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ABSTRACT
When online ads are shown together, they compete for user
attention and conversions, imposing negative externalities
on each other. While the competition for user attention
in sponsored search can be captured via models of click-
through rates, the post-click competition for conversions
cannot: since the value-per-click of an advertiser is propor-
tional to the conversion probability conditional on a click,
which depends on the other ads displayed, the private value
of an advertiser is no longer one-dimensional, and the GSP
mechanism is not adequately expressive. We study the de-
sign of expressive GSP-like mechanisms for the simplest form
that an advertiser’s private value can have in the presence
of such externalities— an advertiser’s value depends on ex-
clusivity, i.e., whether her ad is shown exclusively, or along
with other ads.

Our auctions take as input two-dimensional (per-click)
bids for exclusive and nonexclusive display, and have two
types of outcomes: either a single ad is displayed exclusively,
or multiple ads are simultaneously shown. We design two
expressive auctions that are both extensions of GSP— the
first auction, GSP2D , is designed with the property that the
allocation and pricing are identical to GSP when multiple
ads are shown; the second auction, NP2D , is designed to be a
next price auction. We show that both auctions have high ef-
ficiency and revenue in all reasonable equilibria; further, the
NP2D auction is guaranteed to always have an equilibrium
with revenue at least as much as the current GSP mecha-
nism. However, we find that unlike with one-dimensional
valuations, the GSP-like auctions for these richer valuations
do not always preserve efficiency and revenue with respect
to the VCG mechanism.
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1. INTRODUCTION
Online advertisements shown alongside each other

compete—first, for the user’s attention, and then for a con-
version. The effectiveness of an ad, therefore, depends not
only on targeting it accurately to a relevant user, but also on
the set of other advertisements that are displayed along with
it: when an ad for a product is shown along with other high-
quality competing ads, the chance that a user will purchase
from the first advertiser is diminished. Online ads that are
shown together thus impose negative externalities on each
other.

This externality effect comes from two factors. First, the
presence of other advertisements decreases the amount of
attention an ad gets from a user: the user may not notice or
click on an ad because of other competing ads. Second, even
if a user notices or clicks on an ad, he may not convert on it,
but instead convert on a competing advertisement. Indeed,
a user looking to purchase a product would arguably click on
multiple ads before deciding which one to convert on. Such
ads, which have already successfully competed for attention,
now compete with each other for a conversion from the user.
This externality effect from post-click competition for con-
versions cannot be captured by models of clickthrough rates,
which only model the effect of other ads on user attention;
rather, as we argue below, they affect advertisers’ private
values per-click. In this paper, we will focus on the effect
of externalities on conversions, and the design of adequately
expressive auctions for such externalities.

In sponsored search auctions, where advertisers bid per
click but ultimately derive value from conversions, the pres-
ence of externalities affects the private value. An advertiser’s
value-per-click is the product of her value-per-conversion
times the probability of a conversion conditional on a click,
i.e., vclick = vconv · Pr(conv|click). If Pr(conv|click) de-
pends on whether or not other ads are simultaneously dis-
played, the advertiser’s (private) value-per-click will be dif-
ferent as well — that is, the private per-click-value is no
longer one-dimensional. In such a situation, a mechanism
such as the existing GSP mechanism1, which solicits only
a one-dimensional bid and always displays a full slate of
ads, can be arbitrarily inefficient2. To achieve efficiency,

1(with either separable or cascade model based CTRs)
2Suppose each advertiser has value 1 if only her ad is shown,
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the outcomes and bidding languages offered by the auction
mechanism must be adequately expressive.

In general, an advertiser’s valuation in an auction with
n bidders and externalities can be a function v : 2n → R,
which is exponential in the number of bidders3. Allowing
very general valuations, even with restrictions on the model
to ensure reasonably-sized reports, has two problems. First,
reporting high-dimensional valuations imposes a heavy cog-
nitive burden on advertisers (particularly the less sophisti-
cated ones), who may not be able to determine their values
for a wide range of outcomes [17, 19], making such a bid-
ding language highly impractical. Second, in general, set-
based valuations can lead to computational hardness and
inapproximability in the winner determination problem, by
reduction from independent set4.

We will adopt a very simple valuation model for external-
ities, based on exclusivity: an advertiser’s value depends on
whether or not other ads are shown along with her ad, i.e.,
whether she is shown exclusively or not. Such a valuation
model is very reasonable in the context of online advertising:
first, only one additional bid is solicited from advertisers, in
addition to the bid they already place in the existing GSP
auction. Second, given that bidding languages that involve
competitor identities can lead to computational hardness, a
natural, expressive bidding language is one that specifies a
value for each possible number of other ads displayed along-
with —i.e., if k is the number of slots, this valuation would
be represented by a (decreasing) k-dimensional vector. Our
two-dimensional valuation is a simple approximation, espe-
cially from an advertiser’s point of view, for such a vector.
Also, the two-dimensional language based on exclusivity can
arguably better represent5 valuations where the identity of
competitors actually influences value, such as for keywords
where some competing ads cause much greater decrease in
value than others.

We will be interested in designing expressive GSP-like
mechanisms for this setting with two-dimensional private
values (i.e., with and without exclusivity). By GSP-like
auctions, we mean auctions that are extensions, in ways we
will make precise, of the generalized second price auction
(GSP) currently used to sell sponsored search ads. Such

and ǫ if any other ads are shown along with. Since GSP does
not have an outcome which displays a single ad, advertisers
simply bid according to their value of ǫ, resulting in an ef-
ficiency of most nǫ compared to the optimal efficiency of 1
(display a single ad).
3In fact, the domain of v can be even larger if a bidder’s
value depends not just on the set of all winners, but also on
the exact allocation, such as the precise ordering of other
advertisers in slots in sponsored search.
4Each node corresponds to an advertiser who derives value
0 , if any of her neighbors are included in the set of winners,
and 1 otherwise. Choosing the optimal set of advertisers to
display corresponds exactly to finding the largest indepen-
dent set in the graph.
5It is likely that when advertiser is displayed along with a
full slate of other ads, the competitors that cause the great-
est decrease in value to her are included as well, causing
the maximum decrease in value; in contrast, when only one
other ad is displayed along with, the value obtained would
depend on whether that ad is a strong competitor (minimum
value) or not (maximum value). So an advertiser can simply
use his highest and lowest valuations in the exclusivity-based
language, but deriving his value vector when some competi-
tors affect value more than others is much harder for the
k-dimensional bidding language.

auctions have two major advantages over auctions that de-
viate significantly from GSP (such as the VCG auction):
first, advertisers face a smooth transition between the exist-
ing and new system, and do not find themselves faced with
an unfamiliar and complex auction; second, they are also are
easier to build and integrate with the existing system. Auc-
tions which are extensions of GSP are therefore far more
likely to actually be deployed in practice. Other research
on designing auctions for sponsored search with more com-
plex valuations has focused on extending the GSP auction
as well ([2, 16]), reflecting the practicality of designing such
GSP-like auctions.

Results and Organization. We design two expressive
auctions that are both extensions of the GSP auction, and
analyze their equilibria for revenue and efficiency. Both auc-
tions take as input two-dimensional (per-click) bids (b, b′) for
exclusive and nonexclusive display, and have two types of
outcomes: S, where a single ad is displayed, and M, where
a full slate of multiple ads is shown. Since both auctions
are not truthful and can have multiple equilibria, we com-
pare the equilibria of each auction to V CG2D , the VCG
auction for two-dimensional valuations (we also provide ad-
ditive bounds or pointwise comparisons of equilibria of the
two auctions where possible).

There are two natural ways to extend the GSP auction
to this two-dimensional setting. The first is to require that
when multiple ads are displayed, the outcome should exactly
match GSP. Our first auction, GSP2D, has the property that
when the outcome is M, the allocation and pricing is exactly
as if the bids b′ had been submitted to the original GSP auc-
tion (it then remains to design the rule deciding whether the
outcome will be S or M, and the pricing for S, to ensure good
equilibrium properties). The second is to extend the ‘next-
price’ principle of GSP to the two-dimensional setting: our
second auction, NP2D has the property that every winner
pays the minimum amount necessary to keep his position
(note that GSP2D is not a next price auction: in the two-
dimensional setting, maintaining one’s position in outcome
M involves both maintaining the outcome type (M versus
S), and maintaining one’s ranking amongst the winners in
M).

The comparison between the two auctions is rather subtle.
NP2D has better efficiency guarantees than GSP2D when
the efficient outcome is M, while GSP2D is, roughly speak-
ing, slightly better when the efficient outcome is S. In all
cases, the welfare in all ‘good’ equilibria where losers bid at
least their true value is guaranteed to be at least half the op-
timal efficiency (we show that such good equilibria always
exist for both auctions). In terms of revenue, NP2D has
better revenue guarantees when the equilibrium outcome is
S, dominating the V CG2D revenue, while GSP2D is guar-
anteed to have at least half the V CG2D revenue. When
the equilibrium outcome is M, all envy-free equilibria of
GSP2D dominate the V CG2D revenue, whereas there is no
corresponding multiplicative bound for NP2D . However, all
envy-free equilibria of NP2D revenue-dominate V CGM , the
revenue from the one-dimensional VCG mechanism; also, all
the high-revenue M-equilibria of GSP2D are M-equilibria of
NP2D as well. Further, unlike GSP2D, the NP2D auction is
guaranteed to always have an equilibrium with revenue at
least as much as the current GSP mechanism.

Related Work. There is a rapidly growing literature on
externalities in online advertising, starting with the work in
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[9] which addresses the conversion aspect, but does not di-
rectly apply to sponsored search. Externalities in sponsored
search are studied theoretically by [3], [15], [11] and [21],
and empirically by [12, 14]. However, all of these focus on
the effect of externalities on the clickthrough rate, that is,
the attention aspect. The work in [7] does address the con-
version aspect; however, it assumes a specific form for the
conversion rates and more importantly, focuses on analyz-
ing equilibria for this model of conversion rates under the
existing GSP mechanism. In contrast, we focus on design-
ing mechanisms with a more expressive bidding language
and outcome space.

In simultaneous and independent work, [16] proposes the
agenda of designing auctions where advertisers bid for con-
figurations; our work provides a thorough design and analy-
sis for one type of configuration, namely exclusivity (see §5
for a more detailed discussion on the relation between the
two problems).

[18] studies auctions with share-averse bidders, i.e., bid-
ders suffering from negative externalities when an item is
shared amongst multiple competitors, exactly as in on-
line advertising. However, [18] focuses on characterizing
the revenue-maximizing single item auction for this setting,
whereas we want to design GSP-like auctions for sponsored
search. Finally, a primary motivation for our work is the loss
in efficiency due to limited expressiveness. The work in [5]
provides a general theory for expressiveness in mechanisms,
and relates the efficiency of mechanisms to their expressive-
ness in a domain independent manner.

2. MODEL
There are n advertisers bidding for a page with k slots.

Advertiser i’s private value is the two-tuple (vi, v
′
i), where

vi is her value-per-click for being displayed exclusively, i.e.,
with no other ads on the page, and v′

i is her value-per-click
if other ads are shown as well. We make the natural as-
sumption that each advertiser (weakly) prefers exclusivity,
i.e., vi ≥ v′

i.
There are two types of outcomes: S, where only a single

ad is displayed on the page, and M, where multiple ads are
displayed. (Note that the maximum possible number of ads
are always displayed in M, since bidders do not have, or ex-
press, higher values for displaying i ads, 1 < i < k.) We
denote the clickthrough rate (CTR) of the i-th slot in out-
come M by θi, and assume, without loss of generality, that
the CTR of the only slot in outcome S is 1. It is natural to
expect that the CTR with outcome S is at least as large as
than that of any slot in M, i.e., 1 ≥ θ1 ≥ . . . ≥ θk. We also
define θi = 0 for i > k for convenience. (We point out that
our results also extend to the case of separable clickthrough
rates, where the CTR of an ad in a slot is a product of an
ad-dependent clickability and a slot-dependent clickability;
we use the simpler model for clarity of exposition.)

Each advertiser’s two-dimensional bid is denoted by
(bi, b

′
i), where bi and b′i represent her bids for outcomes S

and M respectively. We refer to the vi and bi as S-values
and S-bids, and v′

i and b′i as M-values and M-bids. We or-
der advertisers in decreasing order of their M-bids so that
b′1 ≥ b′2 ≥ . . . ≥ b′n

6, and use [i] to refer to the advertiser

6In the case of ties between advertisers, we will assume ora-
cle access to the true values for tiebreaking; this assumption
is made only for clarity of presentation and is not at all

with i-th highest M-value, i.e., v′
[1] ≥ v′

[2] ≥ . . . ≥ v′
[n]. We

will use the indices max and max2 to denote the bidders
with the highest and second highest S-values, so vmax ≥ vi

for every i, and vmax2 ≥ vi for every i 6= max. We will
also abuse notation to use bmax and bmax2 to denote the
highest and second highest S-bids, respectively (in all equi-
libria of interest, these will actually correspond to the same
bidders as with the true S-values). Furthermore, we define
vmax

−i
and bmax

−i
to be the advertisers who have highest

S-value and highest S-bid excluding advertiser i. In other
words, vmax

−i
= vmax and bmax

−i
= bmax if i 6= max, and

vmax
−i

= vmax2 and bmax
−i

= bmax2 if i = max. Finally,
to simplify notation, we sometimes skip the lower bound of
summation when it is 1; e.g., the summation

∑k

i=1,i6=j
v′

i is

abbreviated to
∑k

i6=j
v′

i.
A mechanism for this setting decides on the winning con-

figuration, i.e., whether the outcome is S or M, and the
winning advertisers (and their ranking if the outcome is M),
and the prices for the winners. The VCG mechanism, of
course, applies to this setting, and is a truthful mechanism
which always produces an efficient (i.e., welfare maximizing)
outcome.

Definition 2.1 (V CG2D). The VCG mechanism com-

pares vmax and
∑k

i=1 θiv
′
i.

• If vmax ≥
∑k

i=1 θiv
′
i, VCG allocates the page to only

one advertiser, namely max, and charges him either
the sum of the k highest θiv

′
is (excluding himself) or

the second highest S value, whichever is larger, i.e., the
winner’s payment is

max(vmax2 ,

max−1
∑

i=1

θiv
′
i +

k
∑

i=max

θiv
′
i+1).

• If vmax <
∑k

i=1 θiv
′
i, then VCG allocation is M, but

the expression for the payments is more complicated.
When advertiser i is removed, the efficient reallocation
can be either S or M. If it is S, the winner is vmax

−i
,

and hence, the increase in the sum of the values of
all advertisers other than i is vmax

−i
−
∑k

j 6=i
θjv

′
j . If

the efficient reallocation is M, all advertisers below i
will move one slot up, therefore, the sum of their val-
ues increases by

∑k

j=i
(θj − θj+1)v

′
j+1. Therefore, i-th

advertiser’s payment, θipi, is (for i ≤ k):

max(
k
∑

j=i

(θj − θj+1)v
′
j+1, vmax

−i
−

k
∑

j=1

θjv
′
j + θivi).

We use V CG2D to denote the VCG mechanism applied
to our setting where bidder values are two-dimensional, and
V CGM to denote VCG for the one-dimensional setting stud-
ied in [20, 8], where the only possible outcome is M and
advertisers have one-dimensional valuations. We make this
distinction to easily distinguish between the VCG revenues
in the various settings.

Restricting Equilibria. We will be interested only in
equilibria where losers bid at least their true value, which
we will refer to as “good” equilibria. This is particularly
relevant when the outcome is S: while there might be Nash
equilibria where the losing bidders must bid b′i < v′

i to ensure

essential to the proofs.
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that the winner has no incentive to deviate to outcome M, it
is unreasonable to expect that the losing bidders will not bid
higher in an effort to change the outcome to M, which would
give them positive utility. Thus, Nash equilibria where the
outcome is S but losers bid less than their true values simply
to maintain equilibrium are unlikely to exist in practice.

3. GSP2D

In this section, we design an auction with the following
property: given a set of bids (bi, b

′
i), suppose the auction

decides to display multiple ads, i.e., the outcome is M. Then,
the allocation and pricing for the winning ads is exactly
the same as when GSPM is applied to the bids b′i. This
requirement ensures the practical benefit that when multiple
ads are displayed, advertisers see no difference at all between
the new auction and the existing system.

Given that the allocation pricing for outcome M is com-
pletely specified, it remains to design the rule that decides
whether the outcome will be S or M, as well as the pricing
for S. The GSP2D auction is defined below.

Definition 3.1 (The GSP2D auction). The mecha-
nism GSP2D takes as input bids (bi, b

′
i) and compares bmax

to
∑k+1

i=2 θi−1b
′
i to decide whether the outcome should be S

or M.

• If bmax ≥
∑k+1

i=2 θi−1b
′
i, the outcome is S with winning

bidder max, whose payment is
∑k+1

i=2 θi−1b
′
i per click.

• If bmax ≤
∑k+1

i=2 θi−1b
′
i, assign the page to bidders

1, . . . , k and charge them according to GSPM pricing,
i.e. bidder i (for i ≤ k) has to pay b′i+1 per click.

Note that the allocation rule compares against
∑k+1

i=2 θi−1b
′
i, rather than against

∑k

i=1 θib
′
i, i.e., the

highest M-bid is completely ignored when deciding the
outcome. This is because the natural allocation rule, which
would be to compare bmax with θ1b

′
1 + θ2b

′
2 + . . . + θkb′k,

does not quite work: if the bidder with the highest M-value
is different from the bidder max with the highest S-value,
that bidder will always set b′1 = bmax − ǫ which changes the
outcome to M at no cost to her (as long as there is some
other non-zero bid b′i), since the pricing when the outcome
is M according to GSP remains b′2. That is, using the
natural allocation rule would imply that the only possible
equilibria are those with outcome M, defeating the purpose
of designing a more expressive auction.

In the remainder of this section, we will investigate the
efficiency and revenue of the equilibria of this mechanism.
The restriction to using GSPM when the outcome is M does
cause a potential loss in efficiency and revenue with respect
to V CG2D, unlike the case with one-dimensional valuations
where all envy free equilibria of GSPM are efficient and dom-
inate V CGM in terms of revenue. However, as we show be-
low, GSP2D has fairly nice properties nonetheless: both the
efficiency and revenue of all reasonable equilibria of GSP2D

are guaranteed to be at least within a factor 1/3 and 1/2 re-
spectively of the optimal efficiency and revenue. (By reason-
able equilibria, we mean equilibria of the mechanism where
losers bid at least their true value; we show such equilib-
ria always exist. Further, when the outcome is M, we will
restrict ourselves, as in [20] and [8], to envy free equilibria,

since the efficiency and revenue guarantees for GSPM rela-
tive to V CG1D themselves hold only for envy-free equilibria
of GSPM .)

The easy lemma below, which follows immediately from
individual rationality, will be used repeatedly in the follow-
ing two subsections.

Lemma 3.1. In any equilibrium of GSP2D with outcome
M, b′i+1 ≤ v′

i for every i ≤ k.

3.1 Efficiency
We consider two cases, one where the efficient outcome

is S, and the other where the efficient outcome is M, and
analyze the efficiency of the equilibria of GSP2D. Note that
we prove our efficiency results for all reasonable equilibria,
rather than only showing that there exists one equilibrium
with these properties.

Due to want of space, the proofs of the following results
are omitted, and can be found in the full version of the paper
[10].

Theorem 3.1. If the efficient outcome is S (vmax >
∑k

i=1 θiv
′
[i]), there is no equilibrium of GSP2D with outcome

M.

Proposition 3.1. Suppose the efficient outcome is M.
Every equilibrium of GSP2D with outcome S where losers
bid at least their true values has efficiency at least 1/3 of
the optimal. Any envy-free equilibrium with outcome M is
efficient.

3.2 Revenue
In this section, we compare the revenues of equilibria in

GSP2D with the revenue of V CG2D .

Theorem 3.2. Suppose the efficient outcome is S. The
revenue in any equilibrium of GSP2D where losers bid at
least their true values is at least half of the revenue of
V CG2D.

Proof. First, recall that by Theorem 3.1, the only possi-
ble equilibrium outcome is S, so that the revenue of GSP2D

is max(bmax2 ,
∑k

i=1 θib
′
i+1). We give lower-bounds for both

terms and then show that the revenue of V CG2D cannot be
larger than the sum of the lower bounds; therefore, the rev-
enue of V CG2D cannot be more than twice of the revenue
of GSP2D .

First we assume max 6= [1]. We have bmax2 ≥ vmax2 ≥
v′
[1] ≥ θ1v

′
[1], since v′

i ≤ vi, and losers bid at least their true
values. For the other term, we know that all bidders except
max are losers in outcome S. Therefore, b′i ≥ v′

i for every
i 6= max. So we get

k
∑

i=1

θib
′
i+1 ≥

j−1
∑

i=2

θi−1v
′
[i] +

k+2
∑

i=j+1

θi−2v
′
[i]

where j = min(max, k +2). On the other hand, the revenue
of V CG2D is

max(vmax2 ,

l−1
∑

i=1

θiv
′
[i] +

k+1
∑

i=l+1

θi−1v
′
[i])

where l = min(max, k + 1). To finish the proof, we need to
show that the sum of the lower bounds we have for GSP2D
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is greater than or equal to revenue of V CG2D :

vmax2 +

j−1
∑

i=2

θi−1v
′
[i] +

k+2
∑

i=j+1

θi−2v
′
[i] ≥

max(vmax2 ,

l−1
∑

i=1

θiv
′
[i] +

k+1
∑

i=l+1

θi−1v
′
[i]).

If the first term in the V CG2D revenue is the dominant term,
the inequality obviously holds. Otherwise, we need to show
that

vmax2+

j−1
∑

i=2

θi−1v
′
[i]+

k+2
∑

i=j+1

θi−2v
′
[i] ≥

l−1
∑

i=1

θiv
′
[i]+

k+1
∑

i=l+1

θi−1v
′
[i],

i.e., it is enough to show that

θ1v
′
[1] +

j−1
∑

i=2

θi−1v
′
[i] +

k+2
∑

i=j+1

θi−2v
′
[i] ≥

θ1v
′
[1] +

l−1
∑

i=2

θiv
′
[i] +

k+1
∑

i=l+1

θi−1v
′
[i],

but this inequality clearly holds using term-by-term com-
parison.

It remains to prove the the theorem for the case where
max = [1]. In this case, bmax2 ≥ vmax2 ≥ v′

[2], and the
revenue of GSP2D is

max(bmax2 ,
k
∑

i=1

θib
′
i+1) ≥ max(bmax2 ,

k
∑

i=1

θiv
′
[i+2])

while the revenue of V CG2D is max(vmax2 ,
∑k

i=1 θiv
′
[i+1]).

As before, if the dominant term in revenue of V CG2D is
vmax2 we are done. Otherwise, the sum of the two terms of
the GSP2D revenue is at least θ1v

′
[2] +

∑k

i=1 θiv
′
[i+2] which

dominates the second term in the V CG2D revenue term by
term.

A simple modification to Example 3.1 at the end this section
shows that this factor of 2 is tight (set v1 = 3 so that the
efficient outcome is S).

The following additive bound on revenue follows immedi-
ately from the previous proof:

RGSP2D
≥ RV CG2D

− θ1v
′
[1] + θkv′

[k+2].

Theorem 3.3. Suppose the efficient outcome is M. Any
envy-free equilibrium of GSP2D with outcome M has revenue
greater than or equal to that of V CG2D.

Proof. First, note that since the equilibrium is envy-
free, the ordering of M-bids is the same as ordering of M-
values ([20]), i.e., v′

i = v′
[i] for any i ≤ k + 1. We show that

the payment of advertiser i (for i ≤ k) in GSP2D is at least
as much as his payment in V CG2D .

Recall from 2.1 that the payment for advertiser i in
V CG2D is

pi = max(

k
∑

j=i

(θj − θj+1)v
′
j+1, vmax

−i
−

k
∑

j 6=i

θjv
′
j).

First we prove that GSP2D payment of bidder i, θib
′
i+1, is at

least vmax
−i

−
∑k

j 6=i
θjv

′
j . We will prove this by contradic-

tion: if not, we show that there is a bidder with a profitable

deviation to S. Let l be the bidder with the highest S-value
excluding i, i.e. vl = vmax

−i
. By the contradiction hypothe-

sis, θib
′
i+1 < vl−

∑k

j 6=i θjv
′
j . If l is not a winner, he has a prof-

itable deviation by bidding (vl, b
′
l) which changes the out-

come to S because vl >
∑k

j 6=i
θjv

′
j + θib

′
i+1 ≥

∑k

j=1 θjb
′
j+1.

(Of course, bidding (vl, 0) is a “more profitable” deviation,
but is unnecessary for the argument.)

So suppose that l is a winner. Adding and subtracting
θlb

′
l+1 and rearranging we get

θl(v
′
l − b′l+1) < vl − (θib

′
i+1 + θlb

′
l+1 +

k
∑

j 6=i,l

θjv
′
j).

Note that the term in parentheses on the right hand side is
an upper-bound on the price that l has to pay for S if he devi-
ates and bids (vl, b

′
l): the price for S is at most

∑k

j=1 θjb
′
j+1

(since the outcome with the original vector of bids was M,

bmax ≤
∑k

j=1 θjb
′
j+1, so the price for S is always dominated

by this term). Since b′j+1 ≤ v′
j (the original vector of bids

was in equilibrium), the price for S is upper-bounded by

(θib
′
i+1 + θlb

′
l+1 +

∑k

j 6=i,l
θjv

′
j) as claimed, showing that l

can deviate profitably. (Note that as before, this bid does
change the outcome to S.)

The fact that θib
′
i+1 ≥

∑k

j=i
(θj − θj+1)v

′
j+1 follows from

the lower bound on bids in envy-free equilibria in [20],
which also holds for envy-free equilibria in outcome M of
GSP2D.

Theorem 3.4. Suppose the efficient outcome is M. The
revenue in any equilibrium of GSP2D with outcome S where
losers bid at least their true values is at least half of the
revenue of V CG2D.

Proof. The proof, unfortunately, proceeds by
considering cases. The revenue of GSP2D is
max(bmax2 ,

∑k

i=1 θib
′
i+1). For ease of notation let

p1
i =

∑k

j=i
(θj − θj+1)v

′
[j+1], and p2

i = vmax
−i

−
∑k

j 6=i
θjv

′
[j].

The revenue of V CG2D is
∑k

i=1 pi, where pi = max(p1
i , p

2
i ).

First note that p1
i ≤ θiv

′
[i+1]. Also, from individual

rationality we have pi ≤ θiv
′
[i].

We consider the following three cases, and will prove for
each case that bmax2 +

∑k

i=1 θib
′
i+1 ≥

∑k

i=1 pi. Therefore,
the revenue of GSP2D is at least half the revenue of V CG2D.

1. If max /∈ {[1], . . . , [k]}: Each bid b′i, i ≤ k + 1, is at
least v′

i in this case, so the revenue of GSP2D is at least
max(vmax2 ,

∑k

i=1 θiv
′
[i+1]). The revenue of V CG2D is

at most p1 +
∑k

i=2 θiv
′
[i]. Since vmax2 ≥ v[1] ≥ v′

[1] ≥

θ1v
′
[1], we have vmax2 ≥ p1, and hence

vmax2 +
k
∑

i=1

θiv
′
[i+1] ≥ p1 +

k
∑

i=2

θiv
′
[i],

which implies that the revenue of GSP2D is at least
half the revenue of V CG2D.

2. If max ∈ {[2], . . . , [k]}: The revenue of GSP2D in
this case is at least max(vmax2 ,

∑max−2
j=1 θjv

′
[j+1] +

∑k

j=max−1 θjv
′
[j+2]) because all losers bid at least their

true values. We first consider the case where p1
i ≥ p2

i

for every i. The revenue of V CG2D cannot be more
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than
∑k

j=1 p1
j ≤

∑k

j=1 θjv
′
[j+1]. Since vmax2 ≥ v′

[1] ≥

v′
[max] ≥ θmaxv′

[max],

vmax2+

max−2
∑

j=1

θjv
′
[j+1]+

k
∑

j=max−1

θjv
′
[j+2] ≥

k
∑

j=1

θjv
′
[j+1],

which shows the revenue of V CG2D cannot be more
than twice the revenue of GSP2D in this case.

For the other case, let l be some index for which
p1

l < p2
l . We consider two cases depending on whether

p1
max > p2

max or p2
max ≥ p1

max. For both cases, we
upper-bound the V CG2D payment of bidder i (for
i 6= max and i 6= l) by θiv

′
[i]. First, if p2

max ≥ p1
max, the

revenue of V CG2D is at most

p2
l + p2

max +
k
∑

j 6=max,j 6=l

θjv
′
[j] = vmax −

k
∑

j 6=l

θjv
′
[j]

+ vmax2 −

k
∑

j 6=max

θjv
′
[j] +

k
∑

j 6=max,j 6=l

θjv
′
[j]

=

(

vmax −
k
∑

j=1

θjv
′
[j]

)

+ vmax2 .

Since the efficient outcome is M, the term in parenthe-
ses is non-positive; therefore, the revenue of V CG2D

is bounded above by vmax2 , which is clearly less than
or equal to the revenue of GSP2D.

Now, if p1
max ≥ p2

max, the revenue of V CG2D is

p2
l + p1

max +

k
∑

j 6=max,j 6=l

θjv
′
[j] = vmax −

k
∑

j 6=l

θjv
′
[j]

+
k
∑

j=max

(θj − θj+1)v
′
[j+1] +

k
∑

j 6=max,j 6=l

θjv
′
[j].

Since vmax −
∑k

j 6=l
θjv

′
[j] ≤ θlv

′
[l] (the efficient outcome

is M), the revenue of V CG2D is at most

max−1
∑

j=1

θjv
′
[j] +

k
∑

j=max

θjv
′
[j+1]

= θ1v
′
[1] +

max−1
∑

j=2

θjv
′
[j] +

k
∑

j=max

θjv
′
[j+1].

Since vmax2 ≥ θ1v
′
[1], by term-by-term comparison we

get

vmax2 +

max−2
∑

j=1

θjv
′
[j+1] +

k
∑

j=max−1

θjv
′
[j+2] ≥

θ1v
′
[1] +

max−1
∑

j=2

θjv
′
[j] +

k
∑

j=max

θjv
′
[j+1],

which implies the revenue of GSP2D is at least half of
the revenue of V CG2D.

3. If max = [1]: The revenue of GSP2D in this case is

at least max(vmax2 ,
∑k

j=1 θjv
′
[j+2]) because all losers

bid at least their true values. As before, we first
consider the case where p1

i ≥ p2
i for every i; the

revenue of V CG2D cannot be more than
∑k

j=1 p1
j ≤

∑k

j=1 θjv
′
[j+1]. Since vmax2 ≥ v′

[2] ≥ θ1v
′
2,

vmax2 +
k
∑

j=1

θjv
′
[j+2] ≥ θ1v

′
[2] +

k
∑

j=2

θjv
′
[j+1]

which shows that the revenue of V CG2D cannot be
more than twice of revenue of GSP2D in this case.

The analysis of the other case is almost identical to
when max ∈ {[2], . . . , [k]}, so we omit repeating it here.

Example 3.1 shows that this factor 2 is tight as well.
How does GSP2D compare to GSPM in terms of rev-

enue? Suppose bidders have two-dimensional valuations
(vi, v

′
i), but are only offered the GSPM mechanism with

its one-dimensional bidding language. Since the outcome of
GSPM is never S, bidders will bid according to valuations
v′

i in GSPM . The example below shows that the revenue of
GSP2D (in every equilibrium) can actually be smaller than
the revenue in GSPM , i.e., if the search engine had persisted
with the old mechanism. However, the mechanism we de-
sign in the next section does not suffer from this potential
loss in revenue with respect to GSPM .

Example 3.1. Suppose there are two slots with θ1 = θ2 =
1 − ǫ, and three bidders with values v1 = 1 + ǫ, v2 = v3 = 1,
and v′

i = 1 for i ≤ 3. The revenue of GSPM for this example
is 2−2ǫ for all equilibria, and the utility is 0 for all bidders.
However, if advertiser 1 bids (∞, 0), and advertisers 2 and
3 bid truthfully, this is an equilibrium with revenue 1−ǫ and
payment 1−ǫ with utility 2ǫ > 0 for the winner. In fact, this
is the highest possible revenue in any equilibrium outcome of
GSP2D.

Finally, we conclude with showing that good equilibria
(where losers bid their true values) always exist, so that the
theorems we proved so far are not vacuous.

Theorem 3.5. For GSP2D, a good equilibrium always ex-
ists.

Proof. Suppose (vi, v
′
i) are the S-value and M-value of

the i-th bidder, and suppose that v′
i’s are sorted in descend-

ing order. We construct a good equilibrium of GSP2D. Let
v̂′

i be the i-th highest M-value excluding v′
max, where max

is the bidder who has the highest S-value. (In the efficient
ordering of advertisers excluding max in outcome M, the
advertisers occupying the i-th slot has M-value v̂′

i.) Note
that v̂′

i = v′
i if i < max, and v̂′

i = v′
i+1 otherwise. Let

S0 = ∞ and Sl =
∑l−2

i=1 θiv̂
′
i+1 + θl−1v̂

′
l−1 +

∑k

i=l
θiv̂

′
i for

1 ≤ l ≤ k + 1 (define θ0 = 0 and v̂′
0 = 0). Intuitively, Sl (for

l ≥ 1) is an upper-bound on
∑k

i=1 θib
′
i+1 in which everyone

except max is bidding truthfully, and max is bidding the
maximum possible bid, v̂′

l−1, to get the l-th slot. Clearly,
S1 ≥ S2 ≥ . . . ≥ Sk. Let 0 ≤ j ≤ k be the largest index
such that Sj > vmax2 . Let uM = max1≤i≤j θi(v

′
max − v̂′

i),
and let t = arg max1≤i≤j θi(v

′
max − v̂′

i); in other words, uM

is the maximum utility that bidder max can get if the out-
come is M and all other bidders are bidding truthfully. Also,
let uS = vmax −max(

∑k

i=1 θiv̂
′
i+1, vmax2) which means uS is

the maximum utility that bidder max can get if the outcome
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is S and all other bidders are bidding truthfully. If j = 0,
vmax2 > S1 so the outcome will always be S irrespective of
max’s bid; so there is no deviation for max that changes the
outcome to M. Therefore, every bidder except max bidding
truthfully and max bidding (∞, 0) is a good equilibrium of
GSP2D with outcome S. So, for the rest of the proof, we
assume j ≥ 1, and hence t exists.

If uM ≥ uS, everyone except max bidding truthfully and
max bidding (St − 2ǫ, v̂′

t−1 − ǫ) is an equilibrium of GSP2D

with outcome M. The outcome is M by definition of St,
and also because St ≥ vmax2 . Consider a bidder a 6= max.
If bidder a decreases her M-bid, the outcome switches to
S leading to utility 0 for her. Furthermore, since a is bid-
ding her true M-value, any overstating value which results
in change of allocation leads to negative utility for a; there-
fore, a has no profitable deviation. We know that bidder
max is already getting the slot which has maximum utility
for her among slots 1, . . . , j, and there is no deviation for
her leading to outcome M with slot lower than j. Therefore,
any deviation which leads to outcome M is not profitable for
max. Also, since uS < uM , we know that max prefers out-
come M to S, and hence, any deviation which switches the
outcome to S can not be profitable. Next, consider the case
where uM < uS. In this case, all bidders except max bidding
truthfully and max bidding (∞, 0) is a good equilibrium of
GSP2D with outcome S. No loser can change the outcome
to M profitably, and max prefers the current outcome to any
M-outcome.

4. NP2D: A NEXT PRICE AUCTION
The current GSP auction, GSPM , is a next price

auction—every winner pays the ”next price”, i.e., the mini-
mum bid necessary in order to maintain her position, which
in GSPM is the bid of the next highest bidder. In our two-
dimensional setting, where there are two types of outcomes
in addition to multiple slots, maintaining one’s position con-
sists of two things for a winner in outcome M: first, the out-
come must remain M and not switch to S; second, the bid
must enable the bidder to maintain her position amongst the
k slots. In a next price auction for our more expressive set-
ting, therefore, the payment of a winner in slot i of outcome
M is the larger of two terms— the first being the minimum
value at which the outcome still remains M, and the second
being the bid of the next bidder, b′i+1, as in GSPM . The
auction is formally defined below.

Definition 4.1 (The NP2D auction). Bidders sub-
mit bids (bi, b

′
i). Assume max = j, i.e., the bidder cor-

responding to bmax has the jth largest M-bid, and let Γ =
∑k

i=1 θib
′
i.

• If bmax ≥ Γ, the outcome is S with payment

max(bmax2 ,

j−1
∑

i=1

θib
′
i +

k
∑

i=j

θib
′
i+1).

• If bmax ≤ Γ, the outcome is M and the bidder winning
slot i 6= max pays

θipi = max(θib
′
i+1, bmax − Γ + θib

′
i)

while the bidder max winning slot j pays

θjpj = max(θjb
′
j+1, bmax2 − Γ + θjb

′
j)

Note that in computing the price for outcome S, the second
term is smaller than Γ.

In the next two subsections, we will analyze the efficiency
and revenue respectively in the equilibria of NP2D. As be-
fore, we will prove guarantees for the revenue and efficiency
of good equilibria, where losers bid at least their true value
(such equilibria always exist, as we show in Proposition 4.1).
Some proofs have been removed for want of space, and can
be found in the full version of the paper [10].

4.1 Efficiency
As before, we consider two cases corresponding to the effi-

cient outcome being S or M. We first start with the following
lemma, which allows us to prove the efficiency result for S.

Lemma 4.1. Assume that bidder max is bidding truth-
fully. If the outcome of NP2D for a given vector of bids
is S, then the winner max cannot benefit from any deviation
that changes the outcome to M.

Proof. Assume max = j, i.e., the bidder max has the
jth largest M-bid for the given M-bids b′i from the remaining
bidders. By assumption that max bids truthfully, b′j = v′

j

and bmax = vmax. We need to show that bidder max = j
prefers outcome S to any position in outcome M. Consider

an M-bid b
′

of bidder j with b′l ≤ b
′
< b′l−1, i.e., targeting

slot l, and assume the deviation changes the outcome to M.

First notice that if b
′

> b′j−1, outcome M gives bidder
j negative utility because her payment would be at least
b′j−1 > b′j in this case. So without loss of generality we may

assume b
′
≤ b′j−1, i.e., l ≥ j. We have to show

vmax − max(bmax2 ,

j−1
∑

i=1

θib
′
i +

k
∑

i=j

θib
′
i+1) ≥

θlv
′
j − max(θlb

′
l+1, bmax2 − Γ + θlb

′
).

We know b′j ≥ b′i for (i ≥ j), therefore,

(θj − θl)b
′
j =

l−1
∑

i=j

(θi − θi+1)b
′
j ≥

l−1
∑

i=j

(θi − θi+1)b
′
i+1

and since b′j = v′
j we can write

θjb
′
j −

l−1
∑

i=j

(θi − θi+1)b
′
i+1 − θlv

′
j ≥ 0.

By adding

j−1
∑

i=1

θib
′
i +

l−1
∑

i=j

θib
′
i+1 + θlv

′
j +

k
∑

i=l+1

θib
′
i

to both sides of the inequality we get

k
∑

i=1

θib
′
i ≥

j−1
∑

i=1

θib
′
i +

l−1
∑

i=j

θib
′
i+1 + θlb

′
j +

k
∑

i=l+1

θib
′
i.

Since the outcome is S, we have vmax ≥
∑k

i=1 θib
′
i, and

therefore, using the inequality above,

vmax ≥

j−1
∑

i=1

θib
′
i +

l−1
∑

i=j

θib
′
i+1 + θlv

′
j +

k
∑

i=l+1

θib
′
i. (1)

We consider two cases, based on whether the dominant
term for the price of max in outcome S is bmax2 or not.
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1. Assume the dominant term is not bmax2 , i.e.,
max(bmax2 ,

∑j−1
i=1 θib

′
i +

∑k

i=j θib
′
i+1) =

∑j−1
i=1 θib

′
i +

∑k

i=j
θib

′
i+1. Then, by inequality (1), and since b′i+1 ≤

b′i for any i, we have

vmax ≥

j−1
∑

i=1

θib
′
i +

l−1
∑

i=j

θib
′
i+1 + θlv

′
j +

k
∑

i=l+1

θib
′
i+1

and, by adding and subtracting θlb
′
l+1 to the right hand

side of the inequality we get

vmax ≥

j−1
∑

i=1

θib
′
i+

l
∑

i=j

θib
′
i+1+θl(v

′
j−b′l+1)+

k
∑

i=l+1

θib
′
i+1.

The final inequality can be written as

vmax − (

j−1
∑

i=1

θib
′
i +

k
∑

i=j

θib
′
i+1) ≥ θl(v

′
j − b′l+1)

which implies

vmax − max(bmax2 ,

j−1
∑

i=1

θib
′
i +

k
∑

i=j

θib
′
i+1) ≥

θlv
′
j − max(θlb

′
l+1, bmax2 − Γ + θlb

′
).

2. Assume max(bmax2 ,
∑j−1

i=1 θib
′
i +
∑k

i=j θib
′
i+1) = bmax2 .

Since after deviation,

Γ =

j−1
∑

i=1

θib
′
i +

l−1
∑

i=j

θib
′
i+1 + θlb

′
+

k
∑

i=l+1

θib
′
i,

we can rewrite inequality (1) as vmax ≥ θlv
′
j +Γ− θlb

′
.

Now, by just subtracting bmax2 from both sides we get

vmax − bmax2 ≥ θlv
′
j − bmax2 + Γ − θlb

′

which implies

vmax − max(bmax2 ,

j−1
∑

i=1

θib
′
i +

k
∑

i=j

θib
′
i+1) ≥

θlv
′
j − max(θlb

′
l+1, bmax2 − Γ + θlb

′
).

This allows for an easy proof of the following result:

Theorem 4.1. Suppose the underlying valuations are
such that the efficient outcome is S, i.e., vmax >

∑k

i=1 θiv
′
[i].

There exists an equilibrium with outcome S where losers bid
at least their true values. Further, there is no inefficient
equilibrium where all bidders play undominated strategies.

Unlike in GSP2D, inefficient equilibria with outcome M
(with arbitrarily large inefficiency) can occur in NP2D when
the efficient outcome is S. However, all such equilibria are
’bullying’ equilibria (such equilibria occur in GSPM as well)
where some bidder bids above her true value, which (Lemma
7.1 in the full version of the paper) is a weakly dominated
strategy in NP2D.

Next, suppose the efficient outcome is M. Here, similar
to GSP2D, inefficiency can occur in NP2D as well; however,
the extent of inefficiency is less than that in GSP2D , as the
following multiplicative and additive bounds show.

Theorem 4.2. Suppose the efficient outcome is M. Then
the efficiency in any good equilibrium of NP2D with outcome
S is at least 1/2 of the optimal efficiency.

Corollary 4.1. Suppose the efficient outcome is M.
Then the welfare in any good equilibrium of NP2D with out-
come S is at least OPT −

∑k

i=j
θi(v

′
[i] − v′

[i+1]), where OPT
is the optimal welfare and j is the rank of M-value of bidder
max, i.e. max = [j].

Note that if the marketplace is competitive, i.e., the v′
i’s are

not very different, the additive bound shows that the loss
in welfare will be small even when the inefficient outcome
occurs.

Finally, suppose the efficient outcome is M and the equi-
librium outcome is M as well. A result similar to that [8,
20] stating that all envy free equilibria are efficient holds
for NP2D as well. However, before we state the result, we
need to extend the notion of envy free equilibria to NP2D;
we will then prove, via Lemma 4.2, that the set of envy-free
equilibria are all efficient.

The notion of envy free equilibria in [8] can be thought of
as restricting the set of bid vectors that are Nash equilibria
to those that also generate envy free prices [13], i.e., a price
for each slot such that no bidder envies the allocation of an-
other bidder at this price. We use exactly this idea to define
envy free equilibria for outcome M in the NP2D auction: A
vector of bids leading to outcome M in NP2D is an envy free
equilibrium if for any i and j (1 ≤ i, j ≤ n)

θi(v
′
i − pi) ≥ θj(v

′
i − pj)

where pi and pj are the prices bidders i and j are currently
paying for slots i and j respectively. (Recall that θi = 0 for
i > k.)

Lemma 4.2. If v′
a > v′

b for bidders a and b, and θp > θq

for slots p and q, then any allocation A that assigns bidder
a to slot q and bidder b to slot p is not envy-free.

Proof. Assume for sake of contradiction that A is envy-
free and suppose that the prices for slots p and q are pp

and pq respectively. For A being envy-free we must have
θp(v

′
a − pp) ≤ θq(v

′
a − pq) and θp(v

′
b − pp) ≥ θq(v

′
b − pq).

Subtracting the second inequality from the first one we get
θp(v

′
a−v′

b) ≤ θq(v
′
a−v′

b), but this last inequality contradicts
v′

a > v′
b and θq < θp.

The theorem below follows immediately from this lemma,
since it implies that in any envy-free allocation (not neces-
sarily even an equilibrium) of NP2D with outcome M, the
bidders must be allocated to the slots in decreasing order of
their M-values.

Theorem 4.3. Suppose the efficient outcome is M. Then
any envy free equilibrium of NP2D with outcome M is effi-
cient.

4.2 Revenue
When the equilibrium outcome in NP2D is S, the revenue

is high, in the following sense:

Theorem 4.4. Any good equilibrium of NP2D with out-
come S has at least the same revenue as V CG2D .

Note that here NP2D does better than GSP2D: the rev-
enue of GSP2D can be as small as half the V CG2D revenue
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when the equilibrium outcome is S and the efficient out-
come is either S or M (Theorems 3.2 and 3.4). However,
while NP2D leads to better revenue guarantees when the
outcome is S, the same is not true for M: unlike GSP2D ,
where every envy free equilibrium with outcome M revenue-
dominates V CG2D, the revenue in an envy free equilibrium
of NP2D can be arbitrarily smaller than that of V CG2D, as
the following example shows.

Example 4.1. Suppose that there are two slots with θ1 =
1 and θ2 = 1 − ǫ/3. There are two bidders with values
(v1, v

′
1) = (3, 3) and (v2, v

′
2) = (4, 2). The efficient outcome

is M. If the bidders bid (b1, b
′
1) = (3, 3) and (b2, b

′
2) = (2ǫ, ǫ),

the outcome is M; it is an envy-free equilibrium; and the rev-
enue is ǫ. However, revenue of V CG2D on this example is
2.

That is, we cannot obtain a result similar to the previous
revenue results bounding the revenue loss with respect to
V CG2D by a multiplicative constant.

However, as the next three theorems will show, the situ-
ation is not quite as bleak as the previous example might
suggest: first, Theorem 4.5 shows that the revenue of NP2D

in any envy-free equilibrium with outcome M is at least the
V CGM revenue. Second, and more importantly, Proposi-
tion 4.1 shows that there always exists an equilibrium of
NP2D with this revenue— note that this is not the case
with GSP2D, where there exist values such that every equi-
librium of GSP2D has revenue strictly less than the revenue
of V CGM (Example 3.1). The revenue comparison with
V CGM is important for the following reason— the V CGM

revenue can be thought of as a proxy for the GSPM rev-
enue, since there always exists an equilibrium of GSPM with
this revenue [8], and further, this is a “likely” equilibrium in
the sense that if bidders update their bids according to rea-
sonable greedy bidding strategies, the bids converge to this
equilibrium of GSPM [6]. Therefore, unlike GSP2D, there al-
ways exists an equilibrium of NP2D with revenue at least as
much as in GSPM , i.e., the transition to the richer outcome
space does not lead to revenue loss.

Finally, Theorem 4.6 shows that the NP2D auction also
retains all the high revenue equilibria with outcome M of
GSP2D : the reason for the nonexistence of a multiplicative
bound with respect to V CG2D is simply that NP2D has a
larger set of equilibria, some of which have poor revenue;
however, no high revenue M-equilibria of GSP2D are lost in
using the NP2D auction.

Theorem 4.5. Every envy-free outcome (not necessarily
an equilibrium) of NP2D with outcome M has revenue at
least as much as V CGM .

We point out that the proof of this result is independent
of how payments pi are calculated. In fact, any allocation
and pricing (even not restricted to our two-dimensional set-
ting) which is envy-free and efficient satisfies the conditions
needed for the above proof, and hence has revenue at least
as much as V CGM .

Proposition 4.1. There always exists a good equilibrium
of NP2D with revenue greater than or equal to that of
V CGM .

The revenue of the equilibria constructed in Proposi-
tion 4.1 are at least

∑k

i=1 θiv
′
[i+1]. Therefore, assum-

ing bidders do not play weakly dominated strategies in

GSPM (specifically, bidders do not overstate their values),
no equilibrium of GSPM can have revenue higher than the
equilibrium of NP2D constructed in Proposition 4.1.

Finally, we show that NP2D retains all the high revenue
M-equilibria of GSP2D .

Theorem 4.6. Every equilibrium of GSP2D with out-
come M is an equilibrium with outcome M of NP2D with
equal revenue.

That is, while there is no multiplicative bound on the rev-
enue of an envy-free equilibrium of NP2D with outcome M,
all the high revenue M-equilibria of GSP2D, which dominate
the V CG2D revenue, are also equilibria of NP2D.

4.2.1 Revenue Non-monotonicity
We point out an interesting property of the NP2D auc-

tion: when bids go up, the revenue can actually decrease.
The following example illustrates this non-monotonicity in
revenue as a function of the bids:

Example 4.2. Suppose there are two slots with θ1 = θ2 =
1 and three bidders with bids (10, 0), (9, 9) and (2, 2). The
outcome is M, and the prices for bidders 2 and 3 are 8 and 1
respectively, so the revenue is 9. However, if the third bidder
increases her bid to (3, 3), the outcome remains M, but the
payments change to 7 and 1 for bidder 2 and 3 respectively.
Therefore, the revenue decreases to 8.

When the bids are such that bmax =
∑

θib
′
i, the total rev-

enue is exactly
∑

θib
′
i irrespective of which outcome is cho-

sen. If the tie is broken in favor of outcome M, every bidder
must pay exactly his bid, since for any bid below this the
outcome will switch to S. Now suppose all bidders bid b′i + ǫ
(and don’t change their S- bids). The outcome remains M,
but every bidders payment decreases, since the minimum
amount needed to maintain outcome M given the other bids
has decreased. So the revenue decreases even though the
bids increase.

Note that this revenue non-monotonicity occurs in the
VCG auction as well, for the same reason. However, GSP2D

does not have this property in the sense that when the bids
increase the total revenue cannot decrease. Revenue mono-
tonicity is often considered a desirable property in practice,
and could influence the choice between which of the two
auctions, GSP2D or NP2D is actually used in practice.

5. DISCUSSION
In this paper, we designed two expressive GSP-like auc-

tions for exclusivity-based valuations, and showed that they
have good revenue and efficiency properties in equilib-
ria. While the NP2D auction has, roughly speaking, bet-
ter worst-case efficiency properties, and does better than
GSP2D in several cases in terms of revenue, it does have
envy-free equilibria with poor revenues, and shares VCG’s
revenue non-monotonicity problem. Choosing between the
two auctions will require an empirical assessment of the mar-
ketplace parameters as well as an understanding of bidder
valuations and behavior, to predict which equilibria are ac-
tually likely to arise in practice. (Note, as an aside, that
there is no way to infer S-values from the current GSPM

auction, since multiple ads are always shown.)
There are many directions for further work. The first ob-

vious direction is to combine the more expressive bidding
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language with more complex cascade-like models for CTRs,
and analyze a model that incorporates both attention and
conversion based externalities. Second, the bidding language
we use can be thought of as a way to succinctly represent
a general decreasing k-dimensional vector valuation, where
an advertiser specifies the first entry in the vector (vi), and
uses v′

i as a proxy for all the remaining k− 1 entries. An al-
ternative language (also discussed in [16]) which also solicits
only two bids from an advertiser, is one where an advertiser
specifies that he has value vi provided no more than ni ad-
vertisers are shown in all (and zero if any more are shown).
Which of these is a better representation of actual adver-
tiser valuations, and which is it possible to design better
mechanisms for? In general, the question of designing suc-
cinct mechanisms that achieve high efficiency in the presence
of underlying high-dimensional valuations is an interesting
open question.

While the auctions we design have pleasant properties
with respect to revenue and efficiency in their equilibria,
the comparison of these GSP-like auctions to VCG does
not remain quite as starkly positive as in the original one-
dimensional setting. Specifically, unlike [8, 20], where all
envy-free equilibria of GSPM are efficient and have at least
the revenue of V CGM , both the NP2D and GSP2D auctions
suffer from losses in efficiency and revenue with respect to
V CG2D: neither auction need always have an efficient equi-
librium, or one that guarantees at least as much revenue as
V CG2D. In fact, other research [1, 4] suggests as well that
the GSPM auction does not always have desirable properties
under more complex valuation models or more sophisticated
models of bidder behavior. Our results suggest that while
GSP turns out to have excellent properties for the simplest
model of advertiser valuations, this is very possibly no more
than a fortunate coincidence that does not extend to more
complex valuations. Thus, rather than continuing to build
on the GSP auction, it might be necessary to approach the
design of more expressive auctions for advertising on the
Internet from a clean slate.
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