is not used.

3.3.1 Maintaining SSC elements for DOM elements
According to the definition and generation of the SSC tree for a
Web page, a DOM element has exactly one corresponding SSC
element while an SSC element may correspond to one or more
DOM elements. For each SSC element, we store the necessary
properties (i.e. ID, Class, and TagName) that are used to identify
elements, as well as the cached style properties that would be
retrieved and applied to the identical elements in subsequent visits
to the same page.
Given a DOM element, say E, the corresponding SSC element is
located or created in the following way:

Check if E is the root of the DOM tree. If not, since E’s parent
EP should have already been checked, we know EP’s
corresponding SSC element, EPSSC. Then check the child
elements of EPSSC. If we find an element with exactly the same
properties (ID, Class and TagName) as E, then it corresponds to
E; otherwise, E is treated as a new element (it could also be an
existing but modified element). Finally create a corresponding
SSC element for E with E’s properties (ID, Class and TagName)
and attach it to the SSC Tree as a child of EPSSC.
If E is the root and the SSC root element does not match E, the
whole cached SSC tree is invalidated and a newly created SSC
element as its root. Otherwise, if the SSC root element matches
E, then it is the corresponding element for E.

Note that we have assumed here that any parent element in the
DOM tree is always processed before its child elements. This
assumption holds when a browser is loading a Web page since the
DOM tree are constructed with elements in pre-order in HTML.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

494

Once we have identified the corresponding SSC element for E, the
style properties are retrieved from the SSC element. If it is a newly
created SSC element, then E’s style properties are calculated and
recorded into the new SSC element. In this way, we can ensure that
all the style information of an element E that has been calculated
during a visit to a Web page could always be retrieved in
subsequent visits if E appears in the page again.

3.3.2 Tolerating Changes in DOM tree
The maintenance algorithm described in the previous section
implies that a DOM element and its corresponding SSC element
have the same path to the roots in the DOM tree and SSC tree,
respectively. If any element is moved in the DOM tree, it can no
longer be matched in the original SSC tree, as well as its descendant
elements in the DOM tree.
Let’s take an example to see how our SSC scheme tolerates changes
in the DOM tree. Suppose the Web page shown in Figure 3(a) is
modified to that shown in Figure 4(a). The corresponding DOM tree
and SSC tree are shown in Figure 4(b) and Figure 4(c). Element
with dotted border in Figure 4 are new elements in the tree.

html

body

<html>
<body>

 This is First</ em> Line </ li>
 Second</ em> Line </ li>
</ ul>
<p>
 New paragraph
</ p>

</ body>
</ html>

ul

li li

p

em em

html

body

ul

li

p

em

li,class=”specl”

(a) HTML

(b) DOM tree (c) SSC tree

Figure 4. A modified Web page and its DOM tree and SSC tree
In this example, note that:

1. The and <p> DOM elements are new elements,
therefore new SSC elements should be created for them;

2. The two DOM elements share a same SSC
element, although their parents are different. In fact, they are
‘identical’ from the point of view of ‘style rules’ (including the
rules along the path from the root to them);

3. The old SSC element still corresponds to the two
elements in the new page;

4. The old SSC element with special value of the class
property still exists in the SSC tree because such element may
appear again in future visits. To make the new SSC tree

compact, this kind of unused elements can be easily removed
after the entire DOM tree is traversed.

3.3.3 Tolerating Changes in CSS Rule Set
To tolerate changes in a CSS rule set, the SSC scheme records not
only the final style properties for each element but also the list of
matched rules for it. Both of them are stored in the corresponding
SSC element of a DOM element.
In page processing, two sets of CSS rules are involved. One is the
rule set retrieved from the style cache, either recorded in a previous
visit to the same page or an empty set if there is no style cache,
which is denoted as Rcache. The other is the set of CSS rules for the
current Web page, denoted by Rcur. Note that since Web pages are
usually downloaded and processed incrementally, Rcur is also
constructed incrementally. Therefore, we cannot determine the
missed rules (i.e. those are in Rcache but not in Rcur) until the page is
completely processed. We can, however, always identify the new
rules (i.e. those are in Rcur but not in Rcache) immediately once they
are added into Rcur. When a page is being loaded, the following
process is executed for each element:

• If there are no new rules in Rcur, the cached style properties for
the element are employed directly without any re-calculation;

• Otherwise, all the new rules are examined against the element,
and the matched ones are inserted into the list of matched rules
of the element at proper positions. Finally, the new list of
matched rules is used to generate the style properties for the
element. In this way, we can avoid re-checking the selectors of
the existing rules in Rcache .

As soon as the page is loaded completely, we can identify which
rules are missed, i.e. the rules in Rcache but not in Rcur. Then we
process the elements affected by those rules as following:

• If there is no missed rule, do nothing;

• All elements whose matched rule list in the style cache
contains any of missed rules need to be re-formatted. For each
element, the missed rules are eliminated from its matched rule
list, and then its style properties are re-computed.

In this way, we can always identify the same rules that appear in
both the current visit and a previous visit, and avoid duplicated
calculations for the elements of which the matched rule list has not
changed. Furthermore, the new rules for the current visit are stored
in the style cache to be retrieved for future visits to the same page.

4. LAYOUT CACHING
The layout caching is designed for reducing time-consuming layout
calculation by reusing the layout results in previous visits to a Web
page. The result of layout calculation for a visible element is
recorded, along with the necessary information for checking its
validation later. Unlike the style cache, which depends on only the
style properties of each DOM element and its path to the root, the
layout data for a DOM element is content-dependent. For example,
in order to calculate the layout of a piece of text, the content of the
text must be taken into account.
According to the data flow of page processing, as shown in Figure 2,
the layout calculation is based on the render tree generated after
style formatting. Unlike the DOM tree, the render tree is not
standardized, but we can think that the render tree has a hierarchical
structure similar to the DOM tree, and it includes render objects for
only the visible elements in the DOM tree. Our layout cache is built
atop the render tree, in a similar way that the SSC cache is built atop

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

495

the DOM tree. In this section, we first present our layout caching
scheme, and then describe its validation checking algorithm.

4.1 Layout Caching Scheme
The layout calculation for a render object is done by a certain type
of layout operation. Our layout caching scheme records the results
of layout operations. Therefore, when a layout operation is needed
for a render object, we determine if it is recorded in the layout cache
or actual execution is needed. If there is a layout operation in the
layout cache which matches the current one, then its cached result
can be retrieved and returned directly; otherwise, it needs actual
execution. The validation checking algorithm will be described in
the next section.
Like in the style cache, in order to reuse the cached layout results,
identical render objects must be first identified in the render tree. A
straightforward method is to build a companying render tree like the
SSC tree described in Section 3.2. However, by using the existing
SSC tree, there exists a simple and efficient method without any
companying render tree if only the elements that are cached by the
style caching scheme are taken into account by the layout caching
scheme.

Since each render object is associated with one DOM element from
which it is generated, and the DOM element is associated with one
SSC element, a render object is also associated with one SSC
element. Therefore, we can record the render object along with its
layout result in its associated SSC element. In order to identify a
render object in the layout cache, we find its associated DOM
element, and then find the associated SSC element of the DOM
element with the algorithm described in Section 3.3.1. Each SSC
element may associate with a set of cached render objects, and
usually the set is small since typically there are only a few render
objects generated from the associated DOM elements. Finally, the
identical cached render object, if exists, can be identified from this
set by matching its type and content.

In order to balance the efficiency and complexity of the layout
caching scheme, the floating objects, complex render objects such
as render media and render table, are not included in the layout
cache. We only cache the layout results for several types of
frequently used render objects, including render box, render block,
render button, render text control, render text, render image and
inline render objects. Our profiling results with Webkit for the
homepages of the Top 25 Web sites (see Section 5.1 for the list)
show that more than 70% of layout calculation time is spent on
these kinds of objects.

4.2 Validation Checking of Layout Operations
In order to determine validation of the cached result for a layout
operation on a render object, there are four conditions to check
against:

• Global Information of the Browser. This includes the size of
the browser’s window and the theme of the browser. If the
global information changes, all cached results are invalidated.

• Parent-child Relations in the Render Tree. In the render tree,
the layout calculation is a top-down and recursive procedure,
starting from the root of the tree. The layout calculation for a
child element depends on its parent’s layout result. For
example, the outer box’s size affects the layout of all its inner
boxes, which are the children of the outer box in the render tree.
Therefore, a cache miss on a render object causes cache miss
on the entire sub-tree rooted at this object.

• Style of the Render Object. Any change on the style
invalidates the cache for the render object.

• Content of the Render Object. The layout calculation for a
render object depends on its content. However, for certain
types of render objects, the layout calculation may only be
sensitive to a part of their content. For example, to calculate the
layout of an image, only the size of the image is concerned.
Therefore, by extracting and checking only the layout-related
content, the hit rate of the layout cache could be improved.

While our style cache can tolerate changes in the CSS rules in a
Web page with partial re-calculation. The layout cache, however,
typically does not tolerate any changes, as we have seen above. This
is a big difference between the two cache schemes.

5. EXPERIMENTAL RESULTS
We have implemented a prototype of the proposed caching schemes
based on the Webkit layout engine (version 1.1.5-GTK) [5] running
on the Linux platform. In our experiments to compare the browsing
performances with and without using our proposed cache schemes,
GtkLauncher, a simple and lightweight Web browser packaged with
Webkit GTK, was used. In this section, we first describe the
experimental environments and the Web sites employed in the
experiments. Then we present the performance results of both the
style caching scheme and the layout caching scheme, as well as the
overall performance. Finally, we report the effectiveness of our
caching schemes on several typical dynamic Web pages.

5.1 Experimental Setup
The homepages of the Top 25 Web sites from comscore.com (2008)
were used in our experiments. These Web sites are listed in Table 1.
We have conducted two types of experiments to study browsing
performance. The first type of experiments is to remove the network
impact on the browsing performance so that only the local Web
page processing performance was compared. This was done by
fetching the Web pages with the WGet utility [13] and storing them
into a local disk before the experiments. During the experiments,
GtkLauncher browsed the locally stored offline Web pages with
different settings in Webkit to enable or disable our caching
schemes. Note that there might still exist some network traffics such
as Ajax requests during the experiments. The second type of
experiments is to compare the actual browsing performance on both
desktop PC and netbook with the impact of the networking and Web
servers included. In both types of experiments, we evaluated only
the process of page loading, so that GtkLauncher could shut down
automatically when receiving a load-finished signal from Webkit.
The experimental desktop PC was a mainstream PC with an Intel
Dual Core 2.13GHz processor and 2GB of DDR2 RAM, and the
experimental netbook was a typical one with an Intel single core
1.66GHz Atom processor and 2GB DDR2 RAM. Both computers
ran the 32-bit Ubuntu 9.10 Linux with all latest patches installed.
The window size of a browser would affect the performance of
rendering. In our experiments, the window size was fixed at 800 by
600 pixels. Each experiment was repeated 20 times. For the second
type of experiments, initial rounds of measurements dropped since
they typically had a large fluctuation on the performance due to
Internet cache.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

496

Table 1. Top 25 Web sites from comscore.com (2008)

www.google.com en.wikipedia.org www.mozilla.com
www.google.cn www.myspace.com www.apple.com
www.aol.com www.qq.com www.adobe.com
www.xunlei.com buzz.blogger.com www.amazon.com
www.facebook.com
/barackobama www.ask.com www.microsoft.co

m
www.yahoo.com www.163.com www.sina.com.cn
www.youtube.com www.wordpress.com www.ebay.com
www.baidu.com www.soso.com
www.msn.com www.bing.com
The results reported in this session were the average over the 20
measurements. The local Web page processing performance results
(i.e., the first type of experiments) are reported in Sections 5.2 to 5.4,
while the overall browsing performance results (i.e., the second type
of experiments) are reported in Sections 5.5. In those reports, the
data under “Original” are the results with the original version of
Webkit without any modification. The data under “First” are the
results of our proposed schemes when the Web pages were visited
for the first time, i.e., the caches were empty before the first. The
data under “Subsequent” are the results of our proposed schemes
when the Web pages were visited previously, i.e., the caches were
not empty.

5.2 Performance of Style Formatting
In Webkit, the main function for style formatting is
CSSStyleSelector::styleForElement. We wrapped this function in
measuring the time of style formatting. The performance of our SSC
scheme against the original Webkit for local Web processing is
shown in Table 2. The data in the table is an overall performance
summed over the homepages of the TOP 25 Web sites listed in
Table1 due to the space limitation. From the table, our SSC scheme
improves the style formatting performance dramatically. On average,
the performance is improved by 34% for the first visit and by 64%
for subsequent visits. The style cache is empty when a Web page is
visited for the first time, but our SSC scheme still improves the
speed by 34% on average in computing style properties for DOM
elements as compared to the original Webkit engine. This is because

• The style formatting for the elements with the same styles is
automatically aggregated in the first visit to a Web page with
our SSC scheme since they are merged in the SSC tree, which
can be considered as a kind of optimization for style formatting.

• The in-memory cache, which is being built during the first visit
to a Web page, has already been employed by our smart style
caching scheme in processing subsequent data of the same
Web page.

Our experiments show that the improvement is larger for large and
complex Web pages. For example, the performance improvement is
about 80% for subsequent visits to MySpace.com or AOL.com,
larger than the average improvement of 64% for the average of the
TOP 25 Web sites.

Table 2.Performance of style formatting

 Original First Subsequent

Time(ms) 1269 835 34% 453 64.3%
Count 2814713 809548 71.2% 296121 89.5%

Our SSC scheme improves the style formatting performance
because it eliminates the duplicated or unnecessary computations,

which are mainly the matching operations between the DOM
elements and the CSS selectors. The second row in Table 2 shows
the numbers of corresponding matching operations. Compared with
the original Webkit, our SSC scheme eliminates about 71% of
matching operations for the first visit, and about 90% for subsequent
visits.

5.3 Performance of Layout Calculation
Both style caching and layout caching can improve the performance
of layout calculation, but in different ways. Layout caching is
targeted to reduce the number of layout operations by reusing
previously calculated layout results while style caching does not
touch the logic of layout calculation directly. Style caching makes
the style properties of each DOM element more stable and closer to
the final style results, layout re-calculation would be triggered less
frequently than the case without style cache. Webkit has carefully
maintained the dirty-bits to indicate whether a layout operation is
really needed or not. Less frequency in style changes leads to less
layout re-calculation. In this section, we first report the performance
of layout calculation affected by the style caching scheme, and then
the performance of layout caching scheme. Again, the results were
summed over the homepages of the TOP 25 Web sites due to space
limitation.

5.3.1 Layout Performance with SSC Scheme
In order to evaluate the effects of the style caching scheme on
layout calculation, we first report the performance results of layout
calculation with only the style caching scheme enabled. The results
are shown in Table 3 .

Table 3. Layout performance with SSC scheme

 Original First Subsequent

Time(ms) 21895 21532 1.7% 20857 4.8%
Count 18844 16513 12.4% 14611 22.4%

We can see from the results that about 22% of layout operations
were eliminated by the SSC scheme. The reduced time, however, is
not very significant, only at a gain of 1.7% for the first visit and of
4.8 for subsequent visits. We have investigated the problem. The
reason is that, in the original version of Webkit, about 80% of the
time for layout operations is consumed to calculate the layout of an
element for the first time, referred to as the first-time layout
operation in this paper. Furthermore, the first-time layout operation
for an element often consumes much more time than the subsequent
layout operations for the same element. Since the style cache does
not carry any layout data, it is obviously impossible to eliminate the
first-time layout operations by our SSC scheme. Table 3 shows that
22.4% of subsequent layout operations were eliminated by our SSC
scheme, the time reduction can be estimated to be 22.4% * 20% =
4.48, very close to the actual result of 4.8% time reduction shown in
Table 3.

5.3.2 Layout Performance with Layout Caching
Scheme
Table 4 shows the performance results for the layout caching
scheme and the original Webkit. Since the layout caching scheme
affects only subsequent visits to Web pages, Table 4 does not have
first visit results. Table 4 shows that both the count and the time
consumption of layout operations are significantly reduced. About
31% of the layout operations were eliminated by the layout caching
scheme. Since the eliminated operations were mainly the first-time
layout operations, the reduction of the time was about 56$, much

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

497

larger than the 31% reduction in the layout operations. This is
because the first-time layout operations need more time than
subsequent layout operations

Table 4. Layout performance with layout caching scheme

Original Subsequent

Time Count Time Improvement Count Improvement
21895ms 18844 9613ms 56.1% 12933 31.4%

5.3.3 Layout Performance with Both Schemes
Both style caching and layout caching improve the performance of
layout calculation, as we have mentioned. Table 5 shows the layout
calculation performance results when the both caching schemes
were applied. The layout caching mainly improves the performance
of the first-time layout operations and the style caching mainly
improves the performance of the subsequent layout operations.
Therefore, the overall layout performance is approximately the sum
of the above two, confirmed by the results in Table 5. The layout
calculation performance has improved by about 61%, and about
54% of the layout operations were eliminated for subsequent visits.

Table 5. Overall layout performance

 Original First Subsequent

Time(ms) 21895 21672 1.0% 8503 61.1%
Count 18844 16513 12.4% 8687 54.0%

5.4 Performance of Page Processing
As shown in section 5.2 and 5.3, since our caching scheme reduces
the time consumption of both style formatting and layout calculation
significantly , the page processing time, which means the actual
processor execution time during loading a page, could also be
reduced notably. The results in Table 6 show that the caching
schemes can significantly speed up the page processing of Web.
With the cached data, on average, the performance of page
processing can be improved about 46%.

Table 6.The overall page processing time (ms)

Original First Subsequent

29977 29906 0.2% 16170 46.1%

5.5 Overall Performance
We also employed the page loading time to measure the overall
browsing performance when networking, server, and local Web
page processing were all taken into consideration. This would be
close to a user’s real world browsing experience. Almost all modern
Web browsers support HTTP cache, but the simple Web browser
we used in our experiments, i.e., GtkLauncher, didn’t support HTTP
cache. To mimic a real world Web browser, we used Squid, a Web
caching proxy [14], was used for HTTP cache. Table 7 shows the
performance results obtained with a mainstream desktop PC on a
group Websites selected from the TOP 25 Web sites. Table 8 shows
the corresponding results obtained with a typical netbook.
Both Table 7 and Table 8 indicate that our caching schemes could
improve the performance of page loading for most of the web pages
running on both desktop PC and on netbook. By comparing the data
in both tables, we can find that browsing on the netbook took longer
time to load than browsing the same Web page on the desktop PC.
This gap should be due to the differences in the processing power of
the two machines. The netbook’s processor was much weaker than
that of the desktop PC, therefore took more time to finish Web page
processing. The two machines had the same networking

environment during the experiments. That means the local Web
page processing contribute more to the overall performance in the
netbook as compared with the desktop PC. Therefore, our caching
schemes should be more efficient for the netbook, since the essence
of the cache schemes is to reduce the local computation. The results
in Table 7 and Table 8 have confirmed this conclusion.

Table 7. Page loading time (ms) on Desktop PC

Sites Overall Page Loading Time(ms)

Original First Subsequent

Subsequent
Improvement

Baidu 978.83 992.6 863.61 11.77%
Google 1616.54 1581.68 1601.79 0.91%

Google.cn 1123.54 1056.48 1151.69 -2.51%
Soso 686.84 691.51 522.66 23.90%
ask 3616.88 3523.66 3640.06 -0.64

eBay 3258.54 3331.65 3310.19 -1.59%
Blogger 4304.16 4266.92 4124.46 4.18

MySpace 3332.88 3185.94 2218.34 33.44%
Msn 3764.09 3802.88 3650.72 3.01

Wikipedia 2294.64 2240.89 2191.71 4.49%
Sina 8122.57 8183.64 5769.79 28.97%
QQ 5318.75 5340.8 2339.21 56.02%

Xunlei 5448.7 5265.55 4533.04 16.81%
Yahoo 2376.88 2173.89 2220.96 6.56%

Youtube 3215.22 2939.68 2488.55 22.60%

Table 8. Page loading time (ms) on Netbook

Sites Overall Page Loading Time(ms)

Original First Subsequent

Subsequent
Improvement

Baidu 1738.99 1711.79 1372.85 21.05%
Google 2027.25 2038.15 1945.99 4.01%

Google.cn 1940.1 1967.24 1786.95 7.89%
Soso 1506.04 1523.97 990.55 34.23%
Ask 4659.01 4457.81 4398.3 5.60%
eBay 4119.29 4141.53 3959.2 3.89%

Blogger 5482.91 5178.19 5036.68 8.14%
MySpace 7773.25 7602.94 4865.85 37.40%

Msn 6781.88 6831.8 6088.81 10.22%
Wikipedia 3050.34 2968.14 2753.68 9.73%

Sina 20659.9 20893.52 14254.97 31.00%
QQ 15062.21 14716.96 5923.44 60.67%

xunlei 11993.54 11415.57 9724.33 18.92%
Yahoo 4460.77 4306.92 4108.89 7.89%

Youtube 5381.17 5421.33 4291 20.26%

Considering the complexity of the Web page listed Table 7 and
Table 8, large and complex Web pages such as QQ.com and
Sina.com, tend to can get more benefit from our caching schemes.
This is reasonable since complex pages require more local
computations, and our cache schemes were designed to reduce local
computations. It is obvious that improving the page processing and

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

498

loading performance for large pages is more meaningful than for
simple pages like Google.com and Baidu.com. In fact, during the
experiments, we perceived that the browser presented the complete
appearance of the large pages more quickly if the cached data was
available for them. This would definitely bring better user
experiences for Web browsers.
We also measured the size of the cached data for each Web page.
Usually, the cache size is tens to hundreds of kilobytes, depending
mainly on the size of the Web page. Note that our implementation
of caching schemes has not been optimized yet. Redundancy exists
in the cache. In practice, such size of cached data should not be a
concern of performance for today’s computer storage configuration.

5.6 The Experiments on Dynamic Pages
The local Web page processing performance experiments reported
in Sections 5.2~ 5.4 were conducted mainly with the same copies of
Web pages (except Ajax and other dynamic part). This is about the
best case for our caching schemes. Web pages in the real world may
have much more dynamic and modified content, esp. when the gap
in time between two subsequent visits is large. In this section, we
study the local Web page processing performance on browsing real-
world dynamic Web pages with the caching schemes. We selected
two Web sites from the Top 25 sites, AOL.com and YouTube.com,
which could represent two popular types of Web sites. The content
of both sites changed frequently. These two sites were monitored for
12 hours, and their contents were fetched every hour during the
mentoring duration. 12 copies of each Web site’s content were
collected. The first copy was used to generate a cache. Then, we
used GtkLauncher to browse all the 12 copies without updating the
cached data for any of the visits. In actual usage, the caches keep
constantly updated. We did not update the caches to study the
performance when cache miss increases. It is expected that the
effectiveness of our caching schemes declines over time. In order to
measure the effectiveness of the caching schemes, we counted the
reductions of the CSS rule matching and layout operations for each
page. The results are shown in Figure 5. From the figure, even
though the Web page of AOL changed frequently, the cache
effectiveness didn’t decline quickly. Over the first 10 hours, the
reduction of the matching operations declined only by 2%, from
96% to 94%, and the reduction of the layout operations declined
from 34% to 30%. However, at the tenth hour, the validation
checking for the SSC tree failed, thus all the cached data, including
both the style cache and the layout cache, were invalidated. After
the tenth hour, the layout cache was completely invalid, and the
style cache performed as if it were the first visit. The results for
YouTube are very different. Even though the cache was completely
invalid at the 10th hour, the same as AOL, the effectiveness had
been significantly declined from the 3rd hour. After the 3rd hour, the
cache was mostly invalid.
According to our experiments on other well-known Web sites, such
as MySpace.com, EBay.com, Sina.com and so on, validation of the
cache could last from 7 to 11 hours. For those static or rarely
changed Web sites, such as Wikipedia.org and Google.com, the
period of validation of the cache can extend to several days or even
several weeks.

Figure 5. Reduction of the operations for YouTube and AOL

6. DISCUSSIONS
According to our experiences when we implemented the proposed
two caching schemes and did experiments with the popular Web
pages, in addition to their effectiveness for page loading, two
caching schemes have additional advantages for Web browsers.

The first advantage is that even with an empty style cache, our
algorithm of maintaining the style cache can choke the unnecessary
style formatting and layout calculation. As shown in Section 5.2 and
5.3, when the Web pages are processed with empty caches, the
amounts of style formatting and layout calculation can be reduced
71% and 12.4%, respectively. The reduced time consumption
exceeds the overhead of our caching schemes, so we still have a
little performance gain, as shown in Section 5.4, though our
implementation of the caching schemes is still rough and not
optimized. Probably the empty-cache setting of our style caching
scheme can be thought as a kind of optimization to reduce the
unnecessary temporary computations.

From the view point of user experiences, the user can see the final
layout and visual results with a valid style cache more quickly than
in the case of no cache. One reason is that the DOM elements get
the final style properties as its initial values, thus they tend to be in
the right styles at the very beginning. So users can see the right
layout and style of the Web pages if the pages are not changed
dramatically, leading to better user experiences.

Currently our caching schemes only work for the scenario of
loading a Web page. In fact, they can be extended to support
multiple versions of DOM elements in the style cache and layout
cache, thus the cached data can be activated when the user interacts
on the page and the JavaScript codes are triggered to respond to
user’s interactions. In this case, the extended caching schemes can
potentially improve the responsiveness of Web applications. This
shall be meaningful for complex Web applications like Google docs
and Live map. This is our one future work.

At another direction, the cacheable and stable style properties and
layout results for DOM elements can be extracted from a Web page
so that they can be pre-processed and stored somewhere. When
Web browsers load the page, they need not process these elements
at all, but just load the cached results into memory and then render
them directly. This kind of pre-processing can be transparent to
Web browsers if the format of style and layout data is well defined.
This shall be more meaningful for low-end systems like smart
phones. It is another future work.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

499

7. RELATED WORK
Improving the performance of Web page browsing has been paid
more attention in industry than in academy. However, as multi-core
systems are pervasive in the market and the requirement for Web
browsers on handheld devices is emerging, parallelizing Web
browsing is a possible solution for improving Web browsing. The
Parallel Web Browser project in the Par Lab of UC-Berkeley
attempts to parallelize different stages of Web page processing [3].
Venders of Web browsers have done lots of efforts to speed up the
performance of Web page processing via various optimizations.
Firefox contains many optimizations to reduce reflows [11], and
Webkit [5] maintains a set of dirty-bits to avoid unnecessary internal
re-computations. Internet Explorer 8 has done much to improve
performance from various aspects, including memory management,
JavaScript engine, networking, and rendering engine [4]. In addition
to layout and render engines, JavaScript engine is another focus to
improve Web browsers’ performance. Chrome’s V8 [15], Firefox’s
TraceMonkey [17] and Safari’s Squalfish [18] employ Just-In-Time
technology to execute JavaScript code.
The Opera Mini [19], a popular mobile Web browser, employs a
server between the client and the Web site to improve user
experience. Each Web page is compressed and pre-processed in the
Opera’s server before it is transferred to the mobile client, in order
to speed up the networking and simplify the page processing. The
solution reduces the network traffics significantly, but it cannot
improve the internal performance of page processing.
On the other hand, some Internet companies have published guides
to write more efficient Web pages [16]. This represents another kind
of efforts to reduce the local computations in Web page browsing.
These guides do not touch the internal logics of Web browsers, but
take advantages of the internal process logics in Web browsers to
avoid the heavy computations.

8. CONCLUSIONS
In this paper, we proposed two caching schemes to improve the
performance of Web page processing. We focus on the two
important stages in the workflow of page processing: style
formatting and layout calculation. With our smart style caching
scheme and layout caching scheme, the style data and layout data
for DOM elements are recorded when a page is browsed, and then
reused when the page is revisited later. The validation checking is
done in the granularity of DOM elements. Therefore, even for
dynamically changed Web pages, the cached data is still partially
valid so as to reduce the local computations for the unchanged
elements. The experimental results show that the two caching
schemes can significantly improve the performance of Web page
browsing. With both style caching and layout caching schemes
enabled, the performance of sequent visits to the same pages can be
improved by about 46% on average.

9. ACKNOWLEDGMENTS
We would like to thank Zhenbin Xu of Microsoft for valuable
discussions and detailed information on Web browsers, particularly
Internet Explorer.

10. REFERENCES
[1] Microsoft Corp. Bing Maps. http://www.bing.com/maps.
[2] Google Inc. Google Docs. http://docs.google.com/.
[3] Jones, C. G., Liu, R., Meyerovich, L., Asanović, K., and

Bodik, R. 2009. Parallelizing the Web browser, 1st USENIX
Workshop on Hot Topics in Parallelism (Mar. 30-31, 2009).

[4] IE 8 Performance. http://blogs.msdn.com/ie/archive/2008/
08/26/ie8-performance.aspx.

[5] The Webkit Open Source Project. http://webkit.org/.
[6] Cascading Style Sheets 2.1. http://www.w3.org/TR/CSS2/.
[7] W3C. Document Object Model (DOM).

http://www.w3.org/DOM/
[8] Reflows & Repaints: CSS performance making your

JavaScript slow. http://www.stubbornella.org/content/2009/
03/27/reflows-repaints-css-performance-making-your-
javascript-slow/.

[9] Wilton-Jones, M. Efficient JavaScript.
http://dev.opera.com/articles/view/efficient-javascript/.

[10] Baron, D. Faster HTML and CSS: layout engine internals for
web developers, https://library.mozilla.org/Faster_HTML
_and_CSS:_Layout_Engine_Internals_for_Web_Developers.

[11] HTML Reflow,
http://www.mozilla.org/newlayout/doc/reflow.html.

[12] W3C standards. http://www.w3.org/standards/.
[13] GNU WGet, http://www.gnu.org/software/wget/
[14] Squid Web Caching Proxy, http://www.squid-cache.org/
[15] V8 JavaScript Engine,

http://code.google.com/apis/v8/design.html
[16] Best Practices for Speeding Up Your Web Site,

http://developer.yahoo.com/performance/rules.html
[17] JavaScript: TraceMonkey,

https://wiki.mozilla.org/JavaScript:TraceMonkey
[18] SquirrelFish-Webkit, http://trac.webkit.org/wiki/SquirrelFish
[19] Opera Mini homepage, http://www.opera.com/mini/

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

500

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

