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ABSTRACT
Web search engines use the full-text inverted index data structure.
Because query processing performance is impacted by the size of
the inverted index, a plethora of research has focused on fast and
effective techniques for compressing this structure. Recently, re-
searchers have proposed techniques for improving index compres-
sion by optimizing the assignment of document identifiers in the
collection, leading to significant reduction in overall index size.

In this paper, we propose improved techniques for document
identifier assignment. Previous work includes simple and fast heuris-
tics such as sorting by URL, as well as more involved approaches
based on the Traveling Salesman Problem or on graph partition-
ing. These techniques achieve good compression but do not scale
to larger document collections. We propose a new framework based
on performing a Traveling Salesman computation on a reduced
sparse graph obtained through Locality Sensitive Hashing. This
technique achieves improved compression while scaling to tens of
millions of documents. Based on this framework, we describe new
algorithms, and perform a detailed evaluation on three large data
sets showing improvements in index size.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval.

General Terms
Algorithms, Performance

Keywords
Inverted Index, Index Compression, Document Reordering

1. INTRODUCTION
With document collections spanning billions of pages, current

web search engines must be able to efficiently and effectively search
multiple terabytes of data. Given the latency demands users typi-
cally place on interactive applications, the engine must be able to
provide a good answer within a fraction of a second, while simulta-
neously serving tens of thousands of such requests. To perform this
task efficiently, current web search engines use an inverted index,
a widely used and extensively studied data structure that supports
fast retrieval of documents containing a given set of terms.

The scale of data involved has created on a critical dependence
on compression of the inverted index structure; even moderate im-
provements in compressed size can translate in savings of many GB
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or TB of disk space. More importantly, this reduced size translates
into savings in I/O transfers and increases in the hit rate of main-
memory index caches, offering an improvement in overall query
processing throughput. In many cases, only a small fraction of the
inverted index is held in main memory. As a result, query process-
ing times may be dominated by disk seeks and reads for inverted
index data. However, even if the entire index is placed in mem-
ory, improved compression results in a reduction in the total sys-
tem memory required. Overall, improved compression translates
into improved query processing rates on given hardware, an impor-
tant concern given that search engines could spend many millions
of dollars to deploy clusters for query processing. The direct influ-
ence index size exerts on a search engine’s bottom line has inspired
a plethora of research on compression techniques, leading to sub-
stantial improvements in the compression ratio and speed of search
engines. See [25, 1, 19, 14, 26, 17, 24] for some recent work.

In this paper, we focus on a related but distinct approach for im-
proving inverted index compression, the so-called Document Iden-
tifier Assignment Problem (also sometimes referred to as Docu-
ment Reordering). In a typical inverted index structure, documents
are referenced by a distinct integer identifier– a document identi-
fier or docID. The DocID Assignment Problem is concerned with
reassigning docIDs to documents in a way that maximizes the com-
pressibility of the resulting inverted index. Prior work has shown
that for many document collections, compressed index size can be
substantially reduced through an improved assignment of docIDs,
in some cases by more than a factor of two [23]. However, despite
a number of recent publications on this topic [7, 20, 22, 21, 5, 6, 4,
23], there are still many open challenges.

The underlying idea in producing a good docID assignment is
to place similar documents next to each other; this then results in
highly clustered inverted lists, where a term occurs in “streaks” of
multiple consecutive documents, punctuated by long gaps. Such
clustered lists are known to be more compressible than lists pro-
duced by random or unoptimized document assignments. Previous
work has demonstrated the ability of solutions based on approxima-
tions to the Traveling Salesman Problem (TSP) to produce docID
assignments that are superior to the assignments given by many
other approaches [6]. However, the proposed TSP-based solutions
are limited to small data sets; they operate on a dense graph with
O(n2) edges for n documents. Another solution based on graph
partitioning, proposed in [7] and later evaluated in [22, 6], also per-
form well in terms of compression, but is limited to even smaller
data sets. Conversely, it was shown in [21] that simply assigning
docIDs to web pages according to the alphabetical ordering of the
URLs perform very well, and offer almost unlimited scalability.

Our goal in this paper is to illustrate improved techniques for do-
cID assignments. In particular, we are looking for techniques that
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scale to many millions of documents while achieving significantly
better compression than URL-sorting on different types of collec-
tions. We make five main contributions to this end:

1. We present a TSP-based approach for docID assignment that
scales to tens of millions of documents while achieving sig-
nificantly better compression than the URL sorting given in
[21]. Our approach is based on computing a sparse subgraph
of the document similarity graph from the TSP-based ap-
proach in [6] using Locality Sensitive Hashing [15, 13], only
running the TSP computation on this reduced graph.

2. We evaluate different edge weighting schemes for the TSP
computation resulting in improved compression. We propose
an extension of the TSP-based approach that can optimize the
distribution of multi-gaps: gaps larger than 1 between term
occurrences in an document ordering. While such gaps are
not considered by standard TSP-based approaches, they have
a significant impact on the size of the resulting index.

3. We study hybrid schemes that combine ideas from our ap-
proach and the URL sorting heuristic in [21]. We show that
selecting the edges in our reduced graph using both LSH and
URL sorting results in improved compression while reducing
computational cost versus the LSH-only approach.

4. We perform an extensive experimental evaluation of our ap-
proaches on several large data sets from TREC, Wikipedia,
and the Internet Archive. Our results show significant im-
provements in compression over the URL sorting heuristic
in [21], while scaling to very large data sets.

5. We demonstrate improvements in the compressed size of the
frequency and position data stored in the index in addition to
the benefits for docID compression. Furthermore, we demon-
strate significant speedups in query processing for memory-
resident and disk-based indexes as a result of our techniques.

2. BACKGROUND AND PRIOR WORK
In this section, we provide background on inverted indexes com-

pression techniques and IR query processing. Then we go on to
discuss prior work on the DocID Assignment Problem in 2.3.

2.1 Inverted Indexes and Query Processing
Let D = {d1, . . . , d|D|} be a set of |D| documents in a doc-

ument collection, and let T = {t1, . . . , t|T ||ti ∈ D} be the set
of terms present in the collection. An inverted index data struc-
ture I is essentially a particularly useful, optimized instantiation of
a term/document matrix M where each term corresponds to a row
and each document to a column. Here, Mi,j represents the asso-
ciation between term i and document j, often as a frequency, a
TF-IDF score, or as a simple binary indicator, for all terms ti ∈ T
and documents dj ∈ D. Clearly, this matrix is very sparse, as most
documents only contain a small subset of the possible terms. Con-
versely, most terms only occur in a small subset of documents. An
inverted index exploits this by storing M in sparse format – since
most entries are 0, it is preferable to just store the non-zero en-
tries. More precisely, the non-zero entries in a row corresponding
to a term ti are stored as a sequence of column IDs (i.e., document
IDs), plus the value of the entries (except in the binary case, where
these values do not have to be stored). This sequence is also called
the inverted list or posting list for term ti, denoted li.

Search engines typically support keyword queries, returning doc-
uments associated with a small set of search terms. Computation-
ally, this translates to finding the intersection or union of the rele-
vant rows of M, i.e., the inverted lists of the search terms, and then
evaluating an appropriate ranking function in order to sort the re-
sult from most to least relevant. In many cases, each inverted list

li contains the list of documents containing t and the associated
frequency values, i.e., how often a document contains the term.

Inverted lists are usually stored in highly compressed form, us-
ing appropriate techniques for encoding integer values. To decrease
the values that need be encoded, inverted lists are typically gap-
encoded, i.e., instead of storing the list of raw docIDs of the doc-
uments containing the term, we store the list of gaps between suc-
cessive docIDs in the list, called d-gaps.

Query processing in a search engine involves numerous distinct
processes such as query parsing, query rewriting, and the compu-
tation of complex ranking functions that may use hundreds of fea-
tures. However, at the lower layer, all such systems rely on ex-
tremely fast access to inverted lists to achieve the required query
throughput. For each query, the engine needs to traverse the in-
verted lists corresponding to the query terms in order to identify
a limited set of promising documents that can then be more fully
scored in a subsequent phase. The challenge in this filtering phase
is that for large collections, the inverted lists for many commonly
queried terms are very long. For example, for the TREC GOV2
collection of 25.2 million web pages used below, on average each
query involves lists with several million postings. This motivates
the interest in improved compression techniques for inverted lists.

2.2 Inverted Index Compression Techniques
The fundamental goal of inverted index compression is to com-

press a sequence of integers, either a sequence of d-gaps by taking
the difference between consecutive docIDs, or a sequence of fre-
quency values. We now sketch some known integer compression
techniques that we use in this paper, in particular Gamma Coding
(Gamma) [25], PForDelta (PFD) [14, 26], and binary Interpolative
Coding (IPC) [17]. We provide outlines of these methods to keep
the paper self-contained; for more details, please see the references.

Gamma Coding This technique represents a value n ≥ 1 by
a unary code for 1 + ⌊log(n)⌋ followed by a binary code for the
lower ⌊log(n)⌋ bits of n. Gamma coding performs well for very
small numbers, but is not appropriate for larger numbers.

PForDelta: This is a compression method recently proposed in
[14, 26] that supports fast decompression while also achieving a
small compressed size. PForDelta (PFD) first determines a value b
such that most of the values to be encoded (say, 90%) are less than
2b and thus fit into a fixed bit field of b bits each. The remaining
values, called exceptions, are coded separately. If we apply PFD
to blocks containing multiple of 32 values, then decompression in-
volves extracting groups of 32 b-bit values, and finally patching the
result by decoding a smaller number of exceptions. This process
can be implemented extremely efficiently by providing, for each
value of b, an optimized method for extracting 32 b-bit values from
b memory words, with decompression speeds of more than a billion
integers per second on a single core of a modern CPU.

PFD can be modified and tuned in various ways by changing the
policies for choosing b and the encoding of the exceptions. In this
paper we use a modified version of PFD called OPT-PFD, proposed
in [23], that performs extremely well for the types of inverted lists
arising after optimizing the docID assignment.

Interpolative Coding: This is a coding technique proposed in
[17] that is ideal for clustered term occurrences. The goal of the
document reordering approach is to create more clustered, and thus
more compressible, term occurrences. Interpolative Coding (IPC)
has been shown to perform well in this case [5, 7, 20, 21, 22].

IPC differs from the other methods in an important way: It di-
rectly compresses docIDs, and not docID gaps. Given a set of do-
cIDs di < di+1 < . . . < dj where l < di and dj < r for
some bounding values l and r known to the decoder, we first encode
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dm where m = (i + j)/2, then recursively compress the docIDs
di, . . . , dm−1 using l and dm as bounding values, and then recur-
sively compress dm+1, . . . , dj using dm and r as bounding values.
Thus, we compress the docID in the center, and then recursively
the left and right half of the sequence. To encode dm, observe that
dm > l + m − i (since there are m − i values di, . . . dm−1 be-
tween it and l) and dm < r − (j − m) (since there are j − m
values dm+1, . . . dj between it and r). Thus, it suffices to encode
an integer in the range [0, x] where x = r − l − j + i − 2 that is
added to l +m− i+ 1 during decoding; this can be done trivially
in ⌈log2(x+ 1)⌉ bits, since the decoder knows the value of x.

In the inverted list where there are many documents that contain
the term, the value x will be smaller than r − l. As a special case,
if we have to encode k docIDs larger than l and less than r where
k = r−l−1, then nothing needs to be stored at all as we know that
all docIDs properly between l and r contain the term. This means
IPC can use less than one bit per value for dense term occurrences.
(This is also true for OPT-PFD, but not for Gamma Coding.)

2.3 Prior Work on DocID Assignment
The compressed size of an inverted list, and thus the entire in-

verted index, is a function of the d-gaps being compressed, which
itself depends on how we assign docIDs to documents (or columns
to documents in the matrix). Common integer compression algo-
rithms require fewer bits to represent a smaller integer than a larger
one, but the number of bits required is typically less than linear in
the value (except for, e.g., unary codes). This means that if we as-
sign docIDs to documents such that we get many small d-gaps, and
a few larger d-gaps, the resulting inverted list will be more com-
pressible than another list with the same average value but more
uniform gaps (e.g., an exponential distribution). This is the insight
that has motivated all the recent work on optimizing docID assign-
ment [7, 20, 22, 21, 5, 6, 4]. Note that this work is related in large
part to the more general topic of sparse matrix compression [16],
with parallel lines of work often existing between the two fields.

More formally, the DocID Assignment Problem seeks a permu-
tation of docIDs that minimizes total compressed index size. This
permutation Π is a bijection that maps each docID dj into a unique
integer assignment Π(dj) ∈ [1, |D|]. Let l̄Πi be the d-gaps associ-
ated with term ti after permutation Π. Under a specific encoding
scheme, s, the “cost” (size) of compressing list l̄Πi is denoted by
Costs(l̄

Π
i ), and the total compressed index cost is

Costs(IΠ) =
∑
l̄i

Costs(l̄
Π
i ),

Clearly, examining all possible Π would result in an exponential
number of evaluations. Thus, we need more tractable ways to either
compute or approximate such permutations.

A common assumption in prior work is that docIDs should be
assigned such that similar documents (i.e., documents that share a
lot of terms) are close to each other. Thus, with the exception of [4],
prior work has focused on efficiently maximizing the similarity of
close-by documents in the docID assignment. These techniques can
be divided into three classes: (i) top-down approaches that partition
the collection into clusters of similar documents and then assign
consecutive docIDs to documents in the same cluster, (ii) bottom-
up approaches that assign consecutive docIDs to very similar pairs
of documents and then connect these pairs into longer paths, and
(iii) the heuristic in [21] based on sorting by URL.

Bottom-Up: These approaches create a dense graph G = (D,E)
where D is the set of documents, and E is a set of edges each rep-
resenting the connection between two documents di and dj in D.
Each edge (i, j) is typically assigned some weight representing the

similarity between di and dj , e.g., the number of terms in the inter-
section of the documents as used in [20, 6]. The edges of this graph
are then traversed such that the total path similarity is maximized.

In [20], Shieh et al proposed computing a Maximum Spanning
Tree on this graph, that is, a tree with maximum total edge weight.
They then propose traversing this tree in a depth-first manner, and
assigning docIDs to documents in the order they are encountered.
Another approach in [20] attempts to find a tour of G such that the
sum of all edge weights traversed is maximized. This is of course
equivalent to the Maximum Traveling Salesman Problem (hence-
forth just called TSP). While this is a known NP-Complete prob-
lem, it also occurs frequently in practice and many effective heuris-
tics have been proposed. In [20], a simple greedy nearest neighbors
(GNN) approach is used, where an initial starting node is chosen,
from which a tour is grown by adding one edge at a time in a way
that greedily maximizes the current total weight of the tour. While
this heuristic may seem simplistic, it significantly outperformed the
spanning tree approach above, and was also slightly faster.

Blanco and Barreiro [6] further reduce the computational effort
through SVD for dimensionality reduction, however, even in this
case the time is still quadratic in the number of documents. Over-
all, TSP-based techniques seem to provide the best performance
amongst bottom-up approaches. However, these techniques are
currently limited to at most a few hundred thousand documents.

Top-Down: Among these approaches, an algorithm in [7] has
been shown to consistently outperform others in this class, in fact
performing better than the sorting-based and Bottom-Up approaches
as shown in [21, 6]. However, the algorithm is even less efficient
than the TSP approaches, and limited to fairly small data sets.

Sorting: In this approach, proposed by Silvestri in [21], we
simply sort the collection by their URLs, then assign docIDs ac-
cording to this ordering. This is the simplest and fastest approach,
and also performs very well in compressed size on many web data
sets. In fact, it appears to obtain a smaller size than other scalable
approaches, with the exception of the TSP approach and the top-
down algorithm in [7], both of which do not scale to the data sizes
considered in [21]. Of course, the sorting-based approach is only
applicable to certain types of collections, in particular web data sets
where URL similarity is a strong indicator of document similarity.
This is not the case for many other collections such as the Reuters
or WSJ corpus or, as we shall see, pages from Wikipedia.

In summary, we have a highly scalable approach based on sort-
ing that achieves decent compression on certain data sets, and ap-
proaches that achieve slightly better compression but do not scale
to large datasets. Our goal in the next few sections is to improve the
TSP-based approach such that it scales to tens of millions of pages
while getting significantly better compression than that for sorting.

3. SCALING TSP USING HASHING
In this section, we describe our framework for scaling the TSP-

based approach for doc-ID reordering studied in [20, 6] to much
larger corpora. The main ingredient here is Locality Sensitive Hash-
ing [15], a technique commonly used for clustering of large docu-
ment collections for applications such as near-duplicate detection
[13] and document compression [18]. We start with the outline of
the framework, and then provide more details in Subsection 3.2.

3.1 Basic Idea and Discussion
While bottom-up, TSP-based approaches seem to offer the most

compressible doc-ID ordering amongst all comparable methods, to
achieve this level of compressibility requires significant computa-
tional effort. Even though the GNN heuristic simplifies the known
NP-Hard TSP problem, approximating a solution in quadratic time,
given the millions to billions of documents present in a typical
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search engine, GNN has difficulty scaling. A solution was pro-
posed in [6] involves a dimensionality reduction through singular
value decomposition (SVD). While it offers a substantial improve-
ment in run time, the complexity of this method is still hindered by
a quadratic dependency on the size of the corpus, and thus does not
scale to typical index sizes.

In our approach, we avoid this computational bottleneck by first
creating a sparse graph, weeding out the vast majority of the n2

edges used in prior approaches (n = |D|). We then run a GNN
approximation to the TSP on this sparse graph, thereby avoiding
examining all pairs of nodes. Our goal is to carefully select about
k · n edges (where k << n) from G in such a way that this sparse
graph is able to produce a TSP tour similar in quality to the TSP
tour obtainable on a full graph. Specifically, we select for each
node those k out of n incoming edges that have the highest weight,
i.e, edges that point at the k nearest neighbors, as these are the most
promising edges for the TSP. However, this leaves us with the prob-
lem of finding the k nearest neighbors of each node without looking
at all pairs of nodes. Fortunately, for the types of similarity metrics
we are interested in (e.g., Jaccard similarity), there are highly effi-
cient techniques [15, 13] for finding the k nearest neighbors of all
nodes in time O(n · polylog(n)), much faster than Θ(n2).

The idea of accelerating a graph computation by working on a
suitably constructed sparse graph is well known in the algorithms
community. The most closely related application is in the context
of compressing a collection of similar files, as described in [18],
where finding an optimal compression scheme reduces to finding
a Maximum Branching (essentially a directed form of a Maximum
Spanning Tree) in a directed graph. To speed up this computation,
[18] also builds a sparse k-nearest neighbor graph using the tech-
niques from [15, 13], and then runs the Maximum Branching com-
putation on this sparse graph. In fact, for the Maximum Branch-
ing problem it has been shown [2] that the solution on the sparse
graph approximates that on the complete graph within a factor of
k/(k + 1). Note that this is not true for the case of Maximal TSP;
in fact, one can show that the solution on the sparse subgraph can
be arbitrarily away from the optimum. However, we will see that
in practice this approach works quite well.

3.2 Details
We now provide more details on our framework, which can be

divided into four phases as follows.
(1) Min-Hashing: We scan over the document collection, and

select from each document s random terms (here s = 100)
using the Min-Hash sampling technique [9] as described in
[13]. In particular, the i-th sample is obtained by hashing all
terms in the document using a hash function hi, and selecting
the term that hashes to the minimum value.

(2) Selecting Nearest Neighbor Candidates: The goal of this
phase is to select for each node k′ > k other nodes that
are likely to contain the k nearest neighbors using the Lo-
cality Sensitive Hashing approach in [15, 13]. We compute
for each document t superhashes (here t = 80), where the
j-th superhash of each document is computed by selecting
l indexes i1, . . . , il at random from {1, . . . , s}, concatenat-
ing the terms selected from the document as the i1-th, i2-th,
to il-th samples in the previous phase, and hashing the con-
catenation to a 32-bit integer using MD5 or a similar func-
tion. It is important that the same randomly selected indexes
i1, . . . , il are used to select the j-th superhash of every doc-
uments. This results in t files F1 to Ft such that Fj contains
the the j-th superhash of all documents.

The crucial point, analyzed in detail in [13], is that if two

Figure 1: Architecture for LSH-based Dimensionality Reduc-
tion for TSP-Based Doc-ID Assignment Algorithms

documents share the same j-th superhash for some j, their
similarity is likely to be above some threshold θ that depends
on our choice of s and l. Conversely, if two documents have
similarity above θ, and if t is chosen large enough, then it
is likely that their j-th superhashes are identical for some
j ∈ {1, . . . , t}. Thus, by sorting each file Fj and looking for
identical values, we can identify pairs of documents that are
likely to be similar.

However, for any fixed threshold θ, we may get some nodes
with a large number of neighbors with similarity above θ,
and some nodes with few or no neighbors. In order to select
about k′ nearest neighbors for each node, we iterate this en-
tire phase several times, starting with a very high threshold θ
and then in each iteration removing nodes that already have
enough neighbors and lowering the threshold until all nodes
have enough neighbors. At the end of this phase, we have a
long list of candidate nearest neighbor pairs.

(3) Filtering: In this phase, we check all the candidate pairs
from the previous phase to select the actual k neighbors that
we retain for each node. This is done by computing the sim-
ilarity of each pair using all s samples from the first phase,
and selecting the k candidates with highest similarity.

(4) TSP Computation: We perform a TSP computation on the
sparse subgraph, using a TSP heuristic (for instance GNN)
when no outgoing edge is available, we “restart”, mimick-
ing the heuristic explored in [20], selecting the remaining
node with greatest remaining similarity in the sparse sub-
graph. Note that this approximation to G, G′ may not even
be connected. The ordering determined by this tour is output
and then used to compress the inverted index.

This architecture is illustrated in figure 1. We emphasize again
that the hashing techniques in phases (1) and (2) are described and
analyzed in more detail in [13], and that we reimplemented these
phases based on that description. While the nearest neighbor can-
didates are selected based on the Jaccard similarity between docu-
ments, it is sometimes beneficial to apply other similarity metrics
during the filtering phase, e.g., to try to maximize set intersection
rather than Jaccard similarity along the TSP tour. This will be dis-
cussed in detail in the next section.

A few comments on efficiency. The first phase requires scanning
over and parsing the entire collection, though this could be over-
lapped with the parsing for index building. Hashing every term
s = 100 times is somewhat inefficient, but can be avoided with
clever optimizations. The second and third phases require repeated
scanning of samples, superhashes, and resulting candidate pairs;
the data sizes involved are smaller than the collection but still of
significant size (about 5 to 20 GB each as opposed to the 500
GB uncompressed size for the TREC GOV2 data set). However,
all steps in these phases scale essentially linearly with collection
size (with the caveat that parameters for k, t, and l are adjusted
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slightly as the collection grows). Moreover, they can be easily and
highly efficiently implemented using mapReduce [12] or various
I/O-efficient computing paradigms.

While the final phase, actual computation of the TSP path, is the
fastest in our setting, this is the only phase that has not been im-
plemented in an I/O efficient paradigm, requiring the entire sparse
graph to reside in main memory. The min-hashing techniques pro-
vide sufficient compression of this graph such that even the 25 mil-
lion documents of the TREC GOV2 data set can easily reside in
a few GB of main memory. While this data set represents vastly
larger set than is evaluated in previous work [20, 6], it’s size is
insignificant in comparison to corpora commonly seen in commer-
cial search engines– data sizes that prevent in-memory computa-
tion using even the most powerful servers. While the TSP is very
well-studied– literally hundreds of proposed solution schemes ex-
ist [10], we were unable to find approximation algorithms designed
for external-memory or mapReduce environments. To extend the
applicability to the largest document collections, a current frontier
and algorithmic challenge is exploring novel TSP algorithms im-
plemented in mapReduce and I/O-efficient computation.

In summary, in this section we have shown how to implement
the TSP-based approach to the doc-ID assignment problem in an
efficient and highly scalable manner, using the well-known hashing
techniques in [15, 13]. In the next sections, we show how to refine
this approach to optimize the resulting index compression on real
data sets and with real index compression technology.

4. CHOOSING EDGE WEIGHTS IN TSP
The TSP approach to document reordering relies on suitable edges

weights based on document similarity to find an assignment of do-
cIDs that achieves good compression. However, it is not obvious
what is the best measure of document similarity for this case. Pre-
vious work has sometimes used the Jaccard measure (the ratio of
intersection to the union of the two documents) and sometimes used
the absolute size of the intersection to determine the edge weight
in the resulting TSP problem. We now discuss this issue in more
detail and suggest additional weight functions.

Intersection size: This measure was previously used in [20, 6],
and has a simple and meaningful interpretation in the context of
TSP-based reordering: choosing an edge of weight w in the TSP
tour assigns consecutive docIDs for two documents with w terms
in common, thereby leading to w 1-gaps in the resulting inverted
index structure. Formally, the maximum TSP tour in a graph with
edge weights given by raw intersection size results in an inverted
index structure with the largest possible number of 1-gaps.

As we show later, using intersection size indeed results in in-
dexes with large numbers of 1-gaps. However, improved compres-
sion does not just depend solely on the number of 1-gaps, as we
discuss further below.

Jaccard measure: This measure does not have any natural inter-
pretation in terms of gaps, but was previously used in [22, 6]. The
Jaccard measure also has two other attractive features in the context
of TSP. First, it gives higher weights to documents of similar size.
For example, if a small document is properly contained in another
larger document, then their Jaccard similarity is very small while
their intersection is quite large. While this is not a problem in an
optimal solution of the (NP-Complete) TSP problem, many greedy
heuristics for TSP appear to suffer by naively choosing edges be-
tween documents of very different size. Use of the Jaccard mea-
sure discourages use of such edges. Second, the LSH technique
from [13] used in our framework works naturally with the Jaccard
measure, while scalable nearest-neighbor techniques for other sim-
ilarity measures are more complicated to implement [15].

Log-Jaccard measure: To explore the space between intersec-
tion size and Jaccard, we propose a hybrid measure where the in-
tersection is divided by the logarithm of the size of the union, thus
discouraging edges between documents of widely different size.

Term-weighted intersection: As mentioned before, the result-
ing compressed index size does not just depend on the number of 1-
gaps. In particular, it could be argued that not all 1-gaps are equal:
Making a 1000-gap into a 1-gap is more beneficial than making a
2-gap into a 1-gap. This argument is a bit misleading as there is
no one-to-one correspondence between gaps before and after re-
ordering. Assuming that docIDs are initially assigned at random,
and any two terms t1 and t2 in the collection, with associated ft1
and ft2 , the number of postings in the corresponding inverted lists.
Prior to reordering, the average gaps are approximately n/ft1 in
the list for t1 and about n/ft2 in the list for t2 (where n is the
number of documents), with a geometric distribution around the
averages. Thus, if ft1 < ft2 then it could be argued that creating a
1-gap in the list for t1 provides more benefit compared to the case
of random assignment than creating a gap in the list for t2.

This argument leads to a weighted intersection measure where
each term t is weighted in the intersection proportional to log(n/ft).
This weight could also be interpreted as the savings obtained from
gamma coding a 1-gap rather than an (n/ft)-gap.

Implementation of different measures: As mentioned, our LSH-
based implementation works naturally with the Jaccard measure.
To implement various other similarity measures, we first use the
Jaccard-based LSH method to select the k′ candidates for the near-
est neighbors, and then use the filtering phase to rank the candidates
according to the actual similarity measure of interest. If k′ is cho-
sen sufficiently larger than k, then this seems to perform quite well.

5. MULTI-GAP OPTIMIZATIONS
As discussed, compressed index size does not just depend on the

number of 1-gaps. This fact motivated the weighted intersection
measure in the previous section. Note that any measure that focuses
on 1-gaps, even if suitably weighted, fails to account for the impact
of other types of small gaps on index size. A method that increases
the number of 1-gaps as well as 2- and 3-gaps may provide much
better compression than a method that solely optimized the number
of 1-gaps. Thus, a better approach to document reordering would
try to improve the overall distribution of gaps, giving credit for
creating 1-gaps as well as other small gaps.

However, this multi-gap notion collides with a basic assumption
of the TSP-based approach: benefit can be modeled solely by a
weighted edge. A direct TSP formulation can only model 1-gaps!
To model larger gaps we have to change the underlying problem
formulation so that it considers interactions between documents
that are 2, 3, or more positions apart on the TSP tour.

Luckily, the greedy TSP algorithm can be adjusted to take larger
gaps into account. Recall that in this algorithm, we grow a TSP tour
by selecting a starting point and then greedily moving to the best
neighbor, and from there to a neighbors of that neighbor, and so
on. Now assume that we have already chosen a sequence of nodes
(sets of terms) d1, d2, . . . , di−1 and now have to decide which node
to choose as di. For a particular candidate node d, the number of
1-gaps created by choosing d is |d ∩ di−1|, while the number of 2-
gaps is |(d∩ di−2)− di−1|. More generally, the number of created
j-gaps is the number of terms in the intersection of d and di−j that
do not occur in any of the documents di−j+1 to di−1. Thus, we
should select the next document by looking not just at the edge
weight, but also at the nodes preceding the last node we selected.

To implement this efficiently, we need two additional data struc-
tures during the TSP algorithm. We add for each node a compact
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but sufficiently large sample of its terms. These samples are kept
in main memory. We found that using a sample of about 10% of
the terms, selected by choosing all terms that hash to a value (say)
7 mod 10 for some hash function (such as MD5), works well. This
results in a few dozen terms per document which can be com-
pressed to about one byte per term; on the other hand, it is not
necessary anymore to store the edge weights in memory as part of
the graph as these are now computed online. The second structure
is a dictionary that contains for each term that is sampled the index
of the last selected document that contained the term. Initially, all
entries are set to 0, and when a term t occurs in a newly selected
node di during the greedy algorithm, we update its entry to i.

Using these structures, the modified algorithm works as follows:
Having already selected d1 to di−1, we select di by iterating over
all unvisited neighbors of di−1, and for each neighbor we iterate
over all terms in its sample. For each term, we look at the dictionary
to determine the length of the gap that would be created for this
term, and compute a suitable weighted total benefit of choosing
this document. We then greedily select the neighbor giving the
most benefit. We note that this algorithm relies on a basic approach
that grows a tour one edge at a time, and could not be easily added
to just any algorithm for TSP. Also, note that the filtering step still
selects the k nearest neighbors based on a pairwise measure, and
we are limited to selecting di from among these neighbors.

This leaves us with the problem of modeling the benefit of dif-
ferent gaps. One approach would be to assign a benefit of 1 +
log(gavg/j) to any j-gap with j < gavg for a term t, where gavg =
n/ft is the average gap in the randomly ordered case as used in the
previous section. Thus, a positive benefit is assigned for making a
gap smaller than the average gap in the random ordering case, and
no benefit is given for any larger gaps. However, this misses an im-
portant observation: Reordering of docIDs does not usually result
in a reduction in the average d-gap of an inverted list.1 Rather, the
goal of reordering is to skew the gap distribution to get many gaps
significantly smaller, and a few gaps much larger, than the average.

Thus, getting a gap above the average n/ft is actually good,
since for every gap above the average, other gaps have to become
even smaller! This means that a candidate document should get
benefit for containing terms that have recently occurred in another
document, and also for not containing terms that have not recently
occurred. Or alternatively, we give negative benefit for containing
terms that have not recently occurred. This leads us to define the
benefit of a j-gap for a term t as 1+ log(gavg/j) for j < gavg and
−α · (1 + log(j/gavg)) otherwise, say for α = 0.5.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our scalable TSP-

based methods. Note that additional hybrid methods that combine
TSP- and sort-based approaches are described and evaluated in Sec-
tion 7. Throughout this section, we focus on total index size due to
docIDs. The impact on the sizes of frequency values and positions
will be discussed in later sections.

6.1 Experimental Setup
The reductions in index size achievable through reordering de-

pend on the properties of the document collection, both in absolute
(collections with many similar documents give more gains) and rel-
ative terms (sorting-based methods do not work well if URLs or
other names are not indicative of content). In our experiments, we
use three data sets that are substantially different from each other:
1In fact, if we also count the gap between the last docID in the list
and the end of the collection as a d-gap, then the average d-gap
does not change under any reordering. If we do not count this final
gap, then the average does not change by much.

GOV2 Ireland Wiki
# of documents 25,205,179 10,000,000 2,401,798

# of distinct words 36,759,149 18,579,966 19,586,472
# of postings 6,797 M 2,560 M 787 M

Table 1: Basic statistics of our data sets.
IPC OPT-PFD Gamma % of 1 gaps

GOV2 RANDOM 6516 6661 8088 7.00%
SORT 2821 3105 3593 59.00%

TSP-jacc 2908 3197 3475 67.90%
TSP-inter 2824 3135 3415 68.20%

Ireland RANDOM 2467 2502 3820 8.00%
SORT 690 746 1020 77.00%

TSP-jacc 617 620 953 83.80%
TSP-inter 610 614 947 84.10%

Wiki RANDOM 697 724 1226 6.00%
SORT 653 714 1116 13.00%

TSP-jacc 594 664 1006 28.00%
TSP-inter 565 663 984 28.00%

Table 2: Index size in MB and percentage of 1-gaps in the index,
for the three data sets and four different orderings.

• GOV2: The TREC GOV2 collection of 25.2 million pages
crawled from the gov domain used in some of the TREC
competition tracks.

• Ireland: This is a random sample of 10 million pages taken
from a crawl of about 100 million pages in the Irish (ie) web
domain provided to us by the Internet Archive.

• Wiki: This is a snapshot of the English version of Wikipedia,
taken on January 8, 2008, of about 2.4 million wikipedia arti-
cles. (These are the actual articles, not including other pages
such as discussion, history, or disambiguation pages.)

We note here that the GOV2 collection is very dense in the sense
that the gov domain was crawled almost to exhaustion. Thus, for
any pair of similar pages there is a good chance both pages are in
the set, and as shown in [23] reductions of about a factor of 2 in
index size are achievable for this set. The Ireland data set is a new
collection not previously used; by sampling from a larger domain
we get a less dense set of pages. The Wiki data set is different
from the other two in that the pages are much more uniform in
type and style, and more similar to other non-web corpora (e.g.,
Reuters or WSJ collections). We also expect less duplication, and
less benefit from reordering by URL sorting as URLs are probably
less meaningful in this case.

Table 1 summarizes the statistics: the number of documents,
number of distinct words, and total number of postings (in mil-
lions). In the basic version of these data sets, we did not perform
near-duplicate detection to remove pages with different URLs that
are almost or completely identical. However, we show the impact
of near-duplicates in one of our experiments further below.

6.2 Comparison of Basic Methods
We start by comparing some baseline methods: a random or-

dering of docIDs (RANDOM), an ordering according to sorting by
URL (SORT), and two methods, TSP-jacc and TSP-inter, based
on our TSP approach. In both methods we use our implementa-
tion of LSH to determine 400 out-going candidate edges for each
node, and then filter these down to 300 out-going edges per node.
These values seem to work well in practice; thorough investigation
into appropriate tuning of parameters is beyond the scope of this
work. We then run a greedy Max-TSP algorithm on this graph,
where TSP-jacc uses the Jaccard measure between two documents
as edge weight, while TSP-inter uses the raw size of the intersection
between the two documents.
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IPC OPT-PFD Gamma
GOV2 RANDOM 7.67 7.84 9.52

SORT 3.32 3.66 4.23
TSP-jacc 3.42 3.76 4.09
TSP-inter 3.32 3.68 4.02

Ireland RANDOM 7.71 7.82 11.94
SORT 2.16 2.33 3.19

TSP-jacc 1.92 1.93 2.98
TSP-inter 1.90 1.91 2.96

Wiki RANDOM 7.08 7.35 12.45
SORT 6.63 7.25 11.34

TSP-jacc 6.03 6.75 10.22
TSP-inter 5.74 6.74 9.82

Table 3: Compression in bits per document ID for the three
data sets and four document orderings.

Tables 2 and 3 present the absolute size of the docID portion of
the inverted index, and the number of bits per docID, respectively,
for the three data sets. We see that on all data sets, using the raw
intersection size outperforms use of the Jaccard measure. On the
Wiki data set, sorting only gives a minor improvement over random
ordering, while the TSP methods achieve more significant gains,
resulting in a size reduction of up to 19%. For Ireland, sorting
does OK, but TSP-based methods do much better. On the other
hand, for the GOV2 data set, SORT gets a similar size reduction
as TSP-inter (about the same for IPC and OPT-PFD, and less than
TSP-inter for Gamma coding). We also see that IPC and OPT-PFD
substantially and consistently outperform Gamma coding, with IPC
slightly outperforming OPT-PFD. (But note that OPT-PFD has a
much higher decompression speed than either IPC or Gamma [23].)

Table 2 also shows the number of 1-gaps (i.e., cases where two
consecutive documents in the ordering share a term) for the dif-
ferent ordering methods. TSP-size achieves a significantly higher
number of 1-gaps than the other methods. This is not surprising
since the optimal TSP on the complete graph would in fact max-
imize the total number of 1-gaps. (We believe our simple greedy
TSP on the reduced graph is a reasonable approximation.) How-
ever, as we see for the case of GOV2, this does not directly imply
better compression. While TSP-size has many more 1-gaps than
SORT, the resulting compression is about the same. This confirms
our conjecture in the previous section, that to minimize size we
have to look at more than 1-gaps, and in particular at longer gaps.

We now examine how the number of neighbors in the reduced
graph impacts performance. In Figure 2, we plot the resulting
compression in bits per docID for Wiki as we increase the number
of neighbors. For all three compression schemes (IPC, OPT-PFD,
Gamma) we see that compression improves with the number of
neighbors (as expected), but improvement becomes less significant
beyond about 200 to 300 neighbors. In the following, unless stated
otherwise, we use 300 neighbors per node, as in our basic experi-
ments above. A larger number of neighbors increases the time for
the TSP-based methods as well as the amount of memory needed
during the greedy TSP itself; we explore this further below.

Next, we consider the impact of near-duplicates (near-dups) on
compression. To do this, we used our LSH implementation to de-
tect all near-dups in the three data sets, defined here as pairs of
documents with a Jaccard score (ratio of intersection and union) of
more than 0.95. (Note that for very short documents, one might
argue that this threshold is too strict as it requires two documents
to be identical. However, such documents contribute only a small
part of the postings in the index.) We found that Wiki has less
than 0.2% near-dups, while Ireland and GOV2 have 26% and 33%
near-dups. Even for the case of GOV2, with more than 8.3 million
near-dups out of 25.2 million documents, the benefits of reordering

Figure 2: Compression in bits per docID on Wiki data as we
vary the number of neighbors.

RANDOM SORT TSP-jacc TSP-inter
IPC + dups 6516 2821 2908 2824
IPC - dups 4360 2747 2804 2760

OPT-PFD + dups 6661 3105 3197 3135
OPT-PFD - dups 4360 3031 3141 3059
Gamma + dups 8088 3593 3475 3415
Gamma - dups 6211 3148 3022 3002

Table 4: Index in MB for GOV2 with and without near-dups.

are not just due to near-dups: Removing near-dups from the index
under a random ordering results in a size reduction of about 30%,
while subsequent reordering of the set without near-dups results in
an additional 37% reduction (for IPC, relative to a random ordering
without duplicates).

Another interesting observation is that for the reordering meth-
ods, the size of the index with and without near-dups is very similar
– this implies that use of reordering methods neutralizes the impact
of near-dups on index size, thereby allowing us to keep near-dups
during indexing without index size penalty and then deal with them
during query processing (which might sometimes be preferable).
Closer inspection of the statistics for near-dups also showed that
they are highly skewed and that a significant fraction of the total
near-dups in GOV2 and Ireland is due to a small number of docu-
ments being near-duplicated many times (rather than due to many
documents having one or two near-copies each).

6.3 Advanced TSP Methods
We now evaluate our various refinements of the basic TSP method.

In Table 5 we compare the performance of the SORT and TSP-inter
methods from above with three additional TSP-based methods de-
scribed in earlier sections: (i) TSP-log-jacc, which uses as edge
weight the size of the intersection divided by the logarithm of the
size of the union, (ii) TSP-log-ft, which weighs each term in the
intersection of two documents by log(N/ft) (thus giving higher
weights to 1-gaps created in short lists), and (iii) TSP-gaps, which
also considers larger gaps as described in Subsection 5.

The results are shown in Table 5, where we show the number of
bits per docID under IPC, PFD, and Gamma coding. We observe
that TSP-log-ft does not offer any improvement over raw intersec-
tion. TSP-log-jacc gives decent improvements on Wiki, moder-
ate improvements on GOV2, and only minuscule improvements on
Ireland. However, TSP-gaps outperforms all other methods, and
achieves improvements, e.g., for IPC, ranging from 2% on Ireland
(which may be hard to further improve as it is already less than
two bits per docID) to about 8% on Wiki (compared to TSP-inter).
Thus, as conjectured, it is important to model longer gaps, not just
1-gaps, to achieve the best possible compression.

Recall that TSP-gaps differs from the other methods in that it
cannot be modeled as a strict Max-TSP problem; the total benefit
is not simply a sum of precomputed edge weights but a more com-
plicated expression along the chosen path. However, as discussed
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IPC OPT-PFD Gamma
GOV2 SORT 3.32 3.66 4.23

TSP-inter 3.32 3.68 4.02
TSP-log-ft 3.36 3.73 4.09

TSP-log-jacc 3.30 3.68 4.04
TSP-gaps 3.18 3.53 3.96

Ireland SORT 2.16 2.33 3.19
TSP-inter 1.90 1.91 2.96
TSP-log-ft 1.91 1.94 2.99

TSP-log-jacc 1.89 1.91 2.96
TSP-gaps 1.87 1.89 2.91

Wiki SORT 6.63 7.25 11.34
TSP-inter 5.74 6.74 9.82
TSP-log-ft 6.09 6.68 10.10

TSP-log-jacc 5.63 6.31 9.12
TSP-gaps 5.36 6.02 8.83

Table 5: Compressed size in bits per docID.
IPC OPT-PFD Gamma

GOV2 TSP-gaps 3.18 3.53 3.96
TSP-gaps-(5) 3.12 3.46 3.90

Ireland TSP-gaps 1.87 1.89 2.91
TSP-gaps-(5) 1.85 1.87 2.87

Wiki TSP-gaps 5.36 6.02 8.83
TSP-gaps-(5) 5.26 5.95 8.83

TSP-gaps-(5,5) 5.25 5.93 8.81

Table 6: Compression for extended search in bits per docID.

in the previous section, we can “graft” this method on top of our
simple greedy TSP method that grows a path one edge at a time, by
adding suitable data structures and in each step some computation
for updating the benefit. A natural question is how much better we
could do by using better heuristics for the TSP problem, instead of
the simple greedy heuristic used in this and previous work. How-
ever, TSP-gaps makes it more difficult to apply other heuristics, as
we are restricted to heuristics that grow (one or several) long paths
one edge at a time.

To test the potential for additional improvements, we experi-
mented with local search strategies that select the next edge to be
added to the path by performing a limited search of the neighbor-
hood of the current endpoint. That is, for a depth-d method, we
check not just all outgoing edges to select the best one, but for the
top-k1 out-going edges, we explore edges at depth 2, and for the
top-k2 resulting paths of length 2 we explore one more level, and
so on until we have paths of length d. We then add the first edge
of the best path to our existing path, and repeat. Thus, a depth-d
method is defined by d− 1 parameters k1 to kd−1, plus a discount
factor α that is applied to benefits due to edges further away from
the current endpoint, and some threshold value for further pruning
of paths (e.g., we might consider paths with a value at least 80% of
the current best path). There are obviously other heuristics one can
apply, so this is just a first exploration of the potential for improve-
ments. We note that there is a trade-off with computation time; in
a graph with n out-going edges per node, we have to compute the
benefit of up to (1 + k1 + . . . kd−1) · n instead of n edges.

The results are presented in Table 6, where we look at the benefit
of a depth-2 search (with k1 = 5) over TSP-gaps. We see that the
benefits are very limited, with the best improvement of only 2% in
index size on the GOV2 and Wiki data set. While deeper searching
strategies were explored, the observed benefit was very small.

6.4 Efficiency Issues
We now discuss the efficiency of the various methods. We note

that URL sorting is highly efficient as it does not require any access
to the text in the documents. While it would be impossible for any
method that exploits the content of documents to run in time com-

generating min-hashes 2 hour and 15 minutes
generating super-hashes 3 hours and 30 minutes

neighbor finding (7 iterations) 6 hours and 40 minutes
TSP-jacc 10 minutes
TSP-inter 10 minutes
TSP-gaps 1 hour and 30 minutes

TSP-gaps-(5) 10 hours

Table 7: Time for each step in our TSP-based framework, for
GOV2 with 300 neighbors per node.

parable to SORT, it is important that a method achieve efficiency
that is comparable to that of building a full-text index, and scala-
bility to large data sets. All of our run were performed on a single
AMD Opteron 2.3Ghz processor on a machine with 64GB of mem-
ory and SATA disks. For all experiments at most 8 GB were used,
except for the TSP computation in the case of TSP-gaps where at
most 16 GB were used.

Some sample results are shown in Table 7 for the GOV2 collec-
tion of 25.2 million pages, our largest data set. In the first step, we
create 100 min-hashes per document, while in the second step, 80
32-bit super-hashes are created from the min-hashes for each doc-
ument and for each iteration in the subsequent step (i.e., 560 super-
hashes per document for the seven iterations). We create a separate
file for each of the 560 super-hashes and then sort each super-hash
file using an I/O-efficient merge sort. In the third step, for each
node we generate up to 400 candidate nearest-neighbor edges for
each node, by performing seven iterations with different threshold
values for the LSH computation (using the super-hashes previously
created according to the chosen thresholds). Each iteration involves
a scan over the corresponding 80 super-hash files, then excluding
nodes with more than400 candidate edges from subsequent itera-
tions. At the end, the 400 candidates are re-ranked based on the
real weight function (i.e., Jaccard, raw intersection, or log-Jaccard)
using the min-hashes, and the top 300 edges for each node are kept.
Note that to avoid duplicated candidate edges, we assume that all
candidate edges fit in main memory; otherwise we split the nodes
into several subsets and perform a superhash scan for each subset.

Overall, we note that producing the min-hashes and super-hashes,
and then finding and filtering nearest neighbor edges, takes time
roughly comparable to that of building a full-text index on such a
data set. (The presented running times are reasonably but not com-
pletely optimized, so some improvements could be obtained with
careful optimization and tuning of parameters such as the number
of neighbors or iterations.) Moreover, we point out that these three
steps can be very efficiently and easily ported to a mapReduce en-
vironment, or executed in an I/O-efficient manner on a single ma-
chine, thus allowing us to scale to much larger data sets.

The fourth step is the actual greedy TSP approximation. Our
current implementation requires the entire graph reside in main
memory– a solution that is inherently non-parrallelizable. We are
presently experimenting with new TSP algorithms leveraging mapRe-
duce and I/O efficient techniques to allow arbitrarily large data sets
to be processed. Initial experiments are promising and scalable TSP
algorithms remain a direction for future research.

As we see, the TSP computation is very fast for precomputed
edge weights (e.g., TSP-jacc, TSP-inter), and somewhat slower for
the multi-gap approach. TSP-gaps also requires more memory to
store extra min-hashes (a 10% sample of each document) to com-
pute online the benefits of larger gaps. Once we add an additional
search of the neighborhood, the running time quickly increases to
about 10 hours even for k1 = 5. Thus, it is more realistic to just
use TSP-gaps. Overall, for our current GNN, both running time
and memory requirements for this step scale roughly linearly with
the number of nodes and number of edges per node.
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Figure 3: Performance of hybrid using both LSH and sort
edges on GOV2 under IPC with 300 edges, for varying per-
centages of LSH edges.

7. HYBRID ALGORITHMS
In the previous section, we demonstrated that a TSP-based ap-

proach provides significant improvements over the sort-based ap-
proach on the Wiki and Ireland data sets and more modest improve-
ments on GOV2, while allowing for a reasonably efficient and scal-
able implementation. Of course, the sorting-based approach has
advantages in terms of run time. Therefore, it would be interesting
to combine the benefits of the two approaches. In this section, we
explore possible hybrid algorithms that use sorting as well as TSP
to get better compression and faster computation of the reordering.

We start with a simple extension of the sort-based approach,
called SORT+SIZE, where we combine sorting by URL with use of
document size. Intuitively, sorting brings similar documents closer,
but probably does not work well on the local level since very often
several groups of similar pages (but different from each other) are
mixed in the same site or subdirectory. One heuristic to tease such
groups apart is to use document size, i.e., the number of words in a
document, as an additional feature. In particular, we experimented
with the following heuristic: We first sort by URL, then in each web
site, we split documents into a number of classes according to size,
and then in each class we sort again by URL. (Thus, we first have
all the largest pages in the site, then all the moderately large pages,
and so on.) As we will show, this simple heuristic already gives im-
provements in certain cases. It also motivates the search for other
heuristics that are only based on simple features such as URL and
document size; see for comparison the recent work in [3] on how
to detect near-duplicates based only on URLs without using page
content. We note that [8] recently and independently proposed to
sort all documents by size only; this achieves measurable benefits
but does not perform as well as sorting.

We also consider hybrids between sorting and TSP-based meth-
ods. A simple approach is to first sort by URL, then create for
each node edges to its, say, 100 closest neighbors in this ordering,
and run a TSP algorithm on the resulting graph to determine the
final ordering. Thus, sorting is used to select edges, and then TSP
locally reorders the nodes. We can also combine such sort edges
with edges determined via LSH. In the following, we experiment
with these heuristic.

In Figure 3, we look at how to best combine LSH edges and sort
edges. Given 300 neighbors, we vary the number of sort edges
from 0 to 300, and choose the remaining edges using the LSH
method. As we see, this approach achieves significant improve-
ments over our previous methods, decreasing index size by more
than 10% in some case over TSP-gaps. We also see that using a
roughly equal number of edges from both sets performs best. How-
ever, even choosing just 50 LSH edges comes close to optimum.
Additionally, using only sort edges does not perform well. We note
that decreasing the number of LSH edges to 50 will significantly re-

IPC OPT-PFD Gamma
SORT 3.32 3.66 4.23

SORT+SIZE 3.23 3.58 4.17
TSP-gaps 3.18 3.53 3.96

TSP-gaps-(5) 3.12 3.46 3.90
Hybrid-50lsh-250sort 2.96 3.24 3.59

Hybrid-150lsh-150sort 2.92 3.22 3.57
Hybrid-150lsh-150sort+size 2.92 3.22 3.58

Hybrid-50lsh-50sort 3.02 3.31 3.66

Table 8: Compression in bits per docID for hybrids on GOV2.
RANDOM SORT TSP-gaps Hybrid

docIDs (IPC) 6516 2821 2703 2480
freqs (IPC) 1831 1238 1191 1151
total (IPC) 8347 4059 3894 3631

docIDs (PFD) 6661 3105 3051 2735
freqs (PFD) 2098 1442 1421 1378
total (PFD) 8759 4547 4472 4113

Table 9: Index size (MB) including frequency values for GOV2.

duce the LSH computation time (min-hashing, super-hashing, and
neighbor finding) reported in the previous section.

In Table 8 we present some selected results for the hybrid meth-
ods. We see that SORT+SIZE is better than just URL sorting, but
not as good as TSP-gaps. Note that while using 50 LSH edges
and 250 sort edges is close to the best result for 300 neighbors,
even using just 50 LSH edges and 50 sort edges does better than
the best TSP-gaps method with 300 neighbors. This is important
because using fewer total edges improves both machine time and
memory consumption for the TSP computation, while using fewer
LSH edges improves the efficiency of the various LSH steps. Thus,
in practice using 50 sort edges and 50 LSH edges may be a very
good choice. However, using sort+size edges instead of sort edges
in the hybrid gives no benefits.

8. IMPACT ON QUERY PROCESSING
In preceding sections, we focused on minimizing the total size of

docID component of the inverted index. One purpose of minimiz-
ing index size is to improve query processing speed, as a smaller
index requires less data to be transferred between disk and memory
and between memory and CPU. In this section, we measure the im-
pact of reordering on query processing, using GOV2 and 100, 000
queries from the TREC Efficiency TASK and Wiki data and 5, 000
selected queries from AOL related to wikipedia.

We start with some numbers for index size including frequency
values in the index. We apply the Most Likely Next (MLN) trans-
formation to frequency values before compression, as proposed in
[23]. As we see in Table 9 for GOV2, the methods with the best
docID compression also give the best compression for frequencies.

Then, we look at the impact of our technique on position com-
pression. In our implementation we treat all documents in the col-
lection as one consecutive "big page" and index the position of each
term inside this "big page" as proposed in [11]. Table 10 gives the
result for a 2-million subset from GOV2 which have consecutive
alphabetic URLs. From Table 10 we can see under a better docID
assignment the position compression is also improved.

Next, we look at the amount of index data per query, that is, the
total sizes of the inverted lists associated with the query terms of a
typical query. This puts more weight on the most commonly used
query terms, and is a measure for the amount of data per query that

RANDOM SORT Hybrid
position (PFD) 3495 2834 2709
position (IPC) 3154 2737 2638

Table 10: Position index (MB) for a 2-million subset of GOV2.
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SORT TSP-gaps Hybrid
size/query 1.116 1.076 0.98

Table 11: Size of inverted lists per query for docID in MB, for
GOV2 using IPC.

query processing time(ms/query) decoded postings(k/query)
Random 0.274 91264

Sort 0.256 81920
TSP-gaps 0.192 60416

Table 12: Query processing performance on Wikipedia

has to be transferred from disk to main memory in a disk-resident
index. As we see from Table 11, a better reordering significantly
reduces the amount of index data required per query. In fact, the
improvement per query is larger than the improvement in total in-
dex size, since more frequently accessed inverted lists appear to
benefit more from reordering.

State-of-the-art IR query processors cache parts of the inverted
index in main memory to reduce disk accesses and thus speed up
processing. It is important to realize that the reduction in disk ac-
cesses is not linear in either the total or per-query index size, but
usually much larger since a higher percentage of the smaller index
will fit into cache, thus in turn increasing the cache hit rate. Ex-
periments show that both TSP-gaps and the hybrid method achieve
significant improvements over the sort-based ordering for caching
performance. For space reason we omit the experiments.

Finally, it was shown in [23] that reordering also significantly re-
duces the CPU costs of intersecting inverted lists in main memory,
as it results in larger skips within the lists. As we see from Table
12, a better reordering can reduce the amount of time for query
processing by up to 25% compared with sorting.

We note that all our algorithms here only explicitly try to opti-
mize docID compression, and not frequency and position compres-
sion or query processing. Optimizing directly for these measure is
an open problem for future research.

9. DISCUSSION AND CONCLUSIONS
In this paper, we proposed new algorithms for docID assign-

ment that attempt to minimize index size. In particular, we de-
scribed a framework for scaling the TSP-based approach shown
to perform well in previous work, but limited by scalability. Our
improvements utilize Locality Sensitive Hashing (LSH), and al-
low TSP-based techniques to consider far larger data sets. Within
this approach, we experimented with different weight functions,
search heuristics, and hybrids, and provide evidence that the TSP
approach can significantly outperform URL sorting, the best previ-
ously known approach that scales to such large data sets.

Overall, the main lessons from this work are that the TSP ap-
proach can be applied to sets of tens of millions of pages,that the
TSP-gaps approach in particular appears to give a reasonable bal-
ance between computational cost and index size, and that in some
cases selecting candidates edges using both sorting and LSH results
in additional improvements over TSP-gaps. There are several open
questions raised in this paper that remain directions for future re-
search. Amongst these are the development of novel TSP approx-
imation techniques that could be implemented using mapReduce
or I/O efficient computation. Additionally, a deeper exploration
of parameter settings and different data sets is required to develop
good rules of thumb for deciding what parameter settings and re-
ordering techniques a practitioner should explore. Additionally, it
would be interesting to look at other reordering heuristics that only
use meta data such as URLs, mime type, and size, motivated by
work in [3]. Since document reordering is known to lead to more
skips in the inverted lists during query processing [23], one could

try to directly optimize the docID ordering for this objective, lead-
ing to faster query processing, or optimizing frequency or position
compression. Finally, a major limitation of document reordering
techniques is that they are often not applicable in the presence of
early termination techniques for query processing that assume a
particular ordering of the index structures. It would be interesting
to explore trade-offs between and possible combinations of early
termination and document reordering techniques.
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