
Exposing Audio Data to the Web: an API and Prototype
David Humphrey

Seneca College
70 The Pond Road
Toronto, Canada

david.humphrey@senecac.on.ca

Corban Brook
Canadian Water Network

200 University Avenue West
Waterloo, Canada

corbanbrook@gmail.com

Alistair MacDonald
Bocoup

319 A St South
Boston, USA

al@bocoup.com

ABSTRACT
The HTML5 specification introduces the <audio> and <video>
media elements, and with them the opportunity to change the way
media is integrated on the web. The current HTML5 media API
provides ways to play and get limited information about audio and
video, but no way to programatically access or create such media.
In this paper we present an enhanced API for these media
elements, as well as details about a Mozilla Firefox
implementation created by the authors, which allows web
developers to read and write raw audio data.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Audio, Video and
Hypertext Interactive Systems

General Terms
Experimentation, Standardization, Web

Keywords
HTML5, Audio, Firefox, FFT

1. INTRODUCTION
The HTML5 <audio> element allows sound or audio streams to
be included in web documents, and played without the need for
third-party plug-ins. Similar capabilities have been provided by
native plug-ins, such as Adobe’s Flash, for many years. The
media elements (<audio> and <video>) are in flux, since the
HTML5 specification is still under active development. As a
result, we present a series of experiments, and a prototype of an
enhanced media API with a view to expanding the discussions
around audio in the browser. In particular, we will make the case
that audio generation and access to raw audio data are an
important step in the evolution of the web and web browsers.

Whereas the HTML5 media elements provide the ability to play
sound and audio streams in web documents, Flash’s enhanced
audio APIs give developers the ability to generate real-time audio
from script, extract raw audio data, obtain pre-calculated spectrum
data (e.g., Fast Fourier Transform), filter and mix music. Prior to
implementing the HTML5 media elements, modern web browsers
lacked much of the functionality necessary to consider matching
what Flash offers. However, modern browsers, such as Mozilla
Firefox, now include native audio and video decoders, as well as a
pipeline from the HTML document to the operating system audio
interface. These inclusions provide a ready way to implement a
thin API addition that leverages the work necessary to get
HTML5 media generation and analysis working.

2. AN API FOR READING AUDIO DATA
We modified Mozilla Firefox in order to provide direct read and
write access to the audio data available in the HTML5 media
elements1. These changes make audio data available in real-time
via an event-based API. As the audio is played, and therefore
decoded, and before it is sent to the underlying audio library, each
frame of audio is dispatched to content scripts via a DOM event:
AudioWritten. Since this data is provided in synch with the audio
itself, playing, pausing, and stopping the audio all affect the
streaming of this raw audio data as well. The event use is
demonstrated in Listing 1.

Listing 1: Event-based access to raw audio data
<audio src="song.ogg"
 onaudiowritten="audioWritten(event);">
</audio>

function audioWritten(event) {
 samples = event.mozFrameBuffer;
 // sample data is obtained using samples.item(n)
 for (var i=0; i < samples.length; i++) {
 processSample(samples.item(i));
 }
}

The raw audio framebuffer is a collection (e.g., array) of floating
point values. Most data visualizations, or other uses of audio data
begin by calculating a discrete Fourier transform by means of a
Fast Fourier Transform. This can be calculated in JavaScript.
However, we have included a native implementation for speed
comparisons with Flash, which also includes this functionality.
Both methods were used and found to be effective. Listing 2
shows how to access the pre-calculated spectrum data.

Listing 2: Event-based access to computed spectrum data
var spectrum;

function audioWritten(event) {
 spectrum = event.mozSpectrum;
 // spectrum data available via spectrum.item(n)
 for (var i=0; i < spectrum.length; i++) {
 processSpectrum(spectrum.item(i));
 }
}

3. VISUALIZING AUDIO SPECTRUM
The AudioWritten event makes it possible for web developers to
create real-time visualizations of audio spectrum data. Figure 1
shows a simple example of such a visualization, and Listing 3 the

1 See discussion and implementation code in Mozilla’s Bugzilla

https://bugzilla.mozilla.org/show_bug.cgi?id=490705 Copyright is held by the author/owner(s).
WWW 2010, April 20–24, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1365

code to produce it. The technique shown here can be successfully
used to produce much more complex visualizations.

Figure 1. Audio Spectrum Visualization

Listing 3: Complete example visualizing audio spectrum data
<!DOCTYPE html>
<html><head>
 <title>JavaScript Spectrum Example</title>
</head>
<body>
 <audio src="song.ogg"

 controls="true"
 onaudiowritten="audioWritten(event);"
 style="width: 512px;">

 </audio>
 <div>
 <canvas id="fft" width="512" height="200"></canvas>
 </div>
 <script>
 var spectrum;
 var canvas = document.getElementById('fft');
 var ctx = canvas.getContext('2d');

 function audioWritten(event) {
 spectrum = event.mozSpectrum;

 var specSize = spectrum.length,
 magnitude;

 ctx.clearRect(0,0, canvas.width, canvas.height);

 for (var i = 0; i < specSize; i++) {
 magnitude = spectrum.item(i) * 4000;
 // Draw rectangles for each frequency bin
 ctx.fillRect(i*4, canvas.height, 3, -magnitude);
 }

 }
 </script>
</body>
</html>

4. AN API FOR WRITING AUDIO DATA
In the same way that the AudioWritten event provides raw audio
data in the form of a collection of floats, two new methods were
added to the media elements in order to allow content scripts to
produce and write such data to the underlying audio layer.
Typically, media elements include a src content attribute, which is
the address of a media resource to show or play. Setting this
attribute causes the browser to create an appropriate media
channel for playing the audio resource, with suitable sample rate,
number of audio channels, and volume. In the case of
dynamically generated audio through script, another mechanism is
needed in order to setup the media channel. After the channel is
created, audio frames can be sent to the media channel to be
played. Listing 4 demonstrates the setup and use of these new
media methods.

Listing 4: Settup and writing to an audio element
var audioOutput = new Audio();
audioOutput.mozSetup(2, 44100, 1);
var samples = [0.242, 0.127, 0.0, -0.058, ...];
audioOutput.mozAudioWrite(samples.length, samples);

The mozSetup method takes three arguments, including: number
of channels, sample rate per second, and initial volume. The
mozAudioWrite method can then be called with an array of floats
sufficient to represent one frame’s worth of samples at the
specified rate. Listing 5 shows a more complete example,
allowing the user to dynamically generate and play a tone at the
specifed Hz.

Listing 5: A simple HTML tone generator
<!DOCTYPE html>
<html><head>
 <title>JavaScript Audio Write Example</title>
</head>
<body>
 <input type="text" size="4" id="freq" value="440">
 <label for="hz">Hz</label>
 <button onclick="generateWaveform()">set</button>
 <button onclick="start()">play</button>
 <button onclick="stop()">stop</button>
 <script type="text/javascript">
 var sampledata = [];
 var freq = 440;
 var interval = -1;
 var audio;

 function writeData() {
 var n = Math.ceil(freq / 100);

 for(var i=0;i<n;i++)
 audio.mozWriteAudio(sampledata.length,
 sampledata);

 }

 function start() {
 audio = new Audio();

 audio.mozSetup(1, 44100, 1);
 interval = setInterval(writeData, 10);

 }

 function stop() {
if (interval != -1) {
 clearInterval(interval);
 interval = -1;
}

 }

 function generateWaveform() {
 var f = document.getElementById("freq").value;

 freq = parseFloat(f);
 // Playing at 44.1kHz, figure out how many
 // samples will give us one full period
 var samples = 44100 / freq;
 sampledata = Array(Math.round(samples));
 for (var i=0; i<sampledata.length; i++) {
 sampledata[i] = Math.sin(2*Math.PI *
 (i / sampledata.length));
 }

 }

 generateWaveform();
 </script>
</body>
</html>

5. DOM IMPLEMENTATION DETAILS
The API presented above required a number of additions and
changes to the current DOM implementation of Mozilla Firefox.
Two new DOM interfaces were created in order to support the
AudioWritten event, and two new methods were added to the
nsIDOMHTMLMediaElement interface.

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1366

First, in the case of the AudioWritten event, both raw framebuffer
data and computed spectrum data are returned in a pseudo-array
named nsIDOMAudioData (see Figure 6). This is not as efficient
as possible, but was chosen for ease of implementation in other
browsers. In future this could be changed to use more efficient
native array types, such as those being introduced for canvas pixel
data.

Listing 6: Audio Data DOM interfaces (Mozilla XPIDL)
interface nsIDOMAudioData : nsISupports
{
 readonly attribute unsigned long length;
 float item(in unsigned long index);
};

interface nsIDOMAudioWrittenEvent : nsIDOMEvent
{
 readonly attribute nsIDOMAudioData mozFrameBuffer;
 readonly attribute nsIDOMAudioData mozSpectrum;
};

The length attribute indicates the number of elements of data
returned. The item method provides a getter for audio data,
which are floats.

The AudioWritten event’s mozFrameBuffer attribute contains
the raw audio data (float values) obtained from decoding a single
frame of audio. This is of the form [left-channel, right-channel,
left-channel, right-channel, ...] (e.g., stereo interlaced). All audio
frames are normalized to a length of 4096 or greater, with shorter
frames padded with 0s (zeroes).

The mozSpectrum attribute contains a pre-calculated Fourier
transform for the current frame of audio data. It is calculated using
the first 4096 float values in the audio frame only, which may
include zeros used to pad the buffer. We take the 4096 stereo
interlaced samples, mix them down to a 2048 mono track, and
then calculate a Fourier transform to get 1024 frequency bins.

Audio write access is achieved by adding two new methods to the
nsIDOMHTMLMediaElement, as shown in Listing 7.

Listing 7: Additions to nsIDOMHTMLMediaElement (Mozilla
XPIDL)
void mozSetup(in long channels, in long rate,
 in float volume);
void mozWriteAudio(in long count,
 [array, size_is(count)] in float
 valueArray);

The mozSetup method allows an <audio> or <video> element
to be setup for writing from script. This method must be called
once before mozWriteAudio can be called, since an audio
channel has to be created for the media element. It takes three
arguments:

1. channels - the number of audio channels (e.g., 2)
2. rate - the audio sample rate (e.g., 44100 Hz)
3. volume - the initial volume to use (e.g., 1.0)

The choices made for channel and rate are significant, because
they determine the frame size that must be used in subsequent
calls to mozWriteAudio. Sending the wrong amount of data for a
frame will result in a DOM exception being thrown.

The mozWriteAudio method can be called after mozSetup. It
allows a frame of audio (or multiple frames, but always whole
frames) to be written directly from script. It takes two arguments:

1. count - the number of elements in this frame (e.g.,
4096)

2. valueArray - an array of floats, which represent a
complete frame of audio (or multiple frames, but
whole frames).

A DOM exception is thrown if the audio frame size does not
match what is expected based on the initial call to mozSetup.

6. DISCUSSION
In our experiments building web audio applications with the API
and prototype discussed in this paper, a number of potential uses
have emerged, from accessibility to gaming and rich media.

One area that would benefit right away from this work is web
accessibility. Having access to raw audio data would mean new
possibilities for visualizing sound for the hearing impaired, or for
building text to speech or speech to text interfaces, which can be
written and deployed as part of the web page itself. Similarly, as
3D becomes a more common feature of the web through WebGL,
O3D, etc., sound provides a way for the visually impaired to
interact with 3D web spaces through sound manipulation and
‘seeing’ with sound (e.g., depth and feature perception through
echo).

Another area that would benefit from these techniques is rich
media web applications, for example music sites and online
games. Many web applications need to update or stay in synch
with an audio track. This might mean using something like beat
detection in order to drive a visualization or advance events in the
page. Another common need is generating real-time audio, such
as sound effects for games, or altering (e.g., mixing, filtering, etc.)
audio as it is played. This also opens the door to the creation of
in-browser interaction with sound, for example, creating
instruments like pianos or synthesizers.

7. CONCLUSION AND FUTURE WORK
In this paper we discussed an enhanced audio data API to
supplement the HTML5 media elements. We discussed a
simple set of additions to the existing specification, which add
an event-based, real-time data access API, as well as an API to
generate audio data from script. We presented two complete
examples of using these APIs in HTML5. We then discussed
the technical implementation details necessary to add this
functionality to the DOM. Finally, we identified a number of
future applications for this API, and showed how these
applications are broadly appealing to many types of users. We
believe, and have shown through our own implementation
work, that the additions to the HTML5 specification presented
here are modest yet powerful.

8. ACKNOWLEDGMENTS
Our thanks to the Mozilla Corporation and the Processing.js
community, who have provided valuable feedback and input on
the API and its implementation.

WWW 2010 · Developers Track April 26-30 · Raleigh · NC · USA

1367

