
FormSys: Form-processing Web Services

Ingo M. Weber
ingo.weber@cse.unsw.edu.au

Hye-young Paik
hpaik@cse.unsw.edu.au

Boualem Benatallah
boualem@cse.unsw.edu.au

Zifei Gong
zgon235@cse.unsw.edu.au

Liangliang Zheng
lzhe544@cse.unsw.edu.au

Corren Vorwerk
∗

correnv@cse.unsw.edu.au

School of Computer Science and Engineering, K17
University of New South Wales
Sydney, NSW, Australia, 2052

ABSTRACT
In this paper we present FormSys, a Web-based system that
service-enables form documents. It offers two main services:
filling in forms based on Web services’ incoming SOAP mes-
sages, and invoking Web services based on filled-in forms.
This can be applied to benefit individuals to reduce the
number of often repetitive form fields they have to complete
manually in many scenarios. It can also help organisations
to remove the need for manual data entry by automatically
triggering business process implementations based on incom-
ing case data from filled-in forms. While the concept applies
to forms of any type of document, our implementation uses
Adobe AcroForms due to its universal applicability, avail-
ability of a usable API, and end-user appeal. In the demo,
we will show the two core functions, namely soap2pdf and
pdf2soap, along with use case applications of the services
developed from real world scenarios. Essentially, this work
demonstrates how PDFs can be used as a channel for inter-
acting with Web services.

Categories and Subject Descriptors
H.4.0 [Information Systems]: Information Systems Ap-
plications; D.2.13 [Software]: Reusable Software

General Terms
Algorithms, Design

Keywords
Documents, Processes, Service-enabled Forms, Web Services

1. INTRODUCTION
Modern business organisations employ a diverse range of

business process implementation solutions, including En-
terprise Resource Planning (ERP), Customer Relationship
Management (CRM), workflows, and the like [8]. However,
paper-based forms are still prevalent in many of the interac-
tions between the organisations and their customers or busi-
ness partners. For example, one needs to fill a series of forms
with personal details and a varying degree of additional in-
formation to open a bank account or request a driver’s li-
cense. Receiving these forms at the organisation’s end may

∗The author is enrolled with Univ. of Applied Sciences, Karl-
sruhe, Germany. This work was done when visiting UNSW.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

trigger a number of business process instances. More of-
ten than not, extracting the data from forms into software
(called media break, e.g. by [4]) is a highly manual task.

Automating such manual activities involves a team of ex-
perienced programmers implementing electronic versions of
the forms, e.g., HTML forms embedded in a Web-based
system. This solution is ad-hoc, costly and the time-to-
production is long. In fact, to make a form and its associ-
ated business process available instantly, it is still easier for
administrative office workers to create a form using a word
processor, save it in a widely-accepted format (e.g., PDF)
and distribute it e.g., via email. Of course the processing of
such forms still remains manual.

We believe it is desirable to have a solution which utilises
tools that the office workers are already familiar with, but at
the same time enhances the ability to create forms and easily
automate the processing procedures involved. As a step
towards the envisioned solution, in this paper, we describe
and demonstrate FormSys, a tool that provides Web services
for effective form processing. FormSys is designed to be used
by people without deep technical knowledge and deal with
any existing form as-is. In particular, we use a sub-standard
to PDF called AcroForms [3]. A discussion on design choices
can be found in Section 3.1.

In FormSys, office workers can easily create“form-processing
Web services” from PDFs, meaning the data the forms hold
can be received and sent via SOAP messages. This makes
it possible, for instance, to fill the common parts of multi-
ple forms simultaneously, or to electronically send a com-
pleted form’s content to a workflow system and trigger an
event. More specifically, when a form is uploaded by the
user, FormSys can dynamically generate two services:

• soap2pdf accepts data from an application, fills an
AcroForm with it, and sends it back via email or pro-
vides a URL under which the filled form is available.
• pdf2soap extracts the data from a filled AcroForm, as-

sembles and sends a SOAP message to an application.

The demonstration of FormSys comprises soap2pdf, pdf2soap,
and use case applications developed from real scenarios.

2. RELATED WORK
To the best of our knowledge, there is no other work that

offers the functionality discussed in this paper with form
documents. There are a number of commercial tools, such
as Adobe LiveCycle Designer [1], Crystal Report1, and For-

1http://www.crystalreports.com

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1313



mMax [2], that are aimed at designing form templates, dy-
namically generating forms or assisting form filling activity.

We also found numerous software products which utilise
OCR or barcode reading2 to capture data from a docu-
ment. These systems mostly focus on building a database
of scanned forms for indexing or search purposes. There
are other works that focus on automatically extracting a
structure out of flat PDF documents. For example, in [5]
where an algorithm is proposed to automatically detect dif-
ferent parts of a PDF document (e.g., Header/Footer) and
produces an XML. Although the purposes of the conversion
may vary, generally speaking, these automatic structure ex-
traction techniques can be applied in our system, for exam-
ple, to eliminate the field/group name mapping step which
is done manually at the moment.

We should note that our system’s focus is not on design-
ing, creating or automatically scanning forms, but on pro-
viding a small, effective and self-contained service which can
be used to easily consolidate manual, form-based user inter-
actions in a business process into some degree of automation
by providing form data processing as services.

3. SYSTEM OVERVIEW
After discussing design decisions, we will present the ar-

chitecture and implementation of the tool.

3.1 Design Choices
While the concept of passing information from forms to

application program interfaces (APIs) and vice versa is in-
dependent of specific API or document formats, we had to
decide on specific technologies for the implementation. We
here discuss these choices.

Form document formats. The de-facto Web standard
for exchanging read-only fixed-layout documents today is
Adobe PDF3, which we decided to use. There is a sub-
standard to PDF called AcroForm which features editable
fields [3]. These fields can be of various types (text, check-
box, etc), and they reside on a visual layer above the regular
document. The fields are named, and their size and position
are determined by the form’s designer. As alternatives,
we considered GoogleDocs4 and other common office soft-
ware packages such as OpenOffice5 or Microsoft Office6. We
found that none of their APIs are as rich and as portable as
what PDF offers.

Data exchange. Another design decision was to build on
a structured communication standard. We here decided to
use Web service technology. As alternatives we also consid-
ered REST and proprietary Remote Procedure Calls (RPC).
However, REST by itself is not well structured, and thus less
suitable for our scenarios. RPC technology imposes require-
ments on using the same programming paradigm (e.g., Java
or .NET) in the communication partner as used for imple-
menting the service provider. Therefore we decided on Web
services, SOAP over HTTP, as well as regular email with
MIME attachments.

2http://www.scantopdf.co.uk/
3A Google search for “filetype:pdf” finds 562,000,000 docu-
ments, vs. around 84,057,000 “doc” and “docx” (2/2/2010).
4http://docs.google.com (15/10/09)
5http://www.openoffice.org (15/10/09)
6http://office.microsoft.com (15/10/09)

3.2 Architecture and Tool Overview
The architecture of our system, cf. Fig. 1, has the fol-

lowing components: a front-end for forms administrators to
upload and administer form templates; a format converter
container, where converters from arbitrary formats to PDF
can be included as plug-ins; a central pdf2soap component
handling uploaded filled forms; an OCR pre-processor for
using pdf2soap functionality on filled forms no in AcroForm
format; a set of self-contained soap2pdf services for filling
forms; a database for form templates and field mappings;
and a core component controlling the whole system includ-
ing pdf2soap functionality and soap2pdf service creation.
These components and their usage are described below.

FormSys

FormSys
Core

Component

Client 
Application

FormSys
Web Front-end

Central
pdf2soap

Component

generate, 
maintain, 
remove

activate, 
maintain, 
remove

Upload, refine, 
and administer 
form templates

Provide filled
electronic form

Invoke with
data from form

Invoke with
data for form

Response: filled 
form URL 
or email

End user /
customer

Organization’s
Web service

implementation or 
adapter

OCR Pre-
processor for 

pdf2soap

Provide 
filled form 

(e.g., scanned) Provide filled
electronic form

Form Format 
Converter 
Container

Database for 
Templates and 
Field Mapping

retrieve 
mappings

Forms 
administrator

. . .

soap2pdf 1

soap2pdf 2

soap2pdf n

Figure 1: FormSys Overview

Through the main Web interface of FormSys, forms ad-
ministrators can control the handling of form templates in
the core component: they can upload forms, specify the ser-
vice name and namespace, edit the field naming, group the
fields, and activate, maintain, or discontinue soap2pdf and
pdf2soap functionality. If the form is initially not available
in the required format (AcroForm), it needs to be converted
to PDF and the fields need to be specified. For the prior
step, available converters to PDF can be included in the sys-
tem through the converter container. For partly automating
the latter step, the discussed work [5] may be employed. De-
pending on a provided form template, it may be necessary
to add fields, change the position and type, and change the
names of fields or groups in the form – this ranges from
specifying all fields for new forms to only renaming to make
field names more descriptive. The forms administrator can
edit fields and grouping, cf. Figure 2, using an intuitive
user interface: an image of the uploaded form itself is pre-
sented, and existing fields can be selected by clicking on the
respective areas of the image. The form template and field
naming are stored in the database; they influence the data
structures of the services created from the form.

An active soap2pdf service is a full-fledged Web service of-
fering a WSDL interface with a single operation: fillForm.
The input to this operation is the following: the input data
for the form document; an expiry date for specifying how
long a filled form should be kept available; an email address
to which the filled form is mailed back; and a boolean switch
for determining whether the filled form will be editable (i.e.,
remain as AcroForm) or rendered to a flat PDF. If no email
address is given, or an email address and an expiry date

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1314



Figure 2: Field name and group editing

Figure 3: Options for a running pdf2soapservice

are specified, the filled form will be made available under a
URL, which is sent back in the synchronous SOAP response
to an invocation. This response also contains a status report
and a list of faults, if any. soap2pdf services can be flexibly
used in (Web) applications and orchestrations, as discussed
in the use case section.
pdf2soap works as follows: when a filled form is uploaded

by an end user through the pdf2soap front-end component,
the data is extracted and packaged in a SOAP message ac-
cording to the mapping in the database, and sent to the
associated consuming service. For forms administrators the
set-up is less straight-forward: challenges are how to find
the service, and how to map the data from the form to the
schema of the message to be sent. We circumvent the dif-
ficulties by enforcing the following procedure. For an up-
loaded form template, the forms administrator can generate
a pdf2soap WSDL interface specification without endpoint
information. This interface needs to be implemented by the
consuming organization. Once that is done and the service
is deployed, the forms administrator provides FormSys with
the endpoint under which the service is reachable. With this
information a pdf2soap service can be started. The data ex-
tracted from filled forms is then forwarded to the given end-
point. Fig. 3 shows the forms administrator’s interface in the
pdf2soap view, where the part for controlling the pdf2soap

service is a drop-down menu shown for “sal11.pdf”. The
database is hereby the only point where the pdf2soap run-
time depends on the form design time. Thus, the central
pdf2soap component can be physically separated from the
core component, given the database is accessible.

Due to the prescribed procedure, the mapping from the
form fields to the schema is known to our system. The pro-
cedure applies naturally to situations where the organization
has no service implementation available at this point, as it

frees them from designing the interface manually. However,
if a Web service is already implemented, it is unlikely that
the generated WSDL will match it. In this situation, an
adapter has to be developed, e.g., based on [6] or on commer-
cial products such as Oracle Fusion Middleware (OFM)7 or
SAP NetWeaver Process Integration (SAP NetWeaver PI)8.

If a filled form is not an AcroForm, pdf2soap has a pre-
processing component for Optical Character Recognition (OCR).
Thus, the data from fields can be extracted even out of im-
age formats, such that paper copies can be scanned and
processed by our system. We plan to use existing OCR
technology2 to extract the data from the fields, however,
this is not implemented as yet.

3.3 Implementation
Although the designed architecture is generic, our current

implementation is specific to supporting AcroForms. How-
ever, we believe the system is mature enough to demonstrate
the concept we propose. The system is entirely written in
Java and makes use of the following libraries:

• Apache CXF9 for all aspects related to Web service.

• ImageMagick10 for creating images from PDFs.

• iText11 for accessing and manipulating AcroForms.

• jQuery12, for interactive graphical Web user interfaces.

The soap2pdf code generation starts from the mapping
of user-given field names to each of the AcroForm fields – if
unchanged the mapping is simply the identity function. The
map is used in Java code generation from templates. The
generated code has a class for each group containing the re-
spective fields and their mapping to AcroForm fields. These
classes are combined in an input bean with the according
other parameters. A Web service implementation is then
generated using CXF, which creates the filled AcroForm
when invoked with the input bean, and accordingly handles
the response and emailing. This code is compiled, packaged,
and deployed using standard Java APIs. For pdf2soap the
field mapping is handled centrally by the upload site.

4. USE CASES
In order to demonstrate the applicability and value of

FormSys, we identified and implemented two use cases, all
taken from real-world. Use case 1 is implemented as a Web
application, and makes use of both pdf2soap and soap2pdf.
Use case 2 is implemented as a Web service orchestration
in BPEL[7], and uses only soap2pdf. All PDFs used in the
use cases are publicly available on the respective Web sites.

4.1 Use case 1: Suncorp investment forms
Personalised Form Download. Often, banks require

a paper-based form to be filled in by their customers to use
additional banking services. As an example, the investment
fund management forms of Suncorp, an Australian bank, can
be found at http://www.suncorp.com.au/suncorp/personal/
Investing/forms.aspx. From this page, Suncorp customers
download blank PDF forms (not AcroForms), print, fill in,

7http://www.oracle.com/us/products/middleware/
8http://www.sdn.sap.com/irj/sdn/nw-pi71 (13/10/09)
9http://cxf.apache.org

10http://www.imagemagick.org
11http://www.lowagie.com/iText
12http://jquery.com

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1315



and return the forms via postal mail or fax to consume the
respective service.

However, for existing customers, banks already have many
details such as name, title, residential address. With our so-
lution, the data that is already present in the bank’s data
bases can be pre-filled into personalized forms. This is par-
ticularly useful for the data the customer is unlikely to use
everyday, but required in the form nonetheless, such as in-
vestment fund numbers or insurance police identifiers.

To showcase this, we developed a Web application resem-
bling the above-mentioned Suncorp website. This applica-
tion is available online (cf. Section 5). Logged-in users can
generate personalized versions of Suncorp forms. In the
background, the Web application retrieves user data from
a database, assembles a SOAP message, and invokes the
FormSys Web service for the respective form with this mes-
sage. The service then returns a URL under which the form
can be downloaded. The fields in the generated form is still
editable by the user.

Form Triggering a Business Process. When a form
is filled in and the customer submits it to his bank, a set of
business process at the bank are triggered by the customer’s
request. If these processes are implemented in software, the
data from paper-based forms has to be provided to the soft-
ware, and more often than not this is a manual process.

In contrast, if the data is available in AcroForm fields,
then our pdf2soap solution can be used. After the filled-
in form has been uploaded to FormSys, and the respective
pdf2soap service is active, FormSys extracts the data from
the AcroForm, assembles a SOAP message, and invokes the
associated endpoint with this message.

Usually this endpoint would refer to an actual implemen-
tation of the business process that is triggered upon arrival
of a respective form. For the demonstration purposes, we de-
veloped a simple Web service as part of the Web application:
it accepts pdf2soap messages and writes the contained data
into a file. When accessing the output page, the information
from the file is displayed in a table.

4.2 Use case 2: Queensland Government
Driver Licence Request. When renewing or requesting

a new driver licence in Queensland, an individual has to fill
in up to six different forms. Most of these forms request some
standard personal data, such as name, title, address, date
of birth and the like. Also, an individual has to understand
which forms are needed when.

We analysed the requirements and downloaded the re-
spective forms from the Queensland Government, Transport
Department website, starting from http://www.transport.

qld.gov.au/Home/Licensing/Driver_licence/. On this ba-
sis we implemented an executable process which accepts the
data needed in more than one form and forwards it to the
respective FormSys soap2pdf services. The process has been
deployed to an Intalio|Server13, where users have access to a
simple workflow: when starting process instances by provid-
ing input data, the required subset of the six forms is filled
and returned to the user.

5. DEMO SCENARIO
The demonstration shows the personalized form genera-

tion from Use case 1 (cf. previous section) as a motivation,

13http://www.intalio.com

and then explains the underlying system, FormSys. We then
demonstrate how to upload an AcroForm, edit field names,
start a soap2pdf service, and view the dynamically gener-
ated WSDL file. We also explain and demonstrate pdf2soap

in general, and how it is used in Use case 1, followed by Use
case 2 where we show the executable process model and the
different ways to interact with the user.

The different parts of the demonstrations can be viewed
individually as screencasts from a Web site: http://www.

cse.unsw.edu.au/~FormSys/FormSys.html. This Web site
also links to the running implementation, which we encour-
age to test and to comment on.

6. CONCLUSION AND FUTURE WORK
In this paper, we showcase FormSys, a web-based system

which Web service-enables form documents. The main func-
tionality of FormSys is twofold: soap2pdf provides filled-in
forms based on data in SOAP messages, while pdf2soap ex-
tracts data from filled-in forms and invokes a given Web
service endpoint with it. We also discussed three real-world
use cases, which make use of soap2pdf and pdf2soap. The
running system is accessible online (cf. Section 5).

We conclude from this work that PDFs can be used as a
channel for interacting with Web services: individuals can
provide filled forms as input to Web services, and Web ser-
vices can output filled form documents. The philosophy was
to enable non-technical users to interact with our system.

In future work, we consider mechanisms to support some
tasks for forms administrators, like field grouping and nam-
ing, through partial automation. One major open point is
how to consume soap2pdf services. In order to allow end
users to implement their personal processes themselves, we
plan on extending a mashup tool with FormSys functional-
ity. Another open point is dealing with other form types
than PDF: while the architecture contains a flexible mecha-
nism to plug in software to handle different document types,
the concepts have yet to be implemented.

Acknowledgments
This work has been supported by a grant from the Smart
Services CRC under the Service Delivery Framework project.

7. REFERENCES
[1] Adobe LiveCycle Designer ES2.

www.adobe.com/products/livecycle/designer/.

[2] Acro Software. FormMax 3.5. www.acrosoftware.com/.

[3] Adobe Systems Incorporated. Acrobat Forms API
Reference. Technical Note No. 5181, 2003.

[4] J. Becker, L. Algermissen, and B. Niehaves. A
Procedure Model for Process Oriented e-Government
Projects. Business Process Management Journal,
12(1):61 – 75, 2006.

[5] H. Déjean and J.-L. Meunier. A system for converting
PDF documents into structured XML format. In
Document Analysis Systems VII, LNCS 3872, 2006.

[6] H. Motahari, B. Benatallah, A. Martens, F. Curbera,
and F. Casati. Semi-Automated Adaptation of Service
Interactions. In WWW’07, 2007.

[7] OASIS. Web Services Business Process Execution
Language Version 2.0, Apr. 2007.

[8] D. Woods. Enterprise Services Architecture. O’Reilly,
2003.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1316


