
Highlighting Disputed Claims on the Web

Rob Ennals
Intel Labs Berkeley
2150 Shattuck Ave
Berkeley, CA, USA

robert.ennals@intel.com

Beth Trushkowsky
Computer Science Division
University of California at

Berkeley
Berkeley, CA, USA

trush@cs.berkeley.edu

John Mark Agosta
Intel Labs Santa Clara

2200 Mission College Blvd
Santa Clara, CA, USA

john.m.agosta@intel.com

ABSTRACT
We describe Dispute Finder, a browser extension that alerts a user
when information they read online is disputed by a source that they
might trust. Dispute Finder examines the text on the page that the
user is browsing and highlights any phrases that resemble known
disputed claims. If a user clicks on a highlighted phrase then Dis-
pute Finder shows them a list of articles that support other points
of view.

Dispute Finder builds a database of known disputed claims by
crawling web sites that already maintain lists of disputed claims,
and by allowing users to enter claims that they believe are disputed.
Dispute Finder identifies snippets that make known disputed claims
by running a simple textual entailment algorithm inside the browser
extension, referring to a cached local copy of the claim database.

In this paper, we explain the design of Dispute Finder, and the
trade-offs between the various design decisions that we explored.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; H.4.2 [Information
Systems]: Decision Support; H.5.2 [User Interfaces]: Graphical
User Interfaces

General Terms
Design, Human Factors

Keywords
Sensemaking, Annotation, Argumentation, Web, CSCW

1. INTRODUCTION
The web contains a huge amount of information, but some of

this information is factually incorrect and some sites present only
one side of a contentious issue [19]. If a user is to gain a broad
understanding of a topic then they will need to either spend time
searching for alternative points of view, or restrict themselves to
sources that they believe they can trust to provide accurate and bal-
anced information. Even when a user spends time investigating ev-
ery claim that they think might be disputed, they can still be misled
by information that they had not realized was disputed.

In recent years, we have seen the emergence of a new class of
tools that help users recognize and make sense of disputed infor-
mation on the web. In this paper, we describe Dispute Finder, a

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Figure 1: Dispute Finder highlights text snippets that make dis-
puted claims.

Figure 2: Click on a highlighted snippet to see a popup inter-
face with articles arguing for and against the claim.

tool that alerts a user when a web page they are reading appears to
be making a claim that is disputed by a source that they might trust.

A user can install Dispute Finder as an extension to the Firefox1

web browser. When installed Dispute Finder will highlight snippets
of text that make disputed claims (Figure 1). If a user clicks on
a highlighted snippet, Dispute Finder will show articles that put
forward alternative points of view, each of which is from a source
we believe the user might trust (Figure 2).

Dispute Finder consists of a server-side database and a Firefox
browser extension. The database contains a set of known disputed
claims that frequently appear on the web. A disputed claim is a
statement about the world that some people disagree with. For ex-
ample “global warming is a hoax”, “gun control will reduce crime”,
“Eskimos have many words for snow”, or “margarine is healthier

1http://www.mozilla.org/firefox

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

341



than butter”. A claim can be stated in many ways. For example
“margarine is healthier than butter” and “butter is worse for you
than margarine” are paraphrases of the same claim. For each claim,
the database contains links to articles on the web that support or op-
pose it, and hints about how to recognize that disputed claim on the
web (Figure 3).

The browser extension maintains its own local copy of the database,
and scans the text on the current page for text snippets that appear
to entail a claim. A snippet is a continuous region of text on a web
page. A snippet is considered to entail a claim if a typical user
reading that snippet would reasonably conclude that the author of
the page believed the claim was true. For example “the English
have as many words for rain as the Eskimos have for snow” entails
“Eskimos have many words for snow”, even though this claim is
never stated explicitly.

In this paper, we describe the design of Dispute Finder, the con-
stituent problems that must be solved to make a tool like Dispute
Finder work well, the trade-offs we encountered between different
design choices, and our experiences testing Dispute Finder with
users.

1.1 Personas
If users are going to adopt Dispute Finder, it is important that it

solves a real need. We used interviews to construct two personas
which model the two ways that we expect a user to use Dispute
Finder.

Skeptical Readers want to know when something they read is
disputed by a source that they might trust. They are skeptical about
the accuracy of the information that they read and often check mul-
tiple sources to get different opinions on a topic. A user will typi-
cally behave like a skeptical reader for some topics and not others.
For example a user may be skeptical when reading about topics
that affect them (e.g. health, things important to their job, or things
they are expected to be knowledgeable about), but disengaged when
reading about topics that do not affect them (e.g. entertainment).

Activists care strongly about particular issues and are prepared
to spend some time informing others that something that they dis-
agree with is disputed. They are the same kinds of people who join
protest groups, write blogs, email news stories, or argue about top-
ics online. They are motivated by a desire to influence others and to
gain status by being seen to do so. A user is likely to be an activist
on some issues, but not on others. An activist will often also be a
skeptical reader.

Many users fall into neither of these two personas. If a user does
not regularly read information online that they feel they need to
need to understand well, or restricts their reading to sources that
they believe they can trust, then they are unlikely to be interested
in a tool like Dispute Finder.

2. BACKGROUND AND RELATED WORK
There is ample evidence that at least some people are skeptical

about the information they read and would like to know about alter-
native points of view that are supported by sources that they trust.
This has lead to a growing set of tools that aim to help users deal
with disputed and biased information.

According to Pew Research [33], a substantial proportion of peo-
ple regularly get information from sources that they do not fully
trust. Their 2008 survey found that 33% of Democrats regularly
watch Fox News, and yet only 19% believe all or most of what Fox
News says. Similarly, 51% of Democrats regularly watch CNN,
and yet only 35% believe all or most of what CNN says. While
these figures are for TV News, rather than the web, Pew report that
48% of web users people regularly follow search links to unfamil-

Figure 3: Snippets entail claims. Claims are entailed or contra-
dicted by articles.

iar sources, and that users view online sources such as blogs with
more skepticism that their print, broadcast, and cable counterparts.

These findings were backed up by our interviews (Section 4).
Several participants told us that they regularly get information from
sources that they do not entirely trust. A user might read informa-
tion from an untrusted source because the source is interesting, en-
tertaining, linked to from somewhere else, or it came up in a search.
For example they might read Michael Moore because he is enter-
taining, while having low opinions of his credibility, or they might
read articles mailed to them by friends.

There is also evidence that a significant group of people are in-
terested in checking information they read on the web. Several
popular web sites are designed primarily to help users check in-
formation they read elsewhere. For example Snopes.com contains
information about urban myths such as “eskimos have many words
for snow” and Factcheck.org and Politifact.com investigate claims
made by American political figures. According to Quantcast.com,
Snopes has around five million unique visitors per month.

To check these assumptions, we circulated a survey among mem-
bers of a local debate club, who we anticipated would be a good
match for our Skeptical Reader and Activist personals. Of the
23 people who responded, 91% said that they sometimes or of-
ten check information they read on a trusted site (64% often, 27%
sometimes) and 91% said that they sometimes or often check in-
formation by searching for other web pages about the same topic
(74% often, 17% sometimes).

Fact checking web sites and search engines work well when you
know something is disputed, but are of little use if you did not re-
alize that what you were reading was disputed. The primary aim of
Dispute Finder is to let you know when something you are reading
is disputed.

Many other tools highlight disputed information on web pages.
ReframeIt.com, ShiftSpace.org and SpinSpotter.com allow a user
to manually annotate a web site that they disagree with, overlay-
ing their own opinions on top of existing content. Videolyzer [9]
allows users to comment on disputed claims in video clips. There
are many other web annotation tools, including Google SideWiki,
Annotea [23] and ScreenCrayons [31], each of which presents a
different combination of features, and most of which could be used
to annotate disputed content.

There are two key differences between Dispute Finder and these
annotation tools: First, rather than allowing a user to express their
own opinions about a topic, Dispute Finder instead requires a user
who wants to promote a particular opinion to do so by linking to an
article from a trusted source that argues for that opinion. Our in-
terviews (Section 4) lead us to believe that most users would rather
know that a trusted source disagrees with what is being written than
that an unknown user disagrees.

The second key difference between prior annotation tools and
Dispute Finder is that prior annotation tools allow a user to an-
notate text on a particular page while Dispute Finder attempts to

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

342



allow a user to annotate a general claim, everywhere it appears
on the web, however it is worded. If a user of an annotation tool
adds an annotation to a page then their annotation will only appear
on that page. If a user of Dispute Finder tells Dispute Finder to
highlight a disputed claim, that claim will be highlighted on every
web page on which Dispute Finder’s algorithms determine that the
claim appears. The closest annotation system to Dispute Finder in
this respect is perhaps SparTag.us [20], which uses an SHA hash
to attach an annotation to an exact paragraph, irrespective of where
it appears on the web; however a claim may be written in many
different ways, and be part of many different paragraphs.

Several Sensemaking, Decision Support, and Argumentation tools
allow a user to annotate a document with structured information
that they may then share with other users. TRELLIS [13] helps a
user annotate the rationale for their decisions and opinions by an-
notating source documents with the facts that they extracted from
them, and connecting these facts into a decision graph. ClaimSpot-
ter [37, 36] applies a similar approach to scholarly papers, allow-
ing a user to make up a paper with logical subject-verb-object
triples describing important claims made in the document. Entity
Workspace [4] uses entity extraction algorithms to allow an intel-
ligence analyst to easily mark up a source document with facts ex-
tracted from it. Cohere [38] is a web based argumentation tool that
allows people to connect ideas together using arbitrary verbs such
as “is an example of”, “supports”, or “challenges”. An idea can
contain a link to a web page that contains that idea, and the Cohere
Firefox Extension informs a user when the page that they are is the
source for a known idea.

These tools allow a user to mark up the facts made by a single
document, but do not provide facilities for a user to mark up large
numbers of documents as being the same claim, or to automati-
cally inform a user when other sources disagree with what they are
reading.

There are also several tools that find pages written about the same
topic with different slants, rather than looking at the specific claims
a page makes. News Cube [32] automatically finds articles that
present different aspects of the same news story. The intention is
that by reading several such aspects, the user will encounter several
different ways of looking at the issue at hand, and will gained a
broader perspective of the issue. Services such as Skewz.com and
Newstrust.net allow users to rate news articles for bias. Skewz rates
stories as being either liberal or conservative and encourages read-
ers to read what the other side is thinking. Newstrust allows users
to rate news articles for quality and objectivity.

On Wikipedia, WikiTrust [1] highlights passages on Wikipedia
that are statistically likely to be reverted, based on how recently
they were written and the track-record of the author, Wiki Dash-
board [25] creates a visualization of the edit history of a Wikipedia
article that lets a user see how contentious it is, and WikiScan-
ner.virgil.gr finds cases where a Wikipedia edit has been made by
someone with a conflict of interest. These tools have a similar aim
to Dispute Finder, but are limited to Wikipedia.

More generally, Dispute Finder is an example of an Open Hy-
permedia system [6, 41]. Like other Open Hypermedia systems,
Dispute Finder lays an additional link structure over an existing
hypertext document. In the case of Dispute Finder, the links are
from disputed claims to information about those claims.

Dispute Finder also has some similarity to tagging tools [30, 16].
Tagging tools allow users to collectively categorize information by
associating it with a user-created set of tags. In the case of Dis-
pute Finder, the tags are disputed claims, and the tagged entities
are sentences that make those claims.

3. DESIGN
Creating a tool to manage disputed information requires design-

ers to address a number of challenges, including:

Developing a corpus of disputed claims: To be useful, the set of
known disputed claims needs to be both large and credible.
If the database’s coverage is too small then users will rarely
see snippets highlighted. If the database is not credible then
users will often see snippets highlighted for which there is
no credible evidence for other points of view.

Detecting these disputed claims on the web: Given a particular
web page, how do we determine which phrases on that page
are making known disputed claims and should be highlighted?
There is a trade-off between precision and recall. We do
not want to highlight a snippet that is not making a disputed
claim, but we do want to maximize the likelihood that we
highlight a snippet that is making a disputed claim.

Highlighting disputed claims for users: If we are to alert a user
when they read disputed information, we need to be able to
tell what text they are reading, and we need a way to inform
them that this information is disputed. Ideally, this method
should apply to as much of the information the user reads as
possible, and be easy for a user to adopt. We also want to
avoid distracting the user unnecessarily, while also making
sure that they notice disputed claims that they would care
about.

Providing tools that help users interpret disputed claims: Once
a user has learned that a claim is disputed, it is likely that
they will want to see information that will help them decide
whether they should believe the claim and what other sources
they should read. We want to help a user understand both
who holds other points of view and why other people hold
different points of view.

Determining Trustworthy Sources: What sources should we con-
sider “trustworthy” in the sense that their opinions are worth
presenting to the user, and things that they disagree with
should be highlighted as disputed. There is a trade-off be-
tween showing a user sources that they will trust, and show-
ing them sources that will expose them to a new point of
view.

These challenges are not unique to Dispute Finder; indeed they
apply to any tool that informs a user about disputed information
and helps users interpret this disputed information.

In the rest of this section, we discuss the various alternative so-
lutions that we explored for each of these problems, and our expe-
riences with the approaches that we implemented and tested.

3.1 Developing a Corpus
Dispute Finder maintains a shared server-side database of known

disputed claims. The browser extension highlights a text snippet if
it believes that the snippet entails one of the claims in this database
(Figure 3). Claims can either be added directly by users (Figure 4)
or mined from web sites such as Snopes and Politifact that already
maintain well curated databases of disputed claims,

This database should not contain contain everything that has ever
been disputed by anyone. In some sense almost everything is dis-
puted by someone on the web. There are enough people writing
enough opinions that if we alerted users every time anything they
read was disputed by anyone then Dispute Finder would be so dis-
tracting as to be worthless. Similarly, there is little point spending

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

343



Figure 4: Interface to add a new disputed claim manually.

effort rebutting claims that nobody believes. For example there
is reliable evidence opposing the claim that the moon is made of
cheese, but few people believe this claim is true. What we want
is a set of claims that are widely believed and for which there is
credible evidence supporting other points of view.

Currently most of our claims are automatically mined from Snopes
and Politifact. Both of these sites maintain well curated databases
of disputed claims, together with information about them. Snopes
has good coverage of urban myths, and Politifact has good cover-
age of claims made by American politicians. In the future we plan
to crawl other sites that cover other kinds of disputed claims (e.g.
medical claims) and to provide an API to allow any site to provide
a well-structured feed that we can use. At the time of writing, Dis-
pute Finder has imported 1,457 claims from Snopes and 595 claims
from Politifact.

One weakness of the automatic import approach is that the claims
on these sites are often phrased differently to the way they com-
monly appear on the web. For example many of the claims on
Politifact are exact quotes such as “One-third of the health care
dollar goes to no such thing as health care; it goes to the insurance
companies”.

Dispute Finder also provides users means to add their own dis-
puted claims using the Dispute Finder web interface (Figure 4).
The web interface is modeled after common issue-reporting soft-
ware such as Uservoice.com and Bugzilla.org. It first encourages
the user to search the existing database to see if their claim already
exists, and then allows them to create a new claim. When the claim
is first added it is marked with a warning, informing the user that the
claim will not be highlighted for other users until they have added
at least one opposing article. At the time of writing, users have
added 557 claims, and 140 users have added at least one claim.

To reduce abuse, we allow a user to flag junk claims, false para-
phrases, or linked articles that are not actually arguing against the
disputed claim. A user should not flag a claim because they be-
lieve it is not disputed, since the level of dispute is a function of the
articles that disagree. Flagging is currently moderated manually.

An alternative approach would be to use Contradiction Detec-
tion [34] to find frequently repeated statements that appear to con-
tradict statements from trusted sources. Unfortunately at the time of
writing, Contradiction Detection does not seem to be robust enough
for us to use it for this purpose.

In future work, we hope to automatically find disputed claims on
the web by looking for phrases like “falsely claimed that X” — a
similar techniques to that used by Hearst to find hyponyms [18],
and then use context to help determine which phrases are likely to
be making the same claim.

Figure 5: Explicit page marking: select the snippet and click
“this is disputed” on the context menu.

Figure 6: Bulk page marking and server-side classification:
classifier guesses are shown below the choice buttons.

3.2 Detecting Known Disputed Claims
Dispute Finder highlights a snippet if it thinks it entails the truth

of a known disputed claim. This is complicated by the fact that a
claim can be phrased in many different ways, and a snippet does
not need to explicitly state a claim in order to entail its truth. For
example “I prefer margarine to butter because it is healthier” entails
“margarine is healthier than butter”. Our implementation maintains
a local copy of our claim database inside the browser extension and
runs a simple textual entailment algorithm inside the browser to
look for sentences that appear to entail known disputed claims.

There is a trade-off between precision and recall. We want to
maximize the likelihood that Dispute Finder will highlight a snippet
if it is making a known disputed claim, while minimizing the likeli-
hood that it will highlight a snippet that is not making a known dis-
puted claim. We implemented and tested four different approaches
that represent different points along this trade-off:

Explicit page marking: The user explicitly marks a snippet on a
page by selecting the snippet, and selecting “mark as dis-
puted” from a context menu (Figure 5).

Bulk page marking: The user uses a search interface to rapidly
gather many snippets that contain similar phrases, and then
selects those that they would like to mark (Figure 6). The
server uses Yahoo BOSS2 to search the web for snippets that
resemble a paraphrase entered by the user.

Server-side classification: The server uses the examples from the
bulk page marking interface to train a classifier. We used
a simple Bayesian classifier with n-grams as features. The
classifier looks at the positive and negative examples given

2http://developer.yahoo.com/search/boss

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

344



Figure 7: Client-side entailment: matching happens on the
client, using a database downloaded from the server.

Figure 8: Users can enter paraphrases of a claim to help the
entailment algorithm.

by the user and learns n-grams that should or should not be
present in a snippet in order for it to make the claim. Once the
classifier has been trained, the server uses it to refine which
other results from Yahoo BOSS should be marked (Figure 6).

Client-side entailment: The browser extension runs a simple tex-
tual entailment algorithm over all sentences on every web
page the user browses, checking to see if any sentence on the
page entails any claim in the database (Figure 7). A user can
enter additional paraphrases of a claim to help the entailment
algorithm (Figure 8). This is the implementation used by the
released version of Dispute Finder.

Explicit page marking has the highest precision, but the poorest
coverage. Since a user is looking at the page in its entirety, they
can read the snippet in context and make a good judgment about
whether the snippet is indeed making the claim. However the man-
ual effort required per page makes it difficult for this approach to
scale. We also found that it can also be hard to motivate a user
to mark snippets if they think that it is unlikely that another user
with the Dispute Finder extension will read exactly this page. This
problem has hindered the adoption of many web annotation tools.

Bulk page marking trades off some precision for better coverage.
When a user searches for a phrase, they can quickly find hundreds
of snippets and mark them by clicking on them, but since they are
reading the snippet out of context they are more likely to mark a
phrase incorrectly.

Server side classification trades off more precision for more cov-
erage. The classifier can mark more pages than a user could ever
mark manually, and can keep marking new pages as they appear,
but it is inevitably less accurate than a human.

Client side entailment gets the most coverage, but the worst pre-
cision. Since the classification algorithm is run inside the client,

the client can highlight snippets on pages that the server has not
examined. This is particularly important for news pages, which are
frequently read only a few minutes after they are posted. Moreover,
the client-side approach can highlight snippets on web pages that
would not be accessible to the server, such as web-based email, and
intranet sites. The flip side is that the classification algorithm needs
to be simple enough to run on the client without noticeably slowing
down the web browser, and the algorithm is limited to only being
able to use whatever data can be downloaded to the client.

A further advantage of the client-side approach is that it avoids
the need for the client to give the server any information about what
pages the user is browsing. The list of all URLs and snippets that
make disputed claims is too large and updates too frequently for it
to be practical for the client to store it locally, so any URL-based ap-
proach requires that the client asks the server for information about
each URL the user browses, reducing user privacy. By contrast, the
list of paraphrases is small enough and changes slowly enough that
the client can maintain its own local copy of the database, remov-
ing the need for the client to tell the server what pages the user is
browsing.

Our currently deployed database of 2,609 disputed claims takes
up around 500 kilobytes and an experimental automatically-generated
database of 1.1 million disputed claims takes up 50 megabytes
compressed. In our current implementation, the client synchronizes
with the server by periodically downloading a complete database,
but in future versions we intend that the client should only down-
load those claims that have changed since the last update. As our
database grows bigger, it will of course become more challenging
to maintain a local copy in the browser extension.

3.2.1 Textual Entailment
Detecting entailment between texts is a semantic analysis prob-

lem. Our client side entailment method uses a simple Local Lexical
Matching (LLM) algorithm [22], similar to those that are often used
as a baseline to which other algorithms are often compared [8]. Our
implementation divides the page into sentences, strips out stop-
words, applies a regular expression stemmer, and then looks for
sentences that contain all the non stop-words contained in one of
the paraphrases of a known claim. If the claim contains a negation
word (e.g. not, never, can’t) then so must the matching sentence.

To improve performance, rather than running the LLM algorithm
for every pair of sentences and paraphrases, we compare each sen-
tence with every paraphrase simultaneously by searching for words
in order of their rareness. For each paraphrase, we sort the words
in order of their rareness in Wikipedia, and then assemble a set that
contains the rarest word in every known paraphrase. If a sentence
contains one of these rare words, we create a (memoized) set that
contains the second-rarest word that appears in each of the para-
phrases that contained the first word and then check whether the
sentence contains any of these words. We repeat this process until
we find a claim paraphrase such that all the non stop-words in the
paraphrase are contained in the sentence.

The combination of a simple algorithm and a optimized im-
plementation allows us to check for textual entailment between
every sentence on every page a user browses and every claim
paraphrase in our database with only moderate slowdown. On a
2.33GHz Core2 processor, Dispute Finder is able to check for dis-
puted claims on the New York Times front page in 50 milliseconds,
and is able to check the Wikipedia page on Global Warming in 127
milliseconds. Moreover, to further hide this latency from users,
Dispute Finder checks for disputed claims asynchronously in the
background rather than forcing the user to wait. Note however that
these figures are for a database with only 2,609 disputed claims. It

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

345



Figure 9: Dispute Finder highlights text snippets that make dis-
puted claims, and displays a notification bar to inform the user
that they should look out for highlighted snippets.

remains to be seen how our algorithm will scale to a database with
millions of disputed claims.

LLM is far from being state of the art and many more sophisti-
cated textual entailment algorithms exist. Modern approaches in-
clude treating the sentence as a logical formula and attempting a
logical proof [2, 5], parsing each phrase into a syntax tree and us-
ing syntax heuristics [39], inferring inference rules that can trans-
form one sentence into another while preserving meaning [28, 10,
3], and using Bayesian inference to infer whether one phrase looks
like the kind of phrase that would have included each word in the
other phrase [15]. Tools such as AuContraire [34] focus specifically
on detecting contradictions. Several tools rely on an underlying in-
formation extraction tool such as TextRunner [11].

While Dispute Finder would likely improve its precision and re-
call if it used a more sophisticated algorithm, LLM has the advan-
tage of being simple enough to run efficiently inside a user’s web
browser for every page they look at without causing a noticeable
slowdown. We do however believe that there is scope to use more
sophisticated algorithms, particularly as processor speeds improve.

Other authors have used similar algorithms to find repeated in-
formation on the web. Kolak and Schilit [26] look for passages
places where one book quotes another, qSign [24] looks for places
where one blog has quoted another, and duplicate-detection is of-
ten used to clean up web searches [40]. MemeTracker [27] looks
for phrases shared by multiple news stories, accounting for minor
variations, and uses this to track the way that news flows between
traditional news sources and blogs.

The authors of MemeTracker observed that many ideas often
flow around the web in the form of “memes” that are repeated on
many web sites with relatively little variation. To the extent that
this is true, it simplifies identifying snippets that repeat the idea.
MemeTracker uses this to track the way an idea propagates across
the web using a relatively simple algorithm. We have found that
the precision and recall of our client-side textual entailment algo-
rithm varies hugely depending on how meme-like a claim is. Some
claims (particularly those derived from quotes) are widely repeated
almost-verbatim, and can be detected relatively easily. However
many other claims are rarely stated explicitly in a single sentence
or with the same choice of words, making them much harder to
detect with a simple algorithm.

3.3 Highlighting Disputed Claims
The Dispute Finder Firefox extension uses two mechanisms to

inform a user when information on the page they are reading is
disputed. It highlights any disputed snippets in red, and it displays
a notification bar (Figure 9).

The notification bar alerts the user that they should look out for
highlighted snippets. Highlights can be difficult to see if the page
is using a background that is similar to our highlight color3 partic-
ularly if the user is color blind. The notification bar also allows a
user to step through the highlighted snippets on the page.

The highlights show a user which snippets Dispute Finder be-
lieves are making disputed claims. A user can see whether the high-
lights are in the text that they are reading and ignore disputed snip-
pets in text that they are not interested in - such as user comments.
The highlights also allow a user to see when Dispute Finder has
incorrectly inferred that a phrase as making a disputed claims that
it is not making. In such cases, the user is encouraged to help Dis-
pute Finder improve its marking by clicking on the disputed claim
and clicking on the “report incorrect highlighting” button from the
popup interface.

Once a user is aware that a claim is disputed, there is little point
telling them about the same disputed claim again in the future. We
have not yet concluded whether it is better for Dispute Finder to
automatically stop highlighting a claim once a user has viewed the
claim, or whether it is better for a user to explicitly ask Dispute
Finder to stop highlighting a claim. In our current implementation,
a user can tell Dispute Finder to not highlight a claim again by
setting the “don’t highlight this claim for me again” checkbox in
the popup interface (Figure 2). Requiring a user to manually opt
out of a claim requires more work from the user, but hiding already
viewed claims can be confusing, since users do not normally expect
viewing something to be a destructive operation. A compromise
position is to highlight claims that have been seen before in a fainter
color; similar to the way links are typically colored on web pages.

Dispute Finder also provides an API that allows other sites to
determine whether their content makes disputed claims. For ex-
ample, a search engine could inform a user if its results contained
disputed claims, or an RSS feed reader could tell a user if a news
story makes disputed claims.

3.4 Helping Users Interpret Claims
When a user clicks on a highlighted snippet, Dispute Finder dis-

plays a popup pane with information intended to help the user de-
termine whether there are alternative points of view that they should
take seriously, and whether there are articles on this topic that they
should read. In our current implementation, the popup interface
shows lists of articles that support or oppose the claim (Figure 2).
We also implemented and tested an interface that contained a user-
editable argumentation graph; however we found that users had dif-
ficulty creating such graphs and were more interested in who dis-
agreed with a claim than why people disagreed with it.

We could have omitted this claim-information feature and still
had a useful system. Once a user sees that something is disputed,
they could use an alternative service, such as a search engine,
Wikipedia, Politifact or Snopes, to find further information about
the claim. There are however several reasons why it makes sense
for Dispute Finder to maintain information about a disputed claim:

Convenience: A user may not have the patience to search for a
good source of information about a claim.

Moderation: We only want Dispute Finder to highlight a claim
if we know that there is credible evidence for an alternative
point of view. By storing the evidence for alternative points
of view inside Dispute Finder, it becomes easier for a moder-
ator user to evaluate whether a claim is sufficiently disputed
that it belongs in the Dispute Finder database.

3We tried to choose a color that is easily distinguished from most
background commonly used background colors.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

346



Figure 10: To add an article, select some summary text, and
click “use as evidence” from the context menu.

Filtering: Although we have not implemented this feature cur-
rently, we think it could be useful to build a model of what
sources a user trusts and only highlight a disputed claim if a
source that the user trusts argues against it.

We prototyped and tested two different ways of showing a user
alternative points of view to the disputed claim they are looking at:

Argumentation graph: When the user clicks on a snippet that
makes a disputed claim, Dispute Finder shows them a simple
user-editable argumentation graph. This graph is inspired by
IBIS 4 tools such as gIBIS [7], Compendium [35], Zeno [17],
Cohere [38], and Debategraph.org. Each claim is linked to
claims that represent alternative points of view, and claims
that support that point of view. Each claim also has a list of
articles that argue in favor of that claim (Figure12)

Article lists: Dispute Finder shows the user two lists of articles,
one of which contains articles arguing in favor of the claim,
and the other of which contains articles arguing against the
claim (Figure 2). This is similar to the lists of articles col-
lected by DiscourseDB.org. For each article, the interface
shows a summary sentence that captures the core argument
used by the article. A user can add any web page as a sup-
porting article by browsing to the page, selecting “use as ev-
idence” from a context menu (Figure 10) and then saying
what claim it supports or opposes (Figure 11).

The argumentation graph makes it easier to see why a claim is
disputed, while the article lists make it easier to see who supports
or opposes the claim.

When using the article list approach, several different articles
may be making essentially the same argument and it may not be
obvious that one of the articles is making a point that the user had
not come across before. The argumentation graph allows the user
to easily see what the range of different opinions is, and quickly see
if there is an argument that they have not encountered before.

A significant weakness of the argumentation graph approach is
that a good argumentation graph takes significantly more effort
to build than a simple list of articles. In our prototype the argu-
mentation graph was built entirely by users and we found that our
users had difficulty creating graphs that were useful for other users.
There were two problems here: first, breaking down all the differ-
ent arguments for and against a claim takes much more time than
just adding articles to a list, particularly given that a single arti-
cle will often make several different points; second, we found that
users had difficulty creating well structured argumentation graphs,
as we outline in Section 4. This result is consistent with previous
studies [21].
4Issue Based Information System

Figure 11: Choose how to connect an article with a claim.

Another point in favor of using a simple list of sources is that
most of the users we talked to seemed to be more interested in who
disputed a claim, rather than what their argument was. For exam-
ple, if a user is a reader of the New York Times, and they hear that
the New York Times argues against the claim they are reading, then
they will take the dispute much more seriously than if the key arti-
cle arguing against the claim is from a source they are not familiar
with. Moreover, we found that when a user wanted to understand
why a claim is disputed, they preferred to read whichever article
seemed to be most credible, rather than browsing an argumentation
graph.

It is possible that the best solution would be a visualization that
made it easy for a user to see both who was supporting/opposing a
particular claim, and what arguments were being put forward.

3.5 Determining Trustworthy Sources
When showing articles to a user, it is important that these be

from sources that the user would be likely to trust. In the current
version of Dispute Finder, a user can add any web page as a source,
but users are requested to restrict themselves to pages that meet
the Wikipedia criteria5 for being reliable. Good sources of arti-
cles include newspapers, universities, respected organizations, and
Wikipedia itself. A user can vote on whether they think a particu-
lar article is useful, and this voting determines the order in which
articles are listed. A user can also request that an article be deleted
they believe the source does not meet credibility requirements, or
if it is not relevant to the claim. These requests are forwarded to
moderator users who have the power to delete links to articles.

Unfortunately, as Pew Research discovered [33] when looking
at TV news, while most people say they want to receive informa-
tion “without a point of view”, the sites people actually trust are
often those that share the person’s own point of view. Similarly,
Manjou [29] reports that people tend to measure the credibility of
a source based on how well it fits with what they already believe to
be true. As a consequence, there may be little point showing liberal
sources to a conservative, or vice-versa. Similarly, a global vot-
ing system can be gamed by people who vote up weak arguments
against claims they support in order to hide stronger arguments.
Moreover, by using moderators to decide which sources and claims

5http://en.wikipedia.org/wiki/Wikipedia:SOURCES

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

347



are high enough quality to be presented to other users, we open
ourselves up to charges of bias.

It may thus be better to learn what sources a particular user is
likely to believe are reliable, and then adjust both what sources
Dispute Finder shows to the user, and what claims are highlighted,
based on this.

There is a difficult trade-off here. If we only show users sources
that we believe they are likely to trust and only highlight claims as
disputed if they are disputed by sources that share the user’s own
world-view then we risk reinforcing the echo-chamber effect that
Dispute Finder is intended to fight against. On the other hand, if
we only provide information from sources that are widely regarded
as being reliable, we risk enforcing the beliefs of the establishment
and stifling the voices of those who are less accepted by the es-
tablishment but may still be right. If we pay no attention to what
sources the user trusts, or what sources are generally regarded as
credible, then we may waste time trying to persuade users using
sources that they would not take seriously. We do not yet claim
to know a good solution for this problem, but we believe it is an
interesting area for further research.

Other researchers have looked at ways to determine what sources
a user will trust. BJ Fogg et al [12] found that the most important
factor was whether a web site had a professional-looking design.
Gill and Arts [14] identified on a different set of factors, including
topic (a medical site may not be trusted for advice on car repair),
popularity (does everyone else use this) and authority.

4. USER STUDIES
We gathered information from users using user-studies and a set

of interviews. We performed three qualitative “think aloud” user
studies and interviewed most of our user study participants, along
with six additional people. The aim of these studies was to inform
the iterative design of the Dispute Finder tool. The studies were not
intended to validate the design of Dispute Finder as being correct.

We found that most people were interested in having a tool like
Dispute Finder, and were able to use Dispute Finder effectively as a
Skeptical Reader. However we found that users were frustrated by
the relatively low fraction of disputed claims that Dispute Finder
currently highlights, and had some difficulty adding new claims
themselves.

4.1 Procedure
For the first two studies, we recruited participants using Craigslist.

We posted a message asking people to tell us how they used the
web to form and promote their opinions and used their responses
to select people who we thought might fit our “skeptical reader”
and “activist” personas. For the final study, we instead used people
from our lab who we thought would be a good fit for our personas.
The first study had twelve participants (five female, seven male),
the second study had six participants (four female, two male), and
the final study had six participants participants (all male).

Each batch of users was shown a different iteration of the Dis-
pute Finder design. The first two batches used versions in which
users marked snippets explicitly and in which the popup window
explaining a claim showed an argumentation graph describing the
structure of the different alternative points of view (Figure 12). The
final group used a version in which a textual entailment algorithm
on the client was used to determine what to mark, and the popup
window showed lists of articles that support or oppose the claim.
We present the findings of the three user studies together. Where a
comment refers to particular version we make this clear.

Study sessions took approximately forty five minutes. Partici-
pants were seated at a workstation with the Firefox browser aug-

Figure 12: Argumentation graph interface for a disputed claim

mented with the Dispute Finder extension. They were asked to
view pages that had highlighted claims on them, and to attempt to
add new disputed claims to our database.

We also conducted interviews with most of our user study par-
ticipants, and six additional people, asking them how they use the
web to form and promote their opinions.

4.2 Findings
Responses were generally positive. Most of the participants ex-

pressed an interest in using the tool “when it is more mature” with
some keen to use it in its current state.

Most participants said that they would want to use Dispute Finder
to tell them when information they read was disputed (skeptical
reader). One participant said “The web needs to be taken with a
grain of salt, and this gives you salt goggles”. A smaller number
said they would be likely to enter claims they disagreed with (ac-
tivist). One participant who was a political blogger was eager to
mark things he thought were lies.

Most users were able to use Dispute Finder competently as a
skeptical reader (browsing information about disputed claims) but
found it harder to act competently as an activist (adding new dis-
puted claims). Several participants wanted to see Dispute Finder
work for them as a skeptical reader before dedicating time to adding
and curating new claims (“I want to see it work before I add stuff”).

When browsing a page that had disputed claims highlighted,
most users correctly inferred that these were sentences they should
be skeptical about, but some users thought Dispute Finder was say-
ing the sentences were wrong, rather than merely disputed. Not
all users realized that one could click on a highlighted snippet to
bring up more information. Several users complained about Dis-
pute Finder highlighting snippets that were not making the claim
Dispute Finder indicated.

Most users were frustrated by the relatively poor precision and
recall that Dispute Finder has at present. Several users browsed to
a page that they knew contained disputed claims, and were disap-
pointed when Dispute Finder did not highlight anything. Several
users were also frustrated when Dispute Finder highlighted phrases
that did not make the claim Dispute Finder indicated. If Dispute
Finder is to be adopted widely then we will need to significantly
improve precision and recall, by building a bigger database of dis-
puted claims, and improving the accuracy of our textual entailment
algorithm.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

348



Most people we interviewed were interested in applying Dispute
Finder to particular areas that affected them (e.g. health) or that
they were expected to be knowledgeable about (e.g. something
relating to their work), but were less interested in applying it to
pages about topics that they were less interested in. For topics that
did not affect them users felt that misinformation was “not impor-
tant enough to bother with”, or that they could “afford to be mis-
informed”. Users said they read about some topics (e.g. celebrity
gossip) “for entertainment” or “to relax” and so they were less in-
terested in making sure they properly understood those topics.

4.2.1 Claims
When using explicit page marking (Section 3.2) to mark a snip-

pet on a particular page, many users often did not appreciate that a
claim should apply to more than one snippet. Several users tried
to create a new claim with exactly the same text as the snippet
they were marking, and several users asked why they had to “en-
ter the text again”. Similarly, several users got confused when a
snippet made two different disputed claims. The correct behav-
ior is to mark the same text with two different claims, but several
participants tried to create a new compound claim such as “Global
warming will cause X and Y”.

Conversely, when adding a claim to the Dispute Finder web site,
users would often enter claims that are not disputed anywhere on
the web or enter paraphrases that do not resemble the wording used
on any web site. The challenge of how to help users come up with
claims that occur on many web sites is one that we have not yet
solved.

Several users expressed confusion about how specific a claim
they created should be. For example, if a snippet says “Global tem-
peratures will rise by X degrees by 2050” then is that making the
claim “Global temperatures will rise”, or should the claim include
the extra information? In order to make a good judgment, one needs
to know the range of similar claims that are being made by other
web sites, and what claims there is good evidence against. If one
makes the claim too specific then one will be able to find less web
pages that make it, but if one makes the claim too general then it
might be harder to find solid evidence against it.

Several users got confused by claims that referred to similar
events at different points in time. For example, one participant in
the first study marked one claim as opposing another when they
were referring to similar incidents that occurred at different times.

Several users created claims that had ambiguous meanings. One
user entered a disputed claim about “Wood”, meaning the guitarist
“Ronnie Wood” of the Rolling Stones. Similar problems occurred
with claims that were specific to a particular country, or a particular
point in time.

4.2.2 The Article List
When adding sources that support or oppose a claim, a user

would frequently mark the first paragraph of the article rather than
seeking out the sentence that best summarized the argument that
the article was using against the claim. In some cases the first para-
graph is indeed the right text to select, since the first paragraph
is typically a summary of the core argument made by the articles;
however there was often a better choice available. Several users
wanted to mark up a table or image as the summary of an article,
which is not currently supported.

When using the article list interface (Figure 2), several users got
confused about whether an article supported or opposed a claim
that was phrased negatively. For example a user would mark an
article that opposed global warming as opposing the claim “global
warming is bad” because the article opposed global warming.

Several users expressed an interest in being able to add a disputed
claim without having to find opposing evidence. One user said that
opposing a claim required “too many clicks” and they wanted to be
able to just vote against a claim without having to say why or find
evidence. Users did however recognize that they would want to see
opposing evidence as a reader.

4.2.3 The Argumentation Graph
In the first two studies, the popup interface for a claim showed an

argumentation graph (Figure 12). This graph connected the claims
in our database using “supports” or “opposes” links, and allowed
each claim to also be associated with supporting articles. When
shown an argumentation graph for a claim, users seemed to have
little difficulty navigating and understanding it and appreciated the
ability to explore the structure of an argument and see how different
claims were connected. One user said “I can see myself getting
addicted to this”, and another said “it’s very intuitive”.

Users seemed to have difficulty creating such graph structures
however. Several users linked one claim as supporting another
when it would have been more logically correct for them to both
support a third claim. For example “Global warming is causing
more hurricanes” does not support “Global warming is causing ris-
ing sea levels”, but both support “Global warming is causing prob-
lems”. Users correctly realized that the claims were related, but
were not sure how best to connect them. Some users were confused
by claims that had a “because” relationship rather than a “supports”
or “opposes” relationship. For example “America did not sign the
Kyoto Protocol” because “Signing Kyoto would harm the US econ-
omy”. These findings are consistent with those of Isenmann and
Reuter [21].

5. CONCLUSIONS AND FUTURE WORK
We have introduced the idea of Dispute Finder, an Open Hyper-

media tool that informs a user when a web page they are reading is
making a claim that is disputed by a source they might trust. We
have discussed the key challenges that one must address in order to
make a system like this work, proposed several solutions to these
challenges, and discussed our experiences with those solutions that
we have implemented and tested with users.

As we discuss in this paper, our system requires multiple com-
ponents to work in concert. Performing the tasks associated with
these components well is a hard problem, and we do not yet claim
to have an implementation that is is good enough to be compelling
for most users. We do however believe that Dispute Finder attacks
an interesting problem that, if solved well, could significantly im-
prove the utility of the web.

At the time of writing 11,729 people have installed and tried out
Dispute Finder, 2,297 are active daily users, 140 have added new
claims to our database, 149 have added articles, and our database
contains 2,609 disputed claims.

An experimental preview version of Dispute Finder is available
at http://disputefinder.org

6. REFERENCES
[1] B Thomas Adler and Ian Pye. Measuring Author

Contributions to the Wikipedia âĹŮ. In WikiSym, 2008.
[2] S. Bayer, J. Burger, L. Ferro, J. Henderson, and A. Yeh.

MITREâĂŹs Submissions to the EU Pascal RTE Challenge.
In PASCAL Challenge Workshop on Recognizing Textual
Entailment. Citeseer, 2005.

[3] R Bhagat, E Hovy, and S Patwardhan. Acquiring paraphrases
from text corpora. In K-CAP, 2009.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

349



[4] Eric A Bier, Edward W Ishak, and Ed Chi. Entity
Workspace: an evidence file that aids memory, inference, and
reading. In Intelligence and Security Informatics, 2006.

[5] Johan Bos and Katja Markert. Recognising textual
entailment with logical inference. In Human Language
Technology and Empirical Methods in Natural Language
Processing - HLT ’05, Morristown, NJ, USA, 2005.
Association for Computational Linguistics.

[6] Niels Olof Bouvin. Augmenting the Web through Open
Hypermedia. Phd Thesis, University of Aarhus, 2000.

[7] Jeff Conklin and Michael L Begeman. gIBIS: A Hypertext
Tool for Team Design Deliberation. In Hypertext, 1987.

[8] R. De Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. An inference model for semantic entailment in
natural language. In Artifical Intelligence, volume 20.
Springer, 2005.

[9] Nicholas Diakopoulos and Irfan Essa. An Annotation Model
for Making Sense of Information Quality in Online Video. In
Pragmatic Web, 2008.

[10] Georgiana Dinu and Rui Wang. Inference Rules and their
Application to Recognizing Textual Entailment.
Computational Linguistics, pages 211–219, 2009.

[11] Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. Open information Extraction from the Web.
Communications of the ACM, 51, 2008.

[12] B J Fogg, Cathy Soohoo, David R Danielson, Leslie
Marable, Julianne Stanford, and Ellen R Tauber. How Do
Users Evaluate the Credibility of Web Sites? A Study with
Over 2,500 Participants. In CHI, 2003.

[13] Y. Gil and V. Ratnakar. TRELLIS: An interactive tool for
capturing information analysis and decision making. In
Knowledge Engineering and Knowledge Management.
Springer, 2002.

[14] Yolanda Gil and Donovan Artz. Towards Content Trust of
Web Resources. In WWW, pages 565–574, 2006.

[15] O. Glickman, I. Dagan, and M. Koppel. A probabilistic
classification approach for lexical textual entailment. In
Artifical Intelligence, volume 20. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2005.

[16] Scott A Golder and Bernardo A Huberman. The Structure of
Collaborative Tagging Systems. Journal of Information
Science, 2006.

[17] Thomas F Gordon and Nikos Karacapilidis. The Zeno
Argumentation Framework. In Artificial Intelligence and
Law, 1997.

[18] Marti a. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Computational linguistics, Morristown,
NJ, USA, 1992. Association for Computational Linguistics.

[19] Edward S Herman and Noam Chomsky. Manufacturing
Consent: The Political Economy of the Mass Media.
Pantheon, 2002.

[20] L. Hong and E.H. Chi. Annotate once, appear anywhere:
collective foraging for snippets of interest using paragraph
fingerprinting. In CHI. ACM New York, NY, USA, 2009.

[21] Severin Isenmann and Wolf D Reuter. IBIS - a Convincing
Concept . . . But a Lousy Instrument? In Designing
Interactive Systems (DIS), 1997.

[22] Valentin Jijkoun and Maarten De Rijke. Recognizing Textual
Entailment: Is Word Similarity Enough? In Machine
Learning Challenges, 2006.

[23] Jose Kahan and Marja-Ritta Koivunen. Annotea: an open
RDF infrastructure for shared Web annotations. In WWW,
volume 39, 2002.

[24] Jong Wook Kim. Ef cient Overlap and Content Reuse
Detection in Blogs and Online News Articles. In WWW,
2009.

[25] Aniket Kittur and Robert E Kraut. Harnessing the Wisdom of
Crowds in Wikipedia: Quality Through Coordination.
CSCW, pages 37–46, 2008.

[26] Okan Kolak and Bill N Schilit. Generating Links by Mining
Quotations. In Hypertext, 2008.

[27] Jure Lescovec, Lars Backstrom, and Jon Kleinberg.
Meme-tracking and the Dynamics of the News Cycle. In
Knowledge Discovery and Data Mining (KDD), 2009.

[28] Dekang Lin and Patrick Pantel. DIRT âĂŞ Discovery of
Inference Rules from Text. In Knowledge Discovery and
Data Mining (KDD), 2001.

[29] Farhad Manjou. True Enough: Learning to Live in a
Post-Fact Society. Wiley, 2008.

[30] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc
Davis. HT06, Tagging Paper, Taxonomy, Flickr, Academic
Article, To Read. In Hypertext, 2006.

[31] Dan R Olsen, Trent Taufer, and Jerry Alan Fails.
ScreenCrayons: Annotating Anything. In User Interface
Software and Technology, volume 6, 2004.

[32] Souneil Park, Seungwoo Kang, Sangyoung Chung, and
Junehwa Song. NewsCube: Delivering Multiple Aspects of
News to Mitigate Media Bias. In CHI. Information Today,
2009.

[33] Pew Research. The Pew Research Center Biennial News
Consumption Survey, 2008.

[34] Alan Ritter, Doug Downey, Stephen Soderland, and Oren
Etzioni. ItâĂŹs a ContradictionâĂŤNo, itâĂŹs Not: A Case
Study using Functional Relations. In Empirical Methods in
Natural Language Processing, 2008.

[35] Albert Selvin, Simon Buckingham Shum, Maarten Sierhuis,
Jeff Conklin, Beatrix Zimmermann, Charles Palus, Wilfred
Drath, and David Horth. Compendium: Making Meetings
into Knowledge Events. In Knowledge Technologies, 2001.

[36] Bertrand Sereno, Simon Buckingham, and Enrico Motta.
Semi-Automatic Annotation of Contested Knowledge on the
World Wide Web. WWW, 2004.

[37] Bertrand Sereno, Buckingham Shum, and Enrico Motta.
ClaimSpotter: an Environment to Support Sensemaking with
Knowledge Triples. In Intelligent User Interfaces (IUI),
2005.

[38] Simon Buckingham Shum. Cohere: Towards Web 2.0
Argumentation. In Computational Models of Argument
(COMMA), volume 44, 2008.

[39] Rion Snow, Lucy Vanderwende, and Arul Menezes.
Effectively using syntax for recognizing false entailment. In
Human Language Technology, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[40] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: robust
and efficient near duplicate detection in large web
collections. In SIGIR. ACM, 2008.

[41] Uffe Kock Wiil and John J Leggett. The HyperDisco
Approach to Open Hypermedia Systems. In Hypertext, 1996.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

350


