
Data Summaries for On-Demand Queries over Linked Data∗

Andreas Harth# , Katja Hose∗ , Marcel Karnstedt‡ , Axel Polleres‡ , Kai-Uwe Sattler† , Jürgen Umbrich‡

#AIFB, Karlsruhe Institute of Technology, Germany
∗Max-Planck Institute for Informatics, Saarbrücken, Germany

‡Digital Enterprise Research Institute, National University of Ireland, Galway
†Ilmenau University of Technology, Ilmenau, Germany

#
harth@kit.edu, ∗hose@mpi-inf.mpg.de, ‡firstname.lastname@deri.org, †kus@tu-ilmenau.de

ABSTRACT
Typical approaches for querying structured Web Data col-
lect (crawl) and pre-process (index) large amounts of data
in a central data repository before allowing for query an-
swering. However, this time-consuming pre-processing phase
however leverages the benefits of Linked Data – where struc-
tured data is accessible live and up-to-date at distributed
Web resources that may change constantly – only to a lim-
ited degree, as query results can never be current. An ideal
query answering system for Linked Data should return cur-
rent answers in a reasonable amount of time, even on corpora
as large as the Web. Query processors evaluating queries di-
rectly on the live sources require knowledge of the contents
of data sources. In this paper, we develop and evaluate an
approximate index structure summarising graph-structured
content of sources adhering to Linked Data principles, pro-
vide an algorithm for answering conjunctive queries over
Linked Data on the Web exploiting the source summary, and
evaluate the system using synthetically generated queries.
The experimental results show that our lightweight index
structure enables complete and up-to-date query results over
Linked Data, while keeping the overhead for querying low
and providing a satisfying source ranking at no additional
cost.

Categories and Subject Descriptors:
E.1[Data Structures]: Distributed Data Structures;
H.2.4[Database Management]: Systems—Distributed
Databases, Query Processing;

General Terms: Algorithms, Design, Performance

Keywords: Index Structures, Linked Data, RDF Querying

1. INTRODUCTION
The recent developments around Linked Data promise to

lead to the exposure of large amounts of data on the Se-
mantic Web amenable to automated processing in software
programs [1]. Linked Data sources use RDF (Resource De-
scription Format) in various serialisation syntaxes for encod-
ing graph-structured data. The Linked Data effort is part

∗This material is in parts supported by the Science Foun-
dation Ireland under Grant No. SFI/08/CE/I1380 (Lion-
2) and 08/SRC/I1407 (Clique) and the EU under projects
NeOn (IST-2006-027595) and ACTIVE (IST-2007-215040).
We thank Aidan Hogan for comments.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

of a trend towards highly distributed systems, with thou-
sands or potentially millions of independent sources provid-
ing small amounts of structured data. Using the available
data in data integration and decision-making scenarios re-
quires query processing over the combined data.

For evaluating queries in such environments we can dis-
tinguish two directions:

• data warehousing or materialisation-based approaches
(MAT), which collect the data from all known sources
in advance, preprocess the combined data, and store
the results in a central database; queries are evaluated
using the local database.

• distributed query processing approaches (DQP), which
parse, normalise and split the query into subqueries,
determine the sources containing results for sub-
queries, and evaluate the subqueries against the
sources directly.

Unfortunately, applying DQP directly is not a viable so-
lution for Linked Data sets: firstly, in most cases the data
in the different sources cannot be described by simple ex-
pressions because they may vary in the schema or do not
even have common values. Secondly, queries cannot be “dis-
patched”, unless query processing capabilities exist at the
source sites. Preliminary results for distributed query pro-
cessing over distributed RDF sources [25] assume, similar to
resp. approaches from the traditional database works, rela-
tively few query endpoints with probably huge amounts of
data, rather than many small Web resources accessible via
simple HTTP GET only.

The aim of the present paper is to narrow the gap be-
tween these two extreme approaches and find a reason-
able middle-ground for processing queries over Linked Data
sources directly. Although currently only a few data sources
offer full query processing capabilities (e.g., by implementing
SPARQL [4, 24], a query language and protocol for RDF),
we still can eschew the cost of maintaining a full index of
the data at a central location. On the current Web, all we
can assume is that the sources implement a single opera-
tion GET which returns the content of the source in RDF.
Thus, instead of full federation we propose an approximate
multidimensional indexing structure (a QTree [14]) to store
descriptions of the content of data sources. The QTree forms
the basis for sophisticated query optimisation and helps the
query processor decide on which sources to route a query
or a subquery. We assume – as typical for Linked Data – a
large number of sources, which, in contrast to classic data
integration scenarios, are of small size in the range of a few
kilobytes to megabytes.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

411

Approximate data summaries such as QTrees can be pop-
ulated by crawling techniques similar to those employed
by centralised systems, with the advantage of a signifi-
cantly smaller index, which can be kept in memory, and live
query results, by processing the actual query only over those
sources which likely contain relevant information. Also, such
a QTree index can be dynamically extended, by adding ei-
ther user-submitted sources or sources discovered during
query processing.

The strategy we propose is a reasonable compromise un-
der the assumption that the overall data distribution does
not change dramatically over time: that is, the distribution
characteristics are relatively stable, which holds for a wide
range of Linked Data sources (e.g., DBpedia1, DBLP2, or
machine-readable personal homepages). Under this assump-
tion we can employ an approach which stores a data sum-
mary reflecting these immutable characteristics in lieu of a
full local data index.

Our approach works as follows:
• prime an approximate index structure (a QTree) with

a seed data set (various mechanisms for creating and main-
taining the index are covered in Section 4);

• use the QTree to determine which sources contribute
partial results for a conjunctive SPARQL query Q;

• fetch the content of the sources (optionally using only
the top-k sources according to cardinality estimates stored
in the QTree) into memory;

• perform join processing locally, given that remote
sources do not provide functionality for computing joins.

The main problems of processing such queries hence be-
come i) finding the right sources to contain possible answers
that can contribute to the overall query and ii) efficient par-
allel fetching of content from these sources.

We conclude this section by introducing example data and
queries used throughout the paper. Section 2 discusses alter-
native methods for answering queries over Linked Data. In
Section 3, we present an approach to select sources from
a QTree.Section 4 describes approaches to construct and
maintain these data summaries followed by a discussion of
the results of an evaluation in Section 5. In Section 6, we
align our system with existing work and conclude with an
outlook to future work in Section 7.

Example. As an example consider a scenario in which
sources publish interlinked data about people, the relations
between them and their publications. Such data is indeed
available as Linked Data in RDF on the Web in the form of
hand-crafted files in the Friend-of-a-Friend (FOAF) vocabu-
lary [2] and automatic exports of publication databases such
as DBLP.

For instance, consider the Linked Data sources depicted
in Figure 1. RDF graphs comprise of (subject predicate ob-

ject) triples that denote labelled edges between the sub-
ject and the object. The figure shows five RDF graphs
covering data about Andreas and Axel: personal home-
pages encoded in FOAF, data covering personal informa-
tion and one of their joint publications at DBLP. We as-
sume that namespace:localname pairs expand to full URIs,
e.g., dblp:Axel_Polleres expands to http://dblp.l3s.de/
d2r/resource/authors/Axel_Polleres.

1http://dbpedia.org/
2http://dblp.l3s.de/d2r/

Conjunctive SPARQL queries3 consist of so-called basic
graph patterns (BGPs), i.e., sets of triple patterns containing
variables. For instance, the following query asks for names
of Andreas’ friends:

SELECT ?n WHERE {
andreas:foaf#ah foaf:knows ?f. ?f foaf:name ?n. }

(1)

The next query asks for authors of article dblppub:

HoganHP08 who mutually know each other:

SELECT ?x1 ?x2 WHERE {
dblppub:HoganHP08 dc:creator ?a1, ?a2.
?x1 owl:sameAs ?a1. ?x2 owl:sameAs ?a2.
?x1 foaf:knows ?x2. ?x2 foaf:knows ?x1. }

(2)

2. QUERYING LINKED DATA
Linked Data [1] is RDF published on the Web accord-

ing to the following principles: 1) use URIs as names for
things 2) use (dereferenceable) HTTP URIs, 3) provide use-
ful content at these URIs encoded in RDF, and 4) include
links to other URIs for discovery. In the same way the cur-
rent Web is formed by HTML documents and hyperlinks
between documents, the Linked Data Web is constructed
by using HTTP URIs (principle 1 and 2). Principle 3 –
providing meaningful content for dereferenced URIs (that
is, RDF triples describing the URI, typically in the sub-
ject position) – allows for a new way of performing lookups
on the data during query runtime. The principle provides
a correspondence (in URI syntax or via redirects in the
HTTP protocol) between a URI of a resource and the data
source. For example, the resource URI http://dblp.l3s.

de/d2r/resource/authors/Axel_Polleres redirects to the
source URI http://dblp.l3s.de/d2r/page/authors/Axel_
Polleres. Finally, reusing URIs across sources (principle 4)
makes sure that data covering the same entity can be col-
lated from multiple sources.

Most current approaches enabling query processing over
RDF data operate very much along the lines of relational
data warehouses or search engines; Semantic Web search
engines [3,6,13,21] crawl large amounts of RDF documents
for materialisation and indexing in a centralised data store.

The centralised approaches using materialisation (MAT)
provide excellent query response times due to the large
amount of preprocessing carried out during the load and in-
dexing steps, but suffers from a number of drawbacks. First,
the aggregated data is never current as the process of collect-
ing and indexing vast amounts of data is time-consuming.
Second, from the viewpoint of a single requester with a par-
ticular query, there is a large amount of unnecessary data
gathering, processing, and storage involved since a large por-
tion of the data might not be used for answering that partic-
ular query. Furthermore, due to the replicated data storage,
the data providers have to give up their sole sovereignty on
their data (e.g., they cannot restrict or log access any more
since queries are answered against a copy of the data).

On the other end of the spectrum, there are approaches
that assume processing power attainable at the sources
themselves (DQP), which could be leveraged in parallel
for query processing. Such distributed or federated ap-
proaches [11] offer several advantages: the system is more
dynamic with up-to-date data and new sources can be added

3We focus on the core case of conjunctive queries and do not
consider more complex features such as unions, outer joins,
or filters available in SPARQL, which could be layered on
top of conjunctive query functionality.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

412

axel:foaf.rdf#me dblp:Axel_Polleres

axel:foaf.rdf

owl:sameAs

"Axel Florian
Polleres"

foaf:name

andreas:foaf#ah dblp:Andreas_Harth

"Andreas Harth"

owl:sameAs

foaf:knows

foaf:knows

dblppub:HoganHP08

"SAOR: Authoritative
Reasoning for the Web"

dc:titledc:creator

dc:creator dc:creator...

dblp:HoganHP08
foaf:name

"Axel Polleres"

foaf:name

"Andreas Harth"

foaf:name

andreas:foaf.rdf

dblp:Axel_Polleres

dblp:Andreas_Harth

dc:creator

...

...

foaf:knows

foaf:knows

rdf:type

foaf:Person

rdf:type

rdf:typerdf:type

Figure 1: Linked Data in RDF about persons and their publications

easily without time lag for indexing and integrating the data,
and the systems require less storage and processing resources
at the query issuing site. The potential drawback, however,
is that DQP systems cannot give strict guarantees about
query performance since the integration system relies on a
large number of potentially unreliable sources. DQP is a
well-known database problem [17]. Typically, DQP involves
the following steps for transforming a high-level query into
an efficient query execution plan: parsing, normalising by ap-
plication of equivalence rules, unnesting and simplification
of the query, data localisation, optimisation (i.e., replacing
the logical query operators by specific algorithms and access
methods as well as by determining the order of execution
both at a global and local level), and finally execution. Be-
sides optimisation, data localisation is an important step
that affects the efficiency of the execution. The goal of data
localisation – also known as source selection – is to iden-
tify the source sites that possibly provide results for the
given query or, in other words, to eliminate sites from the
query plan that do not contribute to the result. In classic
distributed databases this step is supported by (query or
view) expressions describing the fragmentation of a global
table.

Possible approaches to evaluate queries over such Web re-
sources and particularly addressing the problem of source
selection are:

• Direct Lookups (DL) The direct lookup approach
is implemented in [10] where one tries to leverage the cor-
respondence between source addresses and identifiers con-
tained in the sources to answer queries. The query pro-
cessor performs lookups on the sources that contain iden-
tifiers mentioned in the query or are retrieved in subsequent
steps. To answer query (1) of Section 1, one could fetch con-
tent from andreas:foaf#ah, dereference foaf:knows links,
and gather new information where hopefully the respective
names of friends are found. The sources in the DBLP realm
are irrelevant for answering this query. However, the strategy
fails to find the solutions for query (2) since the necessary
owl:sameAs links come from outside the linked closure of
the graph dblppub:HoganHP08. Apart from possible incom-
pleteness issues, the approach also has limitations in the
sense that only limited parallelisation is possible: the query
processor starts with one source and iteratively performs
more lookups on sources determined by intermediate results

rather than looking up the entire list of relevant sources in a
single pass. On the positive side, if one can live with partial
results this approach has no need for maintaining indexes
since only the correspondence between source and contained
identifiers is used.

• Schema-Level Indexes (SLI) A second approach,
mainly based on distributed query processing, relies on
schema-based indexes [7, 26]. The query processor keeps
an index structure with properties (i.e., predicates) and/or
classes (i.e., objects of rdf:type triples) that occur at cer-
tain sources, and uses that structure to guide query pro-
cessing. Using such schema-based indexes the incomplete-
ness problem of direct lookups is alleviated while only using
lightweight index structures. The drawback is that instance-
level descriptions are missing: i.e., i) only queries which con-
tain schema-level elements can be answered, and ii) on very
commonly used properties (e.g., foaf:knows, foaf:name),
this index selects a (possibly too) large portion of all possi-
ble sources.

• Data Summaries (DS) A third approach, and the one
we are advocating in this paper, uses a combined descrip-
tion of instance- and schema-level elements to summarise the
content of data sources. We cannot keep every data item in
this index, so we use a summarising index – a data summary
– which represents an approximation of the whole data set.
The DS approach uses more resources than the schema-level
indexes, however, adds the ability to cover also query pat-
terns including instance-level queries. Since the DS return
sources which possibly contain answers to a query directly
(i.e., taking joins into account), this approach may be viewed
as subsuming both direct lookups and schema-level indexes.
Further, a data summary index can be updated incremen-
tally as the query processor obtains new or updated infor-
mation about sources.

3. SOURCE SELECTION USING DATA
SUMMARIES

Our main idea for identifying relevant sources is to index
RDF triples provided by the sources by first transforming
them into a numerical data space (applying hash functions)
and then indexing the resulting data items with a data sum-
mary. In our work, we use an index structure called QTree –
originally developed for top-k query processing [14,15,27] –

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

413

as our data summary. In the following, we describe the ba-
sic principles of this structure as well as its usage for source
selection.

3.1 Source Indexing using the QTree
In principle, the QTree (Figure 2) is a combination of

histograms and R-trees [8] inheriting the benefits of both
data structures: indexing multidimensional data, capturing
attribute correlations, dealing with sparse data, offering ef-
ficient look-ups, and supporting incremental construction
and maintenance. Like the R-tree, a QTree is a tree struc-
ture consisting of nodes defined by minimal bounding boxes
(MBBs). These MBBs describe multidimensional regions in
the data space and MBBs of all nodes always cover all MBBs
of their children and the subtrees rooted by them. Because
R-trees are used to manage data items, leaf nodes in R-trees
contain the data items that are contained in their MBBs.
However, for our purposes we cannot hold detailed informa-
tion about all data items. Rather, we have to reduce memory
consumption by approximating this information.

(a) Data and Regions (b) Hierarchy

Figure 2: Two-dimensional QTree example

Thus, to limit memory and disk consumption, we replace
subtrees with special nodes called buckets. Buckets corre-
spond to histogram buckets or bins and are always leaf nodes
in the QTree – and leaf nodes are always buckets. Data items
are represented by the buckets in an approximated version.
Since the construction of the QTree aims at grouping data
items with similar hash values into the same bucket, we can
use the MBBs as a good basis for approximation. As men-
tioned above, in our case data items are points in the multi-
dimensional space whose coordinates are obtained by apply-
ing hash functions to the individual components (S, P, O) of
RDF triples. These components correspond to dimensions
in a three-dimensional QTree.

Only buckets contain statistical information about the
data items contained in their MBBs. In principle, a
bucket might hold any kind of statistics, but for the
purpose of this work we consider buckets capturing the
count of data items contained in their MBBs. Each
bucket stores the number of triples whose values (subject
predicate object) are mapped onto coordinates that are
part of the bucket’s MBB – the MBB being defined by
[S.low, S.hi], [P.low, P.hi], [O.low, O.hi].

The total number of buckets, as well as the size of a QTree,
can be controlled by two parameters: i) bmax denoting the
maximum number of buckets in the QTree and thus limit-
ing memory consumption, ii) fmax describing the maximum
fanout (i.e., the number of child nodes) for each non-leaf
node. Note that the size of a QTree only depends on these
two parameters and is independent from the number of rep-
resented data items.

Details on constructing and maintaining a QTree are be-

yond the scope of this paper. Thus, in the following we
only sketch the basic idea and refer the interested reader
to [15]. The QTree is constructed incrementally by inserting
one data item after another. For each data item p, we first
check whether it can be added to an existing bucket that
encloses p’s coordinates. In this case, the bucket statistics
are updated by incrementing the number of contained data
items. Otherwise, we traverse the QTree beginning at the
root node in each level looking for a node whose MBB com-
pletely encloses p. Once we have arrived at a node whose
children’s MBBs do not contain p, we create a new bucket
for p and insert it as a new child node.

In order to enforce the two constraints bmax and fmax,
we have to merge buckets and child nodes if the number of
buckets in the QTree or the fanout of inner nodes violates the
constraints. For this purpose, we use a penalty function that
represents the approximation error caused by merging two
buckets and merge the pair of sibling buckets that minimises
the penalty. The expensive check of all pairs is avoided by
maintaining a priority queue.

To capture details on which RDF triples are provided by
which source, we store not only the number of data items
per bucket but also the URIs of sources whose triples are
represented by the bucket. Basically, there are two possible
approaches: i) we can simply keep a list SB of source URIs
and a bucket cardinality cB , or ii) we maintain the number
of triples cs

B in each bucket B per source s ∈ SB, i.e., each
bucket B contains a list of s, cs

B pairs. For ease of expla-
nation, in the following we stick to the first approach. In
Section 3.2.2, we pick up the second approach, as it allows
for a more sophisticated estimation of the number of results
a source contributes to.

3.2 Source Selection
Let us now discuss how to use the information provided by

the QTree to decide on the relevance of sources for answering
a particular query.

3.2.1 Triple Pattern Source Selection
As joins are expressed by conjunctions of multiple triple

patterns and associated variables, a prerequisite for join
source selection is the identification of relevant sources for a
given triple pattern.

To determine relevant sources we first need to identify
the region in data space that contains all possible triples
matching the pattern. Therefore, we need to convert a triple
pattern into a set of coordinates in data space, using the
same hash functions that we used for index creation, to ob-
tain coordinates for a given RDF triple. However, in con-
trast to obtaining hash values for RDF triples provided by
the sources, triple patterns of queries might contain vari-
ables. Because of these variables, in general we have to work
with regions instead of points. Thus, for each literal, blank
node or URI in a given triple pattern, we apply the hash
functions and use the obtained hash values as minimum and
maximum coordinates to define the queried region. For each
variable, we set the minimum and maximum coordinates to
the minimum/maximum possible hash values in the respec-
tive dimensions.

After having determined the queried region R, we only
need to find all buckets in the QTree that overlap R. As the
QTree – similar to the R-tree – has a hierarchical structure,
the lookup procedure follows similar rules: starting at the

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

414

root node we need to traverse child nodes if their MBBs
overlap R until we arrive at the buckets on leaf level.

After having identified all buckets with overlapping
MBBs, we determine the percentage of overlap with R. Let
size(R) denote the size of a region R, cB the number of data
items (cardinality) represented by bucket B and O the over-
lapping region of B and R. Then, the cardinality of O is

calculated as cB · size(O)
size(B)

. Based on the overlap, the bucket’s

source URIs, and the cardinality (i.e., the number of rep-
resented RDF triples) we can determine the set of relevant
sources and the expected number of RDF triples per source –
assuming that triples are uniformly distributed within each
bucket. Thus, the output of the source selection algorithm
is a set of buckets, each annotated with information about
the overlap with the queried region, source URIs, and the
associated cardinality.

3.2.2 Join Source Selection
In order to determine which sources provide relevant data

for a join query, we first need to separately consider the triple
patterns (BGPs) that a join query consists of. In principle,
we could return the union of all sources relevant for the indi-
vidual BGPs (Section 3.2.1) as the result of the join source
selection. However, it is likely that there are no join part-
ners for data provided by some of the sources, although they
match one BGP. Thus, we consider the overlaps between the
sets of obtained relevant buckets for the BGPs with respect
to the defined join dimensions and determine the expected
result cardinality of the join.

The crucial question is how we can discard any of the
sources relevant for single BGPs, i.e., identify them as irrel-
evant for the join. Unfortunately, if a bucket is overlapped,
we cannot omit any of the contributing sources, because we
have no information on which sources contribute to which
part of the bucket. To not miss any relevant sources, we can
only assume all sources from the original bucket to be rele-
vant. Sources can only be discarded if the entire bucket they
belong to is discarded, such as the smaller bucket for the
second BGP in Figure 3.

The result of a join evaluation over two BGPs is a set of
three-dimensional buckets. Joining a third BGP requires a
differentiation between the original dimensions, because the
third BGP can be joined with any of them. For instance, af-
ter a subject-subject join we have to handle two different ob-
ject dimensions; a join between two three-dimensional over-
lapping buckets results in one six-dimensional bucket with
an MBB that is equivalent to the overlap. In general, a join
between n BGPs results in a (3 · n)-dimensional join space.

Figure 3 illustrates the first step of join source selection
on example query (2) of the introduction, assuming that
the first join is processed over the triples for subject ?x1.
For illustration purposes, we only show subject and object
dimensions, as the predicate is fixed in both BGPs (i.e.,
the figures correspond to a slice of the three-dimensional
space). Figure 3 illustrates a bucket that corresponds to the
result of the source selection algorithm for the first BGP
and shows two buckets corresponding to the second BGP.
Both overlapping buckets are constrained by their overlap
in the join dimension, which is the subject dimension. Other
dimensions are not constrained. Thus, the shaded parts of
both buckets represent the result buckets of the join.

Figure 4 illustrates the next join for example query (2),
assuming that it is processed on ?x2 (object-subject join

Figure 3: QTree join between first and second BGP

between 2nd and 3rd BGP). Again, for illustration purposes,
we omit the predicate dimensions and show equal dimensions
on the same axis (slices of the six-dimensional space reduced
to the three shown dimensions).

Figure 4: QTree join with third BGP

Algorithm 1 sketches the whole algorithm for join source
selection. In general, source selection will result in multiple
buckets for each BGP. The overlap has to be determined
for the cross-product of all input buckets (lines 6 and 7).
We determine the buckets for each BGP separately and join
them afterwards (line 7), which allows us to use existing
methods for determining the overlap between the resulting
buckets.

The loop in line 5 shows that we process all joins sequen-
tially, storing the results in variables joini. We insert the
result buckets of join i into a new (3 · (i + 1))-dimensional
join space joini. Note that, after the first join, two of the
six dimensions are equal. Handling them separately is just
for ease of understanding and implementation. The ⊕ op-
erator in line 12 symbolises the operation of combining two
buckets while increasing the number of dimensions accord-
ingly: the three dimensions from OR are added to the 3 · i
dimensions of OL, together forming the 3 ·(i+1) dimensions
of the result bucket. The new cardinality cOR⊕OL

(line 11)
of the resulting bucket is determined using the percentage
of overlap for both buckets (cf. Section 3.2.1 and line 3)
and assuming uniform distribution in both buckets. The set
of relevant sources SOR⊕OL

is a union over the sets from
both buckets. Finally, joini serves as input for the next join
(line 6).

3.3 Source Ranking
As source selection is approximate, the set of relevant

sources will usually be overestimated, i.e., contain false pos-
itives. Please note that false negatives are impossible as we
consider all QTree buckets matching any part of the query.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

415

Input: Query q, QTree QT
Output: list of relevant sources

1 forall buckets B ∈ QT .getBuckets(q.BGP[0]) do
2 O = B.overlap(q.BGP[0]);

3 join0 .insert(O, cB · size(O)
size(B)

, SB);

end
5 for i = 1 to |q.BGP| − 1 do
6 forall buckets L ∈ joini−1 do
7 forall buckets R ∈ QT .getBuckets(q.BGP[i]) do
8 dL = q.joindim[i − 1]; dR = q.joindim[i];
9 if ∃OL = L[dL].overlap(R[dR]) then

10 OR = R[dR].overlap(L[dL]);
11 cOR⊕OL

=
cL·

size(OL)

size(L)
· cR·

size(OR)

size(R)

max (L[dL].hi−L[dL].low,R[dR].hi−R[dR].low)
;

12 joini.insert(OL ⊕OR, cOR⊕OL
,SL ∪ SR);

end
end

end
end

17 return
S

B∈join|q.BGP|−1
SB

Algorithm 1: identifyRelevantSources(Query, QTree)

Moreover, some queries may actually be answered by a large
set of sources, such that a focus on the most important ones
becomes important. Both issues suggest to introduce a rank-
ing for sources identified as being relevant for answering the
query. There are two different general approaches that could
be used to rank sources:

• external ranking: ranking based on an independent
or externally computed notion of the sources’ relevance;

• cardinality ranking: ranking based on cardinality.
External ranking may be based on data from external
sources (e.g. search engines, requiring additional costly
lookups) or may be computed locally. An advantage of cardi-
nality ranking is that we do not need any external data. All
necessary information is provided by the QTree buckets that
are obtained as a result from the join source selection algo-
rithm. The idea is to estimate the number of results Rs that
each source s ∈ S contributes to. The ranks are assigned to
sources according to the values of Rs in descending order.

Each QTree bucket B provides an estimated cardinality
cB and a list of associated sources SB. To obtain a ranking
value for a source (resembling its importance), we could sim-
ply assume uniform distribution and assign cB/|SB | to each
source of a bucket, while summing up over all buckets. In
early tests we recognised that this ranks sources very inac-
curately. A simple modification of the QTree, which results
in constant space overhead, is to record the cardinality cs

B

for each source contributing to a bucket separately. More
specifically, cs

B estimates the number of results in B that
source s contributes to, summed over all joined triples. Thus,
cB = (

P

s∈SB
cs
B)/jlB , where jlB represents the join level of

B (i.e., the number of BGPs that have been joined to form
one data item in B). This helps to overcome the assump-
tion of a uniform distribution in the bucket. The number of
results a source contributes to is determined as:

Rs =
P

B
cs
B

Algorithm 1 can be adapted by applying the formulas from
lines 3 and 11 separately for each source, while substituting
cB by cs

B , cL by cs
L and cR by cs

R.

This is still a rough approximation, but, as we show in Sec-
tion 5, it indicates the actual importance ranking of sources
in a satisfyingly accurate manner. The effect is grounded
in probability laws, by which the probability that a source
contributes to a fraction of a bucket (the region resulting
from the join overlap) increases with its total number of
data items in the bucket.

4. DATA SUMMARY CONSTRUCTION &
MAINTENANCE

With respect to construction and maintenance, we iden-
tify two main tasks, namely i) building an initial version
of a QTree (initial phase) and ii) expanding the index with
new information of sources (expansion phase). Once we have
an initial version, we can use SPARQL queries to further
explore new sources and expand the index in the expan-
sion phase. In the following, we briefly present different ap-
proaches for each of the two phases.

4.1 Initial Phase
The initial phase is an important task with high rele-

vance for queries and the expansion of the index. Once the
QTree contains the source summaries, SPARQL queries can
be evaluated against the index and the resulting relevant
documents for query answering can be retrieved from the
Web. Users can adjust and influence the completeness of
query results and the likelihood of discovering new interest-
ing sources in the expansion phase. If users want to guaran-
tee complete answers, they have to ensure that the QTree
contains all relevant sources for the query.

The selection of seed sources influences the ability to dis-
cover new and interesting sources in the expansion phase.
Let us assume the case that our data summary covers a sub-
graph containing only few incoming or outgoing links to the
rest of the global Linked Data Web. The lack of links to new
sources decreases the probability of further extending the in-
dex. On the other hand, selecting seed sources which provide
many links to other documents increases the chance of dis-
covering new sources. The selection of those well interlinked
sources can be done via sampling on a random walk over
the Linked Data graph or choosing the top ranked sources
of existing datasets.

In general, we identify two different approaches for the
initial phase:

• Pre-fetching The most obvious approach is to fetch
seed sources for the QTree from the Web using a Web
crawler. An advantage of this approach is that existing Web
crawling systems can be used to gather the seed URIs. The
QTree can be adjusted wrt. answer completeness and expan-
sion likeliness by specifying the crawl scope. In particular,
random walk strategies generally lead to representative sam-
ples of networks and thus result in seed sources that could
serve as good entry points to further discover interesting
sources [12]. The quality of query answers will depend on
the selection of the seed sources and depth/exhaustiveness
of the crawl.

• SPARQL queries The second approach is starting
with an empty QTree and using an initial SPARQL query
to collect the initial sources for the QTree build. The index
is expanded on further queries; cf. next subsection. Given a
SPARQL query, an agent iteratively fetches the content of
the URIs selected from bound variables of the query. At least

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

416

one dereferenceable URI in the SPARQL query is required
as a starting point. Thus, this may be regarded as starting
with the plain DL approach mentioned in Section 2.

The decision which strategy to choose strongly depends on
the application scenario and has to be chosen accordingly.

4.2 Expansion Phase
The second important phase is the expansion of the QTree

index. Given a SPARQL query, it is very likely that the ini-
tialised QTree may contain information about dereference-
able URIs that are not (yet) indexed. In this case, the QTree
should be updated with the newly discovered URIs to in-
crease the completeness of answer sets for the next time a
query is executed. Further, we distinguish between pushing
or pulling sources into the QTree:

• Push of sources is a passive approach to get new data
indexed into the QTree. With passive expansion we refer to
all methods that involve users or software agents notifying
the QTree about new sources. This can be done by either a
service similar to search engines’ ping services4 or by sub-
mitting the document directly.

• Pull of sources is an active approach to index new
data from the Web. One way to achieve this is to perform
lazy fetching during query execution. Lazy fetching refers to
the process of dereferencing all new URIs needed to answer a
query. This particularly fits well with an initial phase based
on SPARQL queries, as outlined above. The completeness of
queries and the possibility of expanding the QTree with new
sources depends on the initial query and can be expected to
increase gradually with more queries.

The latter sounds appealing since it solves the cold-start
problem elegantly, by performing a plain DL approach on
the first query and successively expanding the QTree with
more relevant sources. Note that this expansion could be in-
terleaved with prefetching one or two rounds further at each
new query, thus accelerating the expansion of the QTree.

Although construction and maintenance are important is-
sues that have to be dealt with in general, we neglect this
issue for the remainder of this paper and instead focus on
the problem of source selection.

5. EVALUATION
We now present experiments performed on a fixed crawl.

On the basis of a set of generated sample queries, we eval-
uate the performance for determining relevant sources on
the QTree and the time elapsed to evaluate the query in
memory. Accuracy and quality of the source selection are
evaluated on the basis of a benefit measure. Most important
for evaluating the practicability of the approach is to mea-
sure the impact of source ranking. We also simulate the DL
approach and compare it to our method. As the focus of this
work is on query processing, we only include basic measure-
ments for index build time; we use the on-disk storage space
requirements as a proxy for use of main memory.

We expect the QTree approach to be a lightweight but
efficient and effective method to limit the search for query
answers to only a subset of relevant sources. However, due
to its approximate character, source selection cannot be ab-
solutely accurate. For this we expect the introduced ranking
to be a well-suited method for directing search to the most

4such as for instance http://pingthesemanticweb.com/ or
Sindice [21]

relevant sources. In comparison to the DL approach, our
method should be capable of handling more types of queries
in reasonable time.

5.1 Setup
Using a breadth first crawl of depth four starting at

Tim Berners-Lee’s FOAF file5, we collected about 3 mil-
lion triples from about 16,000 sources. The data set rep-
resents a heterogeneous and well-linked collection of docu-
ments hosted on various domains and with different numbers
of RDF triples. Most of the sources are manually generated
by Semantic Web affiliated users and URIs are reused among
documents (e.g., DBpedia or publication/conference URIs).
All experiments are performed on a local copy of the gath-
ered data using Java 1.5 and a maximum of 3 GB main
memory.

We experimented with queries corresponding to two gen-
eral classes. The first class of sample query is star-shaped
queries with one variable at the subject position. The second
type of query is path queries with join variables at subject
and object positions. Figure 5 shows abstract representa-
tions of these query classes. The query classes of choice are
generally understood to be representative for real-world use
cases and are also used to evaluate other RDF query systems
(e.g., [20]).

Figure 5: Abstract illustration of used query classes

The star-shaped queries were generated by randomly pick-
ing a subject from the input data and arbitrarily selecting
distinct outgoing links. Then, we substituted the subject in
each BGP with a variable. Path queries were generated us-
ing a random walk approach. We randomly chose a subject
and performed a random walk of pre-defined depth to select
object URIs. The result of such a random walk was trans-
formed into a path-shaped join by replacing the connecting
nodes with variables.

Using these approaches, we generated from the data 100
queries for each query class containing one, two or three join
operations. We use P-n to denote path queries with n join
operations and S-n to denote star-shaped queries with n join
operations. BGP refers to queries containing only one BGP
and no joins. The figures show averages for all 100 queries in
a set. Error bars, if shown, represent minimal and maximal
values measured over all tests.

5.2 Results
Next, we present the results of our evaluation, starting

with results for index construction. The measured time to
insert one triple into the QTree is 4ms on average. The final

5http://www.w3.org/People/Berners-Lee/card

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

417

QTree requires a disk size of around 22 MB in serialised
form. As the original data is of size 561 MB, this corresponds
to a compression ratio of 96%. In the following, we present
the results of four different evaluation aspects: quality of
source selection, impact of ranking, query execution time,
and comparision with other approaches, and finally discuss
the results.

5.2.1 Quality of Source Selection
First, we show the quality achieved for source selection.

Based on the total number of sources T in the data, the
number of estimated sources E and the number of sources
R that are actually needed to answer a query, we calculate
the benefit 1.0− E

T
for all queries. The benefit measures the

number of sources that can be skipped in the query pro-
cess, compared to the näıve approach of simply querying
all known sources. In other words, the benefit gives an idea
pf how much we save: i.e., how many sources we can dis-
card from querying without missing results. Figure 6 shows
the benefit for various query types. We observe a benefit of
above 80% for the star-shaped queries, while for path queries
we achieve benefits of about 20%, 40% and 60%. The high
benefit shows that our approach is very well suited to prune
the search space of all sources. The difference between query
classes is due to the fact that star queries are answered by
significantly fewer sources than path queries, which usually
span a large number of documents. Thus, the benefit for
path queries cannot be as high as for star queries. However,
the number of possibly relevant sources can still be in the
thousands. This highlights the importance of an accurate
source ranking.

Figure 6: Benefit of source selection

5.2.2 Impact of Ranking
An accurate ranking scheme is mandatory in the presence

of a huge number of relevant sources. To show the impact
of the ranking, we measured how many result triples we can
determine and how many queries we can completely answer
when querying only top-k ranked sources. We show results
for reasonable values of k, namely 10, 50, 100 and 200. Fig-
ure 7 and 8 illustrate the results of this test. In addition,
Figure 9 shows the average maximal k that would be re-
quired to answer a query completely (i.e., to achieve 100%
in Figure 7). The figure further shows the number of actual
relevant sources. We can conclude that the introduced rank-
ing is powerful and important for practical applications. The

recall values for the plots in Figure 7 are above 50% for 4 out
of 7 tests with the top-200 sources. Inspecting the ratio of
completely answered queries for the query types, we observe
that the path queries dominate the star-shaped queries. This
is a nice complement to the higher benefit values for star-
shaped queries. Figure 9 shows that the absolute error in the
number of selected sources increases with the complexity of
queries.

Figure 7: Impact of ranking, recall of triples

Figure 8: Impact of ranking, answer completeness

Figure 9: Impact of ranking, maximal k

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

418

BGP S-1 P-1 S-2 P-2 P-3

Average 32.8% 20% - 9.64% - -
Maximum 100% 39.8% - 27.8% - -

Table 1: Completeness of results with the DL ap-
proach

5.2.3 Query Execution Time
A crucial aspect besides quality and benefit of the source

selection is runtime performance, i.e., the actual time needed
to answer queries. Figure 10 shows the average time required
to estimate relevant sources (qtree) and to actually evalu-
ate the query afterwards on the content stored in memory
(query). The average query time for all queries is below 10
seconds, with some outliers of maximum 100 seconds. This
difference in the query times results from the number of rel-
evant sources, which is in parts very high (according to the
QTree, but also the actual number of relevant sources for
some queries). Similar times can be observed for source se-
lection on the QTree; the difference here is also due to the
number of buckets that have to be checked while answering
single BGPs on the QTree, as query times increase with the
number of buckets. The shown query times underline the ap-
plicability and practicability of our approach for a real-world
application.

Figure 10: Query time

5.2.4 Comparison with Other Approaches
Finally, we compare our proposed solution with an alter-

native approach, namely the DL approach. We implemented
a local generalised version of the algorithm for a fair compar-
ison with our proposed solution. For comparison we emulate
the approach using the crawled local data. We cannot ex-
pect the results to be completely accurate since since the DL
approach performs, by design, live HTTP lookups. Despite
this difference, an evaluation based on crawl data reflects
the general limitations of the DL approach. Table 1 shows
that the DL approach is capable of returning results only for
star-shaped queries with less than 2 joins, for path queries
the DL approach returned no results.

5.3 Discussion
The evaluation shows that our novel approach is very

promising and practical for efficiently querying the Linked
Data Web. The problems of state-of-the-art solutions can be
eliminated successfully by the use of memory-efficient index

structures such as the QTree. As expected, this is only prac-
tical if an accurate ranking is applied. We were able to show
that even a straightforward cardinality-based ranking is well
suited to achieve this task. Our proposed solution is appli-
cable to real-world scenarios, given the presented index and
query times and the precision and impact of the top-k rank-
ing. A client, able to perform multithreaded lookups and set
up with an appropriate timeout for fetching the content of
the estimated sources, can answer queries with live results in
less then a minute using an index of 4% size of the original
data. Almost all of our expectations were met by the evalu-
ation. However, the precision of the QTree index is slightly
below our expectations and can benefit from optimisations.
In summary, the proposed approach represents a novel, effi-
cient and effective way of supporting source selection for live
queries over the Linked Data Web. It is in a state ready for
real-world applications, although the very promising results
can still be tuned.

6. RELATED WORK
An implementation of the näıve Data Lookup approach

– i.e., iterative query processing with dereferencing bound
URIs – has been recently presented by Hartig et al. [10].
As already sketched in Section 4, we believe our approach
can be viewed as fruitfully expanding and generalising the
straightforward approach towards more complete and versa-
tile query answering over Linked Data.

Database systems have exploited the idea of captur-
ing statistics about data for many years by using his-
tograms [16], primarily for selectivity and cardinality esti-
mates over local data.

The majority of work on distributed query optimisation
assumes a relatively small number of endpoints with full
query processing functionality rather than a possibly huge
number of flat file containing small amounts of data. Stuck-
enschmidt et al. [26] proposed an index structure for dis-
tributed RDF repositories based on schema paths (prop-
erty chains) rather than on statistical summaries of the
graph-structure of the data. RDFStats [18] aims at provid-
ing statistics for RDF data that can be used for query pro-
cessing and optimisation over SPARQL endpoints. Statistics
include histograms, covering e.g., subjects or data types,
and estimates cardinalities of selected BGPs and example
queries. The Vocabulary of Interlinked Datasets (voiD)6 is a
format for encoding and publishing statistics such as basic
histograms in RDF. The QTree contains more complete se-
lectivity estimates for all BGPs of distributed Linked Data
sources and the ability to estimate selectivity of joins.

A recent system using B+-trees to index RDF data is
RDF-3X [20]. To answer queries with variables in any posi-
tion of an RDF triple, RDF-3X holds indexes for querying
all possible combinations of subject, predicate and object –
an idea introduced in [9]. RDF-3X uses sophisticated join
optimisation techniques based on statistics derived from the
data. In contrast to our work, the approach uses a different
data structure for the index and focuses on centralised RDF
stores rather than distributed Linked Data sources.

Peer-to-peer systems (P2P) leverage statistical data for
source selection using so-called routing indexes. Crespo et
al. [5] introduced the notion of routing indexes in P2P sys-
tems as structures that, given a query, return a list of inter-

6http://rdfs.org/ns/void

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

419

esting neighbours (sources) based on a data structure con-
forming to lists of counts for keyword occurrences in doc-
uments. Based on this work, other variants of routing in-
dexes have been proposed, e.g., based on one-dimensional
histograms [22], Bloom Filters [23], bit vectors [19], or the
QTree. A common feature across these systems is to use a
hash function to map string data to a numerical data space.
In contrast to our work, the focus of query optimisation in
P2P systems is to share load among multiple sites and on
local optimisation based on routing indexes.

7. CONCLUSION & FUTURE WORK
We have presented an approach for evaluating queries over

RDF published as Linked Data, based on an index struc-
ture which summarises the content of data sources. We have
shown how the index structure can be used to select relevant
sources for conjunctive query answering, and how to process
joins over relevant sources with an optional prioritisation
via ranking. We have discussed strategies for constructing
such data summaries from a static dataset or dynamically
during query evaluation, and presented experimental results
and discussion of our approach on synthetically generated
queries over a Web crawl from 16k sources consisting of 3m
RDF triples. We have shown that our approach is able to
handle more expressive queries and return more complete
results to queries compared to previous approaches.

While our initial results are promising, there remain sev-
eral issues and future directions to explore. Restricting the
number of lookups via cardinality ranking reduces the over-
all processing time in our current approach. However, we
would like to investigate what types of ranking could be used
to further improve the accuracy of the lookups. In addition,
performing reasoning over the collected data would allow for
returning consistent results adhering to the specified seman-
tics. The current work describes the general applicability of
approximate index structures for query processing, however,
future work will have to study approaches for index creation
and maintenance in more detail. We plan to deploy a query
engine with a populated QTree for public user queries and
investigate how a QTree purely built on real user queries
evolves. Last but not least, we should highlight that QTrees
are also applicable in a fully decentralised distributed query-
ing scenario where peers are able to process and forward
queries themselves.

8. REFERENCES
[1] T. Berners-Lee. Linked data, July 2006.

http://www.w3.org/DesignIssues/LinkedData.html.

[2] D. Brickley, L. Miller. FOAF Vocabulary Spec. 0.91,
2007. http://xmlns.com/foaf/spec/.

[3] G. Cheng, Y. Qu. Searching linked objects with
falcons: Approach, implementation and evaluation.
JSWIS, 5(3):49–70, 2009.

[4] K. G. Clark, L. Feigenbaum, E. Torres. SPARQL
protocol for RDF, Jan. 2008. W3C Rec.,
http://www.w3.org/TR/rdf-sparql-protocol/.

[5] A. Crespo, H. Garcia-Molina. Routing indices for
peer-to-peer systems. ICDCS ’02, p.23–32, 2002.

[6] M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou,
M. Sabou, E. Motta. Characterizing knowledge on the
semantic web with watson. EON’07, p.1–10, 2007.

[7] R. Goldman, J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured
databases. VLDB’97, p.436–445, 1997.

[8] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. SIGMOD ’84, p.47–57, 1984.

[9] A. Harth, S. Decker. Optimized index structures for
querying RDF from the web. 3rd Latin American Web
Congress, p.71–80, 2005.

[10] O. Hartig, C. Bizer, J.-C. Freytag. Executing sparql
queries over the web of linked data. ISWC’09, 2009.

[11] D. Heimbigner, D. McLeod. A federated architecture
for information management. ACM Trans. Inf. Syst.,
3(3):253–278, 1985.

[12] M. R. Henzinger, A. Heydon, M. Mitzenmacher,
M. Najork. Measuring index quality using random
walks on the web. Computer Networks,
31(11-16):1291–1303, 1999.

[13] A. Hogan, A. Harth, J. Umbrich, S. Decker. Towards a
scalable search and query engine for the web.
WWW’07, p.1301–1302, 2007.

[14] K. Hose, M. Karnstedt, A. Koch, K. Sattler, D. Zinn.
Processing Rank-Aware Queries in P2P Systems.
DBISP2P’05, p.238–249, 2005.

[15] K. Hose, D. Klan, K. Sattler. Distributed Data
Summaries for Approximate Query Processing in
PDMS. IDEAS ’06, p.37–44, 2006.

[16] Y. Ioannidis. The History of Histograms (abridged).
VLDB ’03, p.19–30, 2003.

[17] D. Kossmann. The state of the art in distributed
query processing. ACM Computing Surveys,
32(4):422–469, Dec. 2000.

[18] A. Langegger, W. Wöß. RDFstats - an extensible
RDF statistics generator and library. 8th Int’l
Workshop on Web Semantics, DEXA, 2009.

[19] M. Marzolla, M. Mordacchini, S. Orlando. Tree Vector
Indexes: Efficient Range Queries for Dynamic Content
on Peer-to-Peer Networks. PDP’06, p.457–464, 2006.

[20] T. Neumann, G. Weikum. RDF-3X: a RISC-style
Engine for RDF. VLDB Endow., 1(1):647–659, 2008.

[21] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, G. Tummarello. Sindice.com: A
document-oriented lookup index for open linked data.
JMSO, 3(1), 2008.

[22] Y. Petrakis, G. Koloniari, E. Pitoura. On Using
Histograms as Routing Indexes in Peer-to-Peer
Systems. DBISP2P ’04, p.16–30, 2004.

[23] Y. Petrakis and E. Pitoura. On Constructing Small
Worlds in Unstructured Peer-to-Peer Systems. EDBT
Workshops, p.415–424, 2004.

[24] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF, Jan. 2008. W3C Rec.,
http://www.w3.org/TR/rdf-sparql-query/.

[25] B. Quilitz and U. Leser. Querying distributed RDF
data sources with SPARQL. ESWC’08, p.524–538,
Tenerife, Spain, 2008.

[26] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben,
J. Broekstra. Index structures and algorithms for
querying distributed RDF repositories. WWW’04,
p.631–639, 2004.

[27] D. Zinn. Skyline Queries in P2P Systems. Diploma
Thesis, TU Ilmenau, 2004.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

420

