
Ranking Specialization for Web Search:
A Divide-and-Conquer Approach by Using Topical

RankSVM

Jiang Bian
∗

College of Computing
Georgia Institute of Technology

jbian@cc.gatech.edu

Xin Li, Fan Li, Zhaohui Zheng
Yahoo! Labs

{xinli, fli, zhaohui}@yahoo-inc.com

Hongyuan Zha
College of Computing

Georgia Institute of Technology
zha@cc.gatech.edu

ABSTRACT
Many ranking algorithms applying machine learning tech-
niques have been proposed in informational retrieval and
Web search. However, most of existing approaches do not
explicitly take into account the fact that queries vary signif-
icantly in terms of ranking and entail different treatments
regarding the ranking models. In this paper, we apply a
divide-and-conquer framework for ranking specialization, i.e.
learning multiple ranking models by addressing query differ-
ence. We first generate query representation by aggregating
ranking features through pseudo feedbacks, and employ un-
supervised clustering methods to identify a set of ranking-
sensitive query topics based on training queries. To learn
multiple ranking models for respective ranking-sensitive query
topics, we define a global loss function by combining the
ranking risks of all query topics, and we propose a uni-
fied SVM-based learning process to minimize the global loss.
Moreover, we employ an ensemble approach to generate the
ranking result for each test query by applying a set of rank-
ing models of the most appropriate query topics. We con-
duct experiments using a benchmark dataset for learning
ranking functions as well as a dataset from a commercial
search engine. Experimental results show that our proposed
approach can significantly improve the ranking performance
over existing single-model approaches as well as straightfor-
ward local ranking approaches, and the automatically iden-
tified ranking-sensitive topics are more useful for enhancing
ranking performance than pre-defined query categorization.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Retrieval models; H.4.m [Information Systems]:
Miscellaneous—Machine learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Ranking specialization for Web search, ranking-sensitive query
topic, topical RankSVM

∗The work was done when the first author was intern at
Yahoo! Labs

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

1. INTRODUCTION
Ranking has become a central research problem for in-

formational retrieval and Web search, since it directly in-
fluences the relevance of the search results, the quality of
a search system and users’ search experience. The task of
ranking in the search process can be briefly described as
follows. Given a query, the deployed ranking function mea-
sures the relevance of each document to the query, sorts all
documents based on their relevance scores, and presents a
list of top-ranked ones to the user. Thus, the essential prob-
lem of search technology is to design a ranking function that
can best represent relevance. In the past, many models have
been proposed, including the Boolean model [2], vector space
model [18], probabilistic model [17] and language modeling
method [14]. Most recently, there are renewed interests in
exploring the techniques from machine learning for build-
ing ranking functions, some popular algorithms including
MCRank [15], RankNet [6], RankSVM [12], RankBoost [8],
GBRank [23], ListNet [7],and IsoRank [24].

In most of the previous work, the significant difference in
queries is not adequately addressed in the context of rank-
ing. This is clearly not appropriate, particularly for Web
search, since queries vary largely in multiple facets, such as
semantics, users’ search intention, popularity, length, num-
ber of relevant documents, etc. For example, queries can
be related to various semantical domains, such as product,
travel, and autos, or be categorized as navigational, infor-
mational, and transactional [5] in terms of search intentions;
queries can vary in terms of their popularity, i.e. the fre-
quency of occurrence in the search log; queries can also be
different in length; and at some time, queries are classified
as those associated with many relevant documents and those
having very few relevant documents.

These various types of query difference make it difficult
to build a single general ranking function for all kinds of
queries, because the ranking function, while indicating good
ranking relevance for a certain type of queries, may not
be able to achieve similar performance for other types of
queries. For instance, many current search engines can achieve
good ranking performance on general short queries with 2-3
query terms, but they usually can not achieve high relevance
for long queries with more query terms. And, for popular
queries that are often searched by Web users, search en-
gines can generally return good results, but for those that
rarely occur or are new phrases on the Web, search engines
may not be able to give sound ranking relevance. Before
exploring new ranking methods to resolve these difficulties,
we need to first investigate why query difference can result
in such ranking problems.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

131

We hypothesize the reason as the diverse feature impacts
on ranking relevance with respect to different queries. For
instance, for homepage finding (a kind of navigational) queries,
the textual similarity between the query and the document
title may be the best indicator of ranking relevance, whereas
for topic distillation [21] (a kind of informational) queries,
the whole-document TFIDF and BM25 features may be bet-
ter for inferring relevance. As another example, for popular
queries, document popularity features, such as PageRank,
may be important for ranking, whereas for rare queries, it
is not necessary to use document popularity to measure the
ranking relevance. As a conclusion, a single ranking model
cannot reflect different feature impacts for different queries,
such that it would not be adequate to use one single ranking
model for diverse types of queries.
Therefore, it is necessary to find some new approaches

which can give better ranking relevance for all the differ-
ent types of queries. A straightforward method is to add
query difference in terms of additional features into learn-
ing the single ranking function, however, since this method
requires high quality of both the new features and train-
ing data, it usually does not effective in practice (as shown
in experiment in Section 5.1.2). In this paper, we propose
a divide-and-conquer framework for improving the ranking
relevance for all queries. The basic idea is to first iden-
tify a set of ranking-sensitive query topics and divide the
problem of learning one single ranking model for all queries
into learning a set of sub-models for corresponding different
query topics. Then, we conquer these learning problems by
introducing a global loss function and exploring a unified
approach to co-optimize all sub-models. At testing time, we
select a set of ranking-sensitive query topics the new query
most likely belongs to, and apply respective ranking models
to ranking the documents, then we assemble these ranking
results together to obtain the final ranking for the new query.
We name the whole framework as ranking specialization.
By applying ranking specialization, we can benefit rank-

ing relevance in several ways: Firstly, ranking specializa-
tion can help to improve the overall search relevance, since
the divide-and-conquer approach allows us to create and use
topic-specific features and training data for learning the ded-
icated ranking model for each ranking-sensitive query topic.
Secondly, we observed that, the current learning-to-rank al-
gorithms, exploited to train a single ranking model, usually
improve relevance on some queries, but hurt relevance on
other queries compared with some baseline approach. Rank-
ing specialization allows us to take deep-dive analysis and
improve relevance on a subset of queries, without hurting
others, which is the key for continuously improving Web
search relevance. Furthermore, ranking specialization allows
us to incrementally update the ranking models for search en-
gines. From deep dive analysis, after we identify a group of
queries that share the same ranking problems, we can easily
update the model for the existing ranking-sensitive query
topics, or add the queries as a new query topic, and then
build a dedicated model for them.
However, there are three major challenges for our frame-

work. The first one is how to identify the ranking-sensitive
query topics. Most of previous query classification focus on
categorizing queries in terms of semantics [3, 19], but such
query classification may not be best for the purpose of im-
proving ranking. Some of query taxonomy [5] is based on
search intent [5], but they may not be fine-grained enough
for ranking purpose. Furthermore, pre-defined query catego-
rization may not even be available at learning time. In this

paper, in addition to pre-defined query categories, we pro-
pose to identify ranking-sensitive query topics, in the sense
that, each ranking-sensitive query topic represents a group
of queries having the similar set of important features for
measuring ranking relevance, and different query topics re-
flect diverse feature impacts on ranking. Due to the high
correlation between the ranking-sensitive query topics and
ranking features, we identify ranking-sensitive query top-
ics by taking advantage of both ranking features of query’s
pseudo feedbacks and the prior knowledge of importance of
ranking features.

The second major challenge is how to train the rank-
ing model with respect to each ranking-sensitive query top-
ics. Previous works, especially on local ranking or query-
dependent ranking [13, 9], have proposed to train the rank-
ing model for each query category separately. Although hav-
ing achieved better ranking performance than single-model
approaches, these methods do not consider dependency be-
tween different query categories, which may be beneficial to
further improving ranking. Moreover, since they use only a
small part of the training data for learning each model, it
may cause the declining accuracy due to the lack of enough
training examples. We instead propose a unified SVM-based
method to learn all the models of all ranking-sensitive query
topics simultaneously. In particular, we define a new global
loss function by combining the ranking risks of all the train-
ing examples (for all query topics) with different weights ac-
cording to the training query’s similarity to different query
topics. Intuitively, if one training query is highly correlated
to a certain query topic, training examples with respect to
this query will contribute more to learn the ranking model of
this particular query topic. We name this learning method
as Topical RankSVM.

The last challenge is how to conduct ranking for new test-
ing queries. In our paper, we employ a testing method con-
sistent with the training process. We first select a set of
ranking models based on the correlation between the test
query and the corresponding ranking-sensitive query top-
ics. To obtain the final ranking result, we then aggregate
the ranking scores computed by all selected models with
weights based on the similarity between the test query and
query topics. The intuition is that the ranking relevance of
the test query depends more on the ranking models for the
query topics that the test query most likely belongs to.

To evaluate the effectiveness of our proposed approaches
for learning ranking functions, we conduct experiments on
both Letor [16], a public benchmark dataset for learning
ranking functions, and a large scale dataset from a commer-
cial search engine. Experimental results show that our pro-
posed approaches can significantly improve the performance
of ranking over the single ranking model approach on both
benchmark dataset and commercial search engine dataset.
We also observe that our approach can out-perform previ-
ous local ranking or query-dependent ranking approaches.
Furthermore, we provide analysis and conduct additional
experiments to gain deeper understanding on the advantage
of incorporating ranking-sensitive query categories.

The remaining parts of this paper are organized as follows.
Section 2 introduces related work. Section 3 presents our
divide-and-conquer ranking framework and its three major
parts in details. Experimental setup and results are demon-
strated in Section 4 and 5, respectively. We conclude the
paper and point out future research directions in Section 6.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

132

Figure 1: The ranking specialization framework for improving search relevance

2. RELATED WORK
Some of recent works have realized the importance and

necessity of incorporating query difference into learning the
ranking function. Zha et al. [22] propose an aTVT algo-
rithm which implicitly incorporates query difference using
monotonic transformations of the learned ranking functions.
This approach focuses on the boundary of each query with-
out considering broader query grouping. Kang et al. [13]
classify queries into two categories (navigational and infor-
mational) and build two corresponding ranking models sep-
arately. However, it requires the availability and high ac-
curacy of query classification. In a most recent work, Geng
et al. [9] propose a K-Nearest Neighbor (KNN) method to
employ different ranking models for different queries. Specif-
ically, each training query holds a ranking model which is
learned using the query itself and its neighboring queries.
Given a test query, they find the most similar training query
and use the corresponding model for ranking. Training time
of this method is quite large, since many models need to be
trained separately. And each model is trained using only
a part of whole training set, which may cause the declin-
ing accuracy due to the lack of adequate training examples.
In our work, we employ a divide-and-conquer approach for
ranking specialization to improve the ranking relevance. We
will discuss our approach in details in the following sections.

3. RANKING SPECIALIZATION
In this section, we will explore a new divide-and-conquer

approach for ranking specialization for improving search rel-
evance. We will start with introducing the general divide-
and-conquer framework, followed by concrete discussion on
three major parts of the framework in sequence.

3.1 A Divide-and-Conquer Framework
The divide-and-conquer framework consists of three ma-

jor steps. In the first step, we target at identifying a set of
ranking-sensitive query topics, Cquery = {C1, C2, · · · , Cn},
based on all of training queries, Qtrain = {q1, q2, · · · , qN}.
The recognized query topics are considered ranking-sensitive
in the sense that different queries of the same topic should
have similar characteristics in terms of ranking, especially,
the similar family of important features for ranking. After
this step, for each training query qi ∈ Qtrain, we can obtain
its distribution over all of extracted ranking-sensitive query
topics, i.e. Topic(qi) = ⟨P (C1|qi), P (C2|qi), · · · , P (Cn|qi)⟩,
where P (Ci|q) is the probability that q belongs to Ci. This
step is like dividing the problem of learning one single rank-
ing model for all training queries into a set of sub-problems of
learning the ranking model for each ranking-sensitive query

topic. The number of query topics can be set either empiri-
cally to constants, or through gap statistic [20].

The second step is to develop a unified learning method for
learning multiple ranking models Mk (k = 1, 2, · · · , n), each
exclusively corresponding to one ranking-sensitive query topic
Ck ∈ Cquery. In our work, we propose a global loss function
by combining risks of different ranking-sensitive query top-
ics and introduce Topical RankSVM to train all the models
M1,M2, · · · ,Mn, simultaneously, by minimizing the global
loss function. By applying this unified learning method, we
have considered dependency between different query topics
when building their respective ranking functions, which can
be beneficial to further improve ranking. Moreover, though
treated unequally in learning each ranking function, all the
training queries contribute to learn all ranking models of
query topics, which avoids the lacking of training examples
for learning the model of any single query topic. This uni-
fied method is quite general as we can use different feature
set for different query topics. As incorporating information
of query topics into the ranking algorithm, this step is like
conquering the problem of learning the respective ranking
model for each query topic.

The goal of the last step is to conduct ranking for new test-
ing queries, Qtest = {q1, q2, · · · , qt}. For each testing query
qj ∈ Qtest, we apply an ensemble method, which try to min-
imize the risk consistent with the loss in training process.
We first select a certain number H of ranking models Mj1,
Mj2,· · · , MjH , whose corresponding query topics hold H
highest correlation with qj , and then aggregating the rank-
ing results Sj1, Sj2,· · · , SjH obtained by Mj1, Mj2,· · · , MjH

into a final ranking results S. After divide-and-conquer, this
step aggregates ranking results from sub-models together
into the improved final ranking results.

We summarize the general framework in Figure 1. Such
ranking specialization approach allows us to use different
feature sets or data sets to learn respective ranking models
for different query topics, so as to boost the relevance for
each query groups; And, the global loss in the second step
serves as a unified relevance target when training different
models for different query topics, such that we can optimize
the overall search relevance when we train different ranking
models. In the rest of this section, we will discuss the details
of each step of the framework in sequence.

3.2 Identifying Ranking-Sensitive Query
Topics

3.2.1 Generating Query Features
To identify ranking-sensitive query topics, we first gen-

erate a set of features to represent queries by taking ad-

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

133

vantage of the ranking features of top pseudo feedbacks
of the query. For each training query q ∈ Qtrain, we re-
trieve a set of pseudo feedbacks, PF (q) = {d1, d2, · · · , dT },
consisting of the top T documents ranked by a reference
model (we use BM25 in this paper). The ranking features of
query-document pair of ⟨q, di⟩ are defined as a feature vec-

tor xqdi = ⟨xqdi
1 , xqdi

2 , · · · , xqdi
D ⟩ (D is the number of ranking

features). To represent q in a feature space, we aggregate
the ranking features of top-T pseudo feedbacks of q into a
new feature vector. We take the mean and variance of the
ranking feature values as two aggregation methods. Thus,
the feature vector of query q can be represented as

⟨µ1(q), µ2(q), · · · , µD(q), σ2
1(q), σ

2
2(q), · · · , σ2

D(q)⟩

where µk(q) denotes the mean value of k-th feature over q’s
pseudo feedbacks, and σ2

k(q) denotes the variance value of
k-th feature over q’s pseudo feedbacks.
In this paper, we will employ linear SVM model as the

ranking algorithm. Thus, before generating query features,
we have applied quantile normalization [4] on ranking fea-
tures of query-document pairs in both training and testing
dataset, such that the values of all ranking features are in
the scale of [0, 1]. As a result, the values of extracted query
features are also in the scale of [0, 1].

3.2.2 Generating Query Topics and Computing Topic
Distribution for Queries

After generating query features, we employ the mixture
model as the clustering method to obtain ranking-sensitive
query topics. We can either empirically set the number of
cluster as a constant n, or determine it through gap statis-
tic [20]. After learning the model, we can obtain a set of
query clusters {C1, C2, · · · , Cn}, where each cluster Ck can
be represented as a vector xCk = ⟨xk

1 , x
k
2 , · · · , xk

Dq
⟩, and Dq

denotes the number of query features. We consider each
cluster as one query topic.
Furthermore, we incorporate the prior knowledge of fea-

ture importance for ranking into identifying ranking-sensitive
query topics. We obtain feature importance scores by us-
ing the ranking weights learned by a general RankSVM on
a sample of training data. In our paper, we integrate the
feature importance as weights into aggregated query fea-
tures. Assuming the feature importance scores are w =
⟨w1, w2, · · · , wDq ⟩, the weighted feature vector of query qi is
computed as

w ⊙ xi ≡ ⟨w1x
i
1, w2x

i
2, · · · , wDqx

i
Dq

⟩ (1)

where xi = ⟨xi
1, x

i
2, · · · , xi

Dq
⟩ is the original feature vector

of query qi. Based on the new query features weighted by
feature importance, we can employ the mixture model to
obtain the ranking sensitive query topics with integrated
feature importance.
Based on this representation of query topics, we are able

to calculate the topic distribution Category(q) = {P (C1|q),
P (C2|q), · · · , P (Cn|q)} for query q as

P (Ck|q) =
|xq − xCk |2∑n
i=1 |xq − xCi |2 (2)

Since we take advantage of ranking features of top re-
trieved pseudo feedbacks of the query to generate query fea-
tures as well as we compute topic distribution for queries
by incorporating prior knowledge of feature importance for
ranking, we consider the identified query topics and com-
puted topic distribution for each query as ranking-sensitive.

3.3 A Unified Approach for Learning
Multiple Ranking Models

3.3.1 Problem Statement
For traditional ranking approach, the task is to find a

function f in the form of

y = f(X,ω), f ∈ F

where X denotes an M ×D matrix representing D dimen-
sional feature vectors of M documents; ω represents the un-
known ranking parameters; y is a vector representing rank-
ing scores of the M documents. The goal of learning is to

select a best function f̂ , such that f̂ minimizes the given loss
function:

f̂ = argmin
f∈F

N∑
i=1

L(f(Xi, ω), yi) (3)

where N is the number of queries in the training set; Xi de-
notes the set of documents associated with the i-th query;
yi is the vector of corresponding ranking scores; L denotes a
defined query-level loss function. Clearly, traditional rank-
ing approach learns single ranking function for all queries.

Inspired by the diverse ranking characteristics implied by
different queries, to improve ranking relevance, we formal-
ize a new problem of learning multiple ranking functions,
f1, f2, · · · , fn ∈ F , given the identified ranking-sensitive
query topics C1, C2, · · · , Cn, where each ranking model fi(i =
1, · · · , n) can represent the ranking characteristics of its cor-
responding query topic Ci. In order to create a unified rel-
evance target for all topic-specific ranking models and let
all training examples contribute to all ranking models, we
propose a new global loss function by combining ranking
risks of all training examples with different weights accord-
ing to the training query’s similarity to different query top-
ics. By optimizing this global loss function, we can learn
multiple ranking functions, simultaneously. The intuition
is that if the query of one training example is highly cor-
related to a certain query topic, this training example will
contribute more to learn the ranking function of this query
topic. Specifically, the global function is defined as

⟨f̂1, · · · , f̂n⟩ = arg min
f1...fn

N∑
i=1

L(

n∑
j=1

P (Cj |qi)fj(Xi, ωj), yi)

(4)
where n is the number of identified ranking-sensitive query
topics; P (Cj |qi) represents the probability that qi belongs
to Cj ; and ωj denotes unknown parameters of the ranking
function fj corresponding to the query topic Cj . Intuitively,
if query qi is highly correlated to a query topic Cj , i.e. with
high value of P (Cj |qi), the loss of ranking under qi will be
much associated with learning ωj .

3.3.2 Topical RankSVM
The learning task in Eq. 4 is specified when the form of

the ranking function f and that of the loss function L are
defined, for example, we can use linear function as rank-
ing function, i.e. f(X,ω) = ωTX, and L2 norm as loss
function, i.e. L(f(X,ω), y) = ∥f(X,ω) − y∥2. The rank-
ing specialization framework is quite general and flexible in
the sense that it can apply different ranking algorithms. In
this paper, we use RankSVM as an example to demonstrate
its advantages. For simplicity, we consider the linear func-
tion f(X,ω) = ωTX. We refer to our method as Topical
RankSVM. Note that the same idea can also be applied to

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

134

other ranking algorithms, such as RankNet and RankBoost,
by modifying the respective loss function according to Eq. 4.
• RankSVM:
We first make a review of RankSVM [10, 12]. Its learn-
ing task is defined as the following quadratic programming
problem:

min
ω,ξq,i,j

1

2
∥ω∥2 + c

∑
q,i,j

ξq,i,j

s.t. ωTXq
i ≥ ωTXq

j + 1− ξq,i,j ,

∀Xq
i ≻ Xq

j , ξq,i,j ≥ 0

(5)

where Xq
i ≻ Xq

j implies that document i is ranked ahead
of j with respect to query q in the training dataset; ξq,i,j
denotes slack variable; and ∥ω∥2 represents structural loss.
• Topical RankSVM:
We then describe Topical RankSVM. Inspired by the fact
that the ranking model of one specific ranking-sensitive query
topic depends more on the training query-document pairs,
the query in which has higher correlation to the certain
query topic, we modify Eq. 5 into the optimization prob-
lem of Topical RankSVM:

min
ω,ξq,i,j

1

2

n∑
k=1

∥ωk∥2 + c
∑
q,i,j

ξq,i,j

s.t.

n∑
k=1

P (Ck|q)ωT
k X

q
i ≥

n∑
k=1

P (Ck|q)ωT
k X

q
j + 1− ξq,i,j ,

∀Xq
i ≻ Xq

j , ξq,i,j ≥ 0
(6)

where ωk denotes the parameters of ranking function with
respect to query topic Ck. Note that we can use different fea-
ture sets for different query topics by using this method, but
for simplicity, we didn’t try it in this work. The optimiza-
tion problem can be solved by employing existing optimiza-
tion techniques, the computation details of which, though
tedious, are rather standard and will not be presented here.
Note that, there are several advantages by using Topical

RankSVM. Firstly, we are able to embed ranking-sensitive
query topics directly into the ranking algorithm and learn
multiple ranking functions for different query topics, simul-
taneously. Secondly, the global loss serves as a unified rele-
vance target for all topic-specific ranking models, which can
boost the relevance than training models separately. And,
we employ all of the training queries to learn ranking models
of each query category, avoiding the reduction of the train-
ing examples. Moreover, compared to previous work [9, 13],
our approach is not less efficient on training time, which has
been proved in the experiments on a large scale dataset. The
same idea can also be applied on ranking algorithms other
than RankSVM, in the similar way. In the rest of this sec-
tion, we will employ a testing method which is consistent
with the training method, in the sense that both of them
focus on optimizing the same risk of ranking.

3.4 Ensemble Ranking for New Queries
After obtaining multiple ranking models corresponding to

ranking-sensitive query topics, we employ an un-supervised
ensemble method for improving ranking at query time. The
intuition is that: Similar queries in ranking-sensitive feature
space are more likely to hold similar ranking characteris-
tics, therefore, if one query topic has higher correlation to
the testing query, the corresponding ranking models should
contribute more to the final ranking of the testing query.

Assuming that f̂1, f̂2, · · · , f̂n are ranking models learned
with the method in 3.3 and correspond to query topics C1,
C2, · · · , Cn respectively; q̃ is a testing query, and {d̃1, d̃2,
· · · , d̃Mq̃} is the set of documents to be ranked with respect
to q̃; and P (C1|q̃), P (C2|q̃), · · · , P (Cn|q̃) are the proba-
bilities that the new testing query belongs to query topics.
Then, we compute the ranking score S(q̃, d̃i) for each docu-

ment d̃i (i = 1, · · · ,Mq̃) as follows:

S(q̃, d̃i) =
n∑

k=1

P (Ck|q̃)f̂k(xq̃d̃i , ωk) (7)

where xq̃d̃i is the ranking feature vector of the query-document

pair of q̃ and d̃i; ωk denotes parameters of f̂k. Then, we can
obtain the final ranking of documents under q̃ according to
the aggregated ranking scores computed by Eq. 7. Note
that this testing approach tries to minimize the ranking risk
consistent with that in training process.

4. EXPERIMENTAL SETUP
This section presents our evaluation setup. First, we de-

scribe the datasets we used in the experiments (Section 4.1).
Then, we describe our evaluation metrics (Section 4.2) and
the ranking methods to compare (Section 4.3) for the exper-
imental results reported in Section 5.

4.1 Data Collection
In the experiment, we used three datasets, including both

the publicly benchmark dataset and that obtained from a
commercial search engine.
LETOR 3.0:
LETOR 3.0 [16] is a benchmark dataset for research on rank-
ing [1]. We use TREC2003 and TREC2004 in LETOR 3.0
to evaluate the performance of exploring ranking-sensitive
query topics for improving ranking. TREC2003 contains
350 queries and TREC2004 contains 225 ones. For each
query, there are about 1,000 associated documents. Each
query-document pair is given a binary judgment: relevant
or irrelevant. In total, there are 64 features for each query-
document pair, which can be referred to [16] for the details.

Both of these two tracks classify all the queries into three
pre-defined categories, including topic distillation (TD), home-
page finding (HP) and named page finding (NP), according
to search intent. The statistics of queries for three cate-
gories in LETOR 3.0 can be found in [16]. Note that, this
pre-defined hard categorization can also be used to improve
ranking by applying the same method in Section 3.3. In
our experiment, we will compare the effects on improving
ranking by using ranking-sensitive query topics with that
by using the pre-defined categorization.
LETOR 4.0:
LETOR4.0 is a new release of benchmark dataset for re-
search on ranking [1]. It uses the web page collection (50M
pages) and two query sets fromMillion Query track of TREC
2007 and TREC 2008, called MQ2007 and MQ2008 for short.
There are about 1700 queries in MQ2007 with labeled doc-
uments and about 800 queries in MQ2008 with labeled doc-
uments. Each query-document pair is represented by a 46-
dimensional feature vector. And we used the data with the
setting of supervised ranking to evaluate the performance of
our proposed ranking approach.
Commercial search engine dataset (SE-Dataset):
We also conduct experiment on a dataset obtained from
a major commercial search engine. This dataset contains

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

135

71,810 training queries and 1,227,094 query-document pairs
for training as well as 7,668 testing queries and 252,086
query-document pairs for testing. All the training and test
queries are randomly sampled from the real user traffic to
the search engine. Each query is associated with its re-
trieved documents, along with human judged labels that
represent the degrees of relevance of those documents with
respect to the queries. There are five levels of relevance:
perfect, excellent, good, fair, and bad. Features for each
query-document pair used in building the ranking functions
can be roughly grouped into the following categories: text-
matching features, link-based features, user-click features,
query and page classification features. We denote this dataset
as SE-Dataset.
This dataset classifies all the queries into four seman-

tic domains, including autos domain (Dauto), local domain
(Dlocal), product domain (Dproduct), and travel domain (Dtravel).
For each query, SE-Dataset provides the pre-computed sim-
ilarity score between the query and each query domain. The
value of the similarity score is in the range of [0, 1], 0 mean-
ing the smallest value of similarity while 1 meaning the
largest value of similarity. There are some queries in SE-
Data that have the 0 similarity scores with all of four pre-
defined domains. In our experiment, we define a new soft
query classification, which contains five classes, including
Dauto, Dlocal, Dproduct, Dtravel, and general domain Dgeneral.
For each query q, we set the similarity score with respect to
general domain class as 1, and after normalizing similarity
scores with respect to all five classes, we can obtain a soft
query classification.

4.2 Evaluation Metrics
We adapt the following information retrieval metrics to

evaluate the performance of the ranking function.
•Normalized Discounted Cumulative Gain (NDCG):
NDCG has been widely used to assess relevance in the con-
text of search engines [11]. For a ranked list of documents,
the NDCG score at position n is calculated as follows:

NDCG(n) ≡ Zn

n∑
j=1

2r(j) − 1

log2(j + 1)
(8)

where j is the position in the document list, r(j) is the rating
of the j-th document in the list, and Zn is the normalization
factor which is chosen so that the perfect list gets a NDCG
score of 1.
•Mean Average of Precision(MAP): Average precision
for each query is defined as the mean of the precision at
n values calculated after each relevant documents was re-
trieved. The final MAP value is defined as the mean of
average precisions of all queries in the test set. This metrics
is the most commonly used single-value summary of a run
over a set of queries. Thus, MAP is calculated as:

MAP =
1

|Q|
∑
q∈Qr

∑N
n=1(P@n× rel(n))

|Rq|

where Q is a set of test queries, Rq is the set of relevant
document for q, n is the rank position, N is the number
of retrieved documents, rel() is a binary function on the
relevance of a given rank.

4.3 Ranking Methods Compared
To evaluate the performance of our approach employing

ranking-sensitive query topics in learning the ranking func-
tion, we compare the performance of the following methods:

1. RSVM: As a baseline method, we employ RankSVM
(denoted as RSVM) and conduct training over all the train-
ing queries to learn one single ranking model. At testing
time, we use the single model to generate ranking results for
all testing queries.
2. CRSVM: In this method, we apply the pre-defined
query categorization into our proposed SVM-based learn-
ing method, where each query category is viewed as one
query topic. In LETOR 3.0 dataset, each query can only
belong to only one category. Thus, this method equals to
separating the training queries based on query categoriza-
tion and training a specialized model for each category of
queries. In commercial search engine dataset, we can employ
the pre-defined soft query categorization into our proposed
SVM-based learning method directly. We call this method
“Semantic-class based RankSVM”, denoted as CRSVM. At
testing time, for hard query categorization, we choose the
ranking model according to the category of each testing
query; for soft query categorization, we apply the ensem-
ble approach in Section 3.4 to generate ranking results.
3. LRSVM: In this method, we simulate the general idea
in [9]. After identifying the ranking-sensitive query cate-
gories, we classify each training query into the closest query
category. Based on this hard partition of training queries,
we train separate ranking model for each query category
using its own fraction of training queries. This method is
usually called “Local Ranking” in previous work. By using
RankSVM, we denote this method as LRSVM. At testing
time, according to the correlation between the test query
and query categories, we select the ranking model of the
most correlated query category and use it to generate the
ranking results.
4. TRSVM: In this method, after identifying the ranking-
sensitive query topics (Section 3.2), we employ the pro-
posed “Topical RankSVM” (Section 3.3) with topic distri-
bution of training queries to learn ranking models for those
query topics. At testing time, we use the proposed ensem-
ble method (Section 3.4) to generate the ranking results for
testing queries.

5. EXPERIMENTAL RESULTS
5.1 Experiments with LETOR Dataset

We evaluate the performance of the ranking methods on
TREC2003 and TREC2004 in LETOR 3.0 as well as MQ2007
and MQ2008 in LETOR 4.0. For each of these datasets, we
conduct 5-fold cross-validation experiments, using the de-
fault partitions in LETOR. For TREC2003 and TREC2004,
since the data of each class (TD, NP, HP) is split into 5
folds, we combine respective i-th fold (i = 1, · · · , 5) of each
class together to form up the i-th fold of the whole dataset.

To identify ranking-sensitive query topics, we use BM25
as the reference model to rank documents and choose the top
T = 50 ranked documents (if the total number of documents
under one query is lower than T , all documents will be used)
as pseudo feedback to create ranking-sensitive features.

The topic number n is crucial to the performance of TRSVM
and LRSVM. Since there are three pre-defined classes in
TREC2003 and TREC2004, we select the value as n = 3 to
compare the performance of TRSVM with that of LRSVM
and CRSVM for experiments on TREC2003 and TREC2004.
Since there is no pre-defined class in MQ2007 and MQ2008,
we will not test the performance of CRSVM on these two
dataset. And, we set n = 10 to compare the performance of
TRSVM with that of LRSVM for experiments on MQ2007

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

136

1 2 3 5 10
0.4

0.45

0.5

0.55

0.6

0.65

K

N
D

C
G

@
K

TRSVM
LRSVM
CRSVM
RSVM

(a) TREC2003

1 2 3 5 10
0.4

0.45

0.5

0.55

0.6

0.65

K

N
D

C
G

@
K

TRSVM
LRSVM
CRSVM
RSVM

(b) TREC2004

1 2 3 5 10

0.36

0.38

0.4

0.42

0.44

0.46

0.48

K

N
D

C
G

@
K

LRSVM
LRSVM
RSVM

(c) MQ2007

1 2 3 5 10
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

K

N
D

C
G

@
K

TRSVM
LRSVM
RSVM

(d) MQ2008

Figure 2: Ranking relevance in terms of NDCG@K of TRSVM compared with other methods on LETOR 3.0 and 4.0.

and MQ2008. In practice, this parameter is tuned automat-
ically based on a validation set. In order to clearly illustrate
the influence of this parameter on the ranking performance,
we will also present the results with respect to different val-
ues of the topic/category number.
For RSVM, we can make use of its results provided in

LETOR. For all the SVM models in the experiment, we
employ the linear SVM. This is because the LETOR data
set offers results of linear RankSVM.

5.1.1 Relevance Comparisons
The purpose of this experiment is to compare the aver-

age relevance of different ranking algorithms on different
benchmark datasets. Figure 2(a) and 2(b) illustrate the
NDCG values of TRSVM compared with RSVM, CRSVM
and LRSVM on TREC2003 and TREC2004, respectively.
From these two figures, we observe that, by building dif-
ferent ranking models with respect to different query cate-
gories/topics, TRSVM, CRSVM and LRSVM out-perform
the single model learned by RSVM on both dataset. Fur-
thermore, by extracting the ranking-sensitive query topics
and applying the proposed unified learning method, TRSVM
give better relevance than CRSVM and LRSVM. We con-
duct t-test on the improvements in terms of NDCG@3, and
the results indicate that for both TREC2003 and TREC2004,
the improvements of TRSVM over other ranking methods
are statistically significant (p-value< 0.05).
In Table 1, we report the MAP scores of TRSVM com-

pared with RSVM, CRSVM, LRSVM on TREC2003 and
TREC2004, respectively. Table 1 indicates that TRSVM
achieves much better relevance than RSVM, CRSVM and
LRSVM. In particular, TRSVM achieves a gain of about
9% relative to RSVM on TREC2003 as well as 6% relative
to RSVM on TREC2004; and TRSVM obtains more gains
than CRSVM and LRSVM on both dataset.

Table 1: MAP value of RSVM, CRSVM, LRSVM, and

TRSVM on TREC2003 and TREC2004
Ranking Method TREC2003 Gain TREC2004 Gain

RSVM 0.578 - 0.501 -
CRSVM 0.601 +4% 0.513 +2%
LRSVM 0.605 +5% 0.521 +4%
TRSVM 0.628 +9% 0.532 +6%

Moreover, Figure 2(c) and 2(d) illustrate the NDCG val-
ues of TRSVM compared with RSVM, and LRSVM onMQ2007
and MQ2008, respectively. From these two figures, we also
observe that, on both dataset TRSVM and LRSVM out-
perform the single model learned by RSVM by employing
different ranking models with respect to different query cat-
egories/topics. Furthermore, TRSVM, which extracts the
ranking-sensitive query topics and applying the proposed
unified learning method, can reach better ranking relevance
than LRSVM based on local ranking. (Note that the NDCG@10
of queries in MQ2008 is much lower because a portion of

queries have less than 10 documents to rank in this dataset.)
We conduct t-test on the improvements in terms of NDCG@3,
and find that the improvements of TRSVM over other rank-
ing methods are statistically significant (p-value< 0.05).

Table 2: MAP value of RSVM, LRSVM, and TRSVM

on MQ2003 and MQ2004
Ranking Method MQ2007 Gain MQ2008 Gain

RSVM 0.464 - 0.470 -
LRSVM 0.474 +2% 0.477 +1%
TRSVM 0.481 +4% 0.489 +4%

Table 2 demonstrates the MAP value of TRSVM com-
pared with RSVM as well as LRSVM onMQ2007 and MQ2008,
respectively. From the table, we can observe that TRSVM
achieves much better relevance than RSVM and LRSVM. In
particular, TRSVM achieves a gain of about 4% relative to
RSVM on both MQ2007 and MQ2008; and TRSVM obtains
more gain than LRSVM on both datasets.

5.1.2 Results Analysis
In the following, we will investigate the reason that TRSVM

can achieve better ranking relevance than the single model
RSVM, the class-based ranking approach CRSVM, and the
local ranking approach, LRSVM.
I. Multiple ranking models v.s. single model
Table 3 and 4 demonstrates the 8 most important features
for single model learned by RSVM and for separate mod-
els corresponding to query topics learned by CRSVM and
TRSVM, respectively. These results are based on the exper-
iment on TREC2003. The feature importance is measured
by the absolute value of learned feature weight. The detailed
description of features can be found in [16].

From these tables, we can observe that, introducing query
difference in terms of query classification/clustering into rank-
ing can help to build multiple ranking models with respect to
various query classes (CRSVM) or query topics (TRSVM).
These ranking models can represent multiple fine-grained
ranking characteristics of various query classes/topics, while
the single ranking model can only describe a coarse summa-
rization of ranking characteristics over all various queries.

In particular, if we build one single ranking model using
RSVM, the top 5 most important features of the model are
weighted in-link, weighted out-link, TF-IDF of title, TF of ti-
tle, and TF of body, as shown in Table 3. To verify whether
these five features are most important to ranking for most
of queries, we conduct an experiment as follows: we ran-
domly sample 20 queries from the whole dataset and build
respective ranking models for each query based on the docu-
ments and labels associated with the certain query, then we
compute the respective feature importance of each query.
We randomly sample 20 queries for 3 times, and there are
only in average 6.3 queries (31.5%) whose top 5 most impor-
tant features include at least three of top 5 most important
features of the model learned by RSVM.

To gain an understanding of what is the better way to use

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

137

Table 3: Top 10 most important features for RSVM and CRSVM on TREC2003
RSVM CRSVM (TD) CRSVM (NP) CRSVM (HP)

weighted in-link sitemap based score propagation BM25 of whole document number of slash in URL
weighted out-link sitemap based term propagation LMIR.JM of whole document HostRank
TF-IDF of title DL of title sitemap based score propagation HITS hub

TF of title length of URL sitemap based term propagation DL of URL
TF of body HostRank LMIR.JM of anchor length of URL

TF-IDF of whole document BM25 of title BM25 of anchor LMIR.JM of title
length of URL DL of URL LMIR.DIR of whole document sitemap based score propagation

topical PageRank BM25 of anchor LMIR.ABS of whole document sitemap based term propagation

Table 4: Top 10 most important features for TRSVM on TREC2003
TRSVM (topic-1) TRSVM (topic-2) TRSVM (topic-3)

sitemap based term propagation number of slash in URL length of URL
sitemap based score propagation HostRank outlink number

length of URL HITS sub sitemap based term propagation
number of slash in URL sitemap based score propagation sitemap based score propagation

DL or URL sitemap based term propagation number of slash in URL
weighted in-link uniform out-link HITS sub

number of child page Outlink number DL or URL
BM25 of title LMIR.ABS of URL DL or title

the information of ranking-sensitive query topics to improve
ranking, we perform a study on the effects of adding query
topics information as features in learning. Specifically, for
each query-document pair in both training and testing set,
we use the query’s topic distribution as additional features
and apply RSVM to learn the single ranking model on ex-
panded feature space. The testing results show that this
method does not increase the ranking performance signifi-
cantly, but even performs worse than the multiple ranking
approach. The similar experiment on SE-Dataset also re-
ports the same observation.
II. Ranking-sensitive query topics v.s. pre-defined
semantic classes
After considering query different in terms of query classifica-
tion(CRSVM)/clustering(TRSVM), we can build multiple
ranking models to represent different fine-grained ranking
characteristics. For example, by using CRSVM, we can learn
three ranking models corresponding to three query classes:
topic distillation (TD), namepage finding (NP), and home-
page finding (HP). Table 3 shows the top 8 most important
features of each learned model. From this table, we can find
that each of the three models learned by CRSVM are quite
different with that of RSVM. In particular, some features,
such as TF-IDF of title, weighted out-link etc., are impor-
tant for RSVM, but are not essential for ranking of each spe-
cific query class. Furthermore, the most important features
of each query class are diverse, for example, sitemap based
score/term propagation are most important to TD queries;
NP queries depend mostly on language model based (LMIR)
and probabilistic (BM25) features; and number of slash in
URL is the most important one for HP queries but not in-
cluded in top 8 for the other two classes. Similarly, Table 4
shows that three ranking models learned by TRSVM are
different with not only the single model of RSVM but also
multiple models learned by CRSVM.
To verify whether TRSVM can obtain multiple ranking

models that better represent ranking characteristics of re-
spective query topics than other methods, we conduct the
following experiment: for each identified query topic, we ran-
domly sample 20 queries from those belonging to this query
topic, and build respective ranking model for each of these 20
query based on their own associated documents and labels;
then, we compute the respective feature importance of these
queries and validate whether they include the top important
features learned by TRSVM. We conduct this experiment on
5 query topics, and randomly sample 20 queries under each
topic for 3 times. There are in average 14.8 queries (74%)

whose top 5 most important features include at least three
of those of the model learned by TRSVM. For LRSVM and
CRSVM, the results shows that there are in average 12.7
(63.5%) and 11.3(56.5%) queries whose top 5 most impor-
tant features include at least three of those of the model
learned by LRSVM and CRSVM, respectively.
III. Why TRSVM performs better?
We hypothesize the reasons of why TRSVM can perform
better than LRSVM and CRSVM as follows. Firstly, instead
of pre-defined query classification, TRSVM and LRSVM
represent each query by aggregating the ranking features
of documents under such query and conduct un-supervised
clustering method to identify ranking-sensitive query topics,
which can be better to distinguish queries based on their
various ranking characteristics.

Secondly, LRSVM and CRSVM employ hard query classi-
fication/clustering and build multiple ranking models corre-
sponding to each query class/cluster, however, many queries
can fit into more than one classes/clusters, therefore, TRSVM
can benefit ranking performance by taking advantage of soft
query categorization into building multiple ranking models.

Another advantage of TRSVM is avoidance of the reduc-
tion in the number of training examples. Specifically, either
LRSVM or CRSVM uses only a part of training dataset to
learn the ranking model for each query class/cluster. It may
cause the declining accuracy due to the lack of enough train-
ing examples. However, TRSVM can avoid the reduction of
training dataset size since it uses all training examples, with
different weights based on query soft clustering, in learning
the ranking model of each query topic.

5.1.3 Effects of Different Parameter Settings
In this experiment, we explore the effects of different set-

tings of the parameter n, i.e. the number of query topics, on
ranking performance by conducting comparison study with
varying the value of n.

Figure 3 show the performance of TRSVM on Letor dataset
with varying values of n in terms of MAP. From the figure,
we can find that, as n increases, the performances first in-
crease, but then as n becomes much larger, there is no sig-
nificant raising on the performance, and the performance is
even deteriorated at some time. More specifically:
•When setting only a small number of query topics, the per-
formances of TRSVM are not so good since the identified
query topics are a bit broad to reflect the query difference.

•As setting the higher number of query topics, we can im-

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

138

2 3 4 5 6 7 8

0.52

0.54

0.56

0.58

0.6

0.62

0.64

n (topic number)

M
A

P

TREC2003
TREC2004

(a) TREC2003 and TREC2004

3 5 10 15 20 25
0.47

0.475

0.48

0.485

n (topic number)

M
A

P

3 5 8 10 12 15
0.48

0.483
0.485

0.488
0.49

n (topic number)

M
A

P

MQ2008

MQ2007

(b) MQ2007 and MQ2008

Figure 3: Ranking performance (MAP) of TRSVM on

the Letor datasets against varying topic number n

prove the performances since identified query topics are more
fine-grained to reflect query difference in ranking.

•In the ideal case, with increasing number of query top-
ics, the proposed method can achieve much better ranking
performance, since we can build ranking models, each of
which focuses on more fine-grained ranking characteristics.
However, the actual results indicates that the ranking per-
formances do not increase significantly but even deteriorate
at some time. We hypothesize that, the extracted query fea-
tures and identified ranking-sensitive query topics, though
more effective than other query categorization method for
enhancing ranking, are still not optimal for recognizing the
ranking-sensitive query topics; therefore, when each identi-
fied query topic becomes more fine-grained, the bias of query
categorization will be enlarged so as to deteriorate the rank-
ing performance.

5.2 Experiments with SE-Dataset
We compare the performance of proposed ranking meth-

ods (TRSVM) with the baselines of the single model ap-
proach (RSVM), class-based approach (CRSVM) and the
local ranking based approach (LRSVM) on the commercial
search engine dataset (SE-Dataset). The pre-defined classes
in CRSVM include auto, local, product, travel, general as
described in Section 4.1.
To identify ranking-sensitive query topics, we use BM25

as the reference model to rank documents and choose the
top T = 20 documents (if the total number of documents
under one query is lower than T , all documents will be used)
as pseudo feedback to create ranking-sensitive features.
We set the query topic/cluster number in TRSVM/LRSVM,

i.e. the parameter n, as n = 20 in the experiment. In
practice, this parameter is tuned automatically based on a
validation set. In order to clearly illustrate the influence
of this parameter on the ranking performance, we will also
present the results with respect to different values of the
topic/category number.

5.2.1 Performance Comparisons
Figure 4 demonstrates the NDCG values of TRSVM com-

pared with RSVM, CRSVM, and LRSVM on SE-Dataset.
From the figures, we observe that, by building different rank-
ing models with respect to different query categories/topics,
TRSVM, LRSVM and CRSVM out-perform the single model
learned by RSVM. Furthermore, by extracting the ranking-
sensitive query topics and applying the proposed unified
learning method, TRSVM give better performance than CRSVM
and LRSVM. We conduct t-tests on the improvements in
terms of NDCG@3, the results of which indicate that the im-
provements of TRSVM over RSVM, CRSVM and LRSVM
are statistically significant (p-value< 0.05).

5.2.2 Effects of Different Aggregation for Query Fea-
tures

In this experiment, we test the performance of the pro-
posed TRSVM method with using different information for
aggregating query features. By default, we compute the
mean values of ranking features of top pseudo feedbacks as
the feature vector of the query. In this experiment, we ex-
plore the effects of adding extra statistical quantities beyond
means into the query feature vector. We use variance as the
extra statistical quantity in our experiment. The ranking
method using the expanded query features is denoted as
TRSVMvar. Moreover, we test the effects of making use of
the knowledge of ranking feature importance into the aggre-
gation for query features. In particular, we first learn the
ranking function by using a sample of the training dataset.
After that, we can obtain the importance of each feature for
learning the ranking function. Then, we incorporate feature
importance as weight into computing query features. We
denote the ranking method with incorporated feature im-
portance as TRSVMimpt. We also test the ranking method
which both expands query features with aggregated variance
values and incorporates feature importance in identifying
query topics, which is denoted as TRSVMvar−impt.

Figure 5 shows the performances of the proposed TRSVM
method with applying various information into the aggre-
gation for query features. From this figure, we observe
that, utilizing feature importance into identifying query top-
ics can increase the ranking performance. After conduct-
ing t-test on the improvement in terms of NDCG@3, we
find that TRSVMimpt out-perform TRSVM with p-value
less than 0.02. Figure 5 also illustrates that expanding
query features with aggregated variance value (TRSVMvar)
does not improve ranking performance but even cause a de-
creased accuracy than TRSVM, the reason of which could
be variance is not useful to identify ranking-sensitive query
topics. However, it does not indicate that other statisti-
cal quantities are not useful for query topic recognition ei-
ther. It would be an interesting future work to explore what
kind of statistical quantities are essential to identify ranking-
sensitive query topics. Moreover, Figure 5 demonstrates
that TRSVMvar−impt can achieve better performance than
TRSVMvar and TRSVM, but not TRSVMimpt, which also
indicate that using feature importance can boost ranking
performance while expanding query features with aggregated
variance may not be useful for improve ranking.

5.2.3 Robustness to Noisy Query Topics
In the following, we perform experiments to evaluate the

robustness of our divide-and-conquer ranking approach to
noisy ranking-sensitive query topics. We manually add some
noises into the ranking-sensitive query topics and test this
effects on the overall ranking relevance. Specifically, after
identifying ranking-sensitive query topics, we randomly se-
lect a portion of training queries and change their topic dis-
tribution into random values. Then, we employ TRSVM
with these noisy ranking-sensitive query topics.

Figure 6 illustrates the NDCG@1,3,5 scores for the testing
queries (on MQ2007 and MQ2008) against varying amount
of queries with noisy topic distribution in the training data.
The figures show that, although the relevance declines as the
amount of queries with noisy topic distribution increases,
TRSVM even outperform single ranking model approach
RSVM and therefore is robust to the noisy ranking-sensitive
query topics. And we can find the similar results when we
take the same experiments on LETOR 3.0 dataset.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

139

1 3 5 10
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

K

N
D

C
G

@
K

TRSVM
LRSVM
CRSVM
RSVM

Figure 4: Relevance (ndcg@k) of TRSVM compared

with the other methods on SE-Dataset

The robustness of our divide-and-conquer ranking approach
can also be demonstrated on SE-Dataset, especially from
Figure 5. This figure shows that different aggregation meth-
ods give rise to different ranking-sensitive query topics, and
hence different ranking performance; but, in spite of such
difference, any of these different query categorizations can
be used to trained the ranking models which outperform
the single model approach (RSVM). Therefore, the proposed
divide-and-conquer framework is robust to the noisy ranking-
sensitive query topics.

6. CONCLUSION AND FUTURE WORK
In this paper, we point out that, due to great variance of

queries and different ranking characteristics of Web queries,
single ranking model is not appropriate for diverse types
of queries. We employ a divide-and-conquer approach to
learn multiple ranking functions according to diverse rank-
ing characteristics of queries. We first identify ranking-
sensitive query topics based on query features from pseudo
feedbacks and prior knowledge of feature importance. Then,
we propose a unified learning process to obtain ranking mod-
els corresponding to recognized query topics. An ensem-
ble approach is applied to compute ranking for test queries
by making use of multiple topic-specific ranking models.
Experimental results illustrate that the proposed approach
can significantly improve the ranking relevance over the sin-
gle model approach and a straightforward local ranking ap-
proach, and the identified ranking-sensitive topics are more
useful for improving ranking than pre-defined query catego-
rization.
In future, we plan to explore deeply on what kind of fea-

tures as well as which aggregation method are more essen-
tial to identify ranking-sensitive topics for queries. We also
plan to investigate how to recognize the ranking-sensitive
query topics jointly with learning the ranking function. We
will also explore hierarchical query topics in the framework.
Moreover, we intend to explore how to extend the current
framework in order to allow incremental updating on any
of ranking models without hurting the relevance of other
queries.

7. REFERENCES
[1] Letor dataset website. http://research.microsoft.com/en-

us/um/beijing/projects/letor/.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, 1999.

[3] S. Beitzel, E. Jensen, A. Chowdhury, and O. Frieder. Varying
approaches to topical web query classification. In Proc. of
SIGIR, 2007.

[4] B. Bolstad, R. Irizarry, M. Astrand, and T. Speed. A
comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics, 19:185–193, 2003.

[5] A. Broder. A taxonomy of web search. SIGIR Forum, 2002.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proc. of ICML, 2005.

1 3 5 10
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

K

N
D

C
G

@
K

TRSVMimpt

TRSVMvar−impt

TRSVMvar

TRSVM
RSVM

Figure 5: Relevance (ndcg@k) of TRSVM with different

aggregation method for query features on SE-Dataset

0 50 100 150 200 300 400
0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

amount of noisy queries

N
D

C
G

 s
co

re

TRSVM−NDCG@1
TRSVM−NDCG@3
TRSVM−NDCG@5
RSVM−NDCG@1
RSVM−NDCG@3
RSVM−NDCG@5

(a) MQ2007

0 50 100 150 200 300 400
0.36

0.38

0.4

0.42

0.44

0.46

0.48

amount of noisy queries

N
D

C
G

 s
co

re

TRSVM−NDCG@1
TRSVM−NDCG@3
TRSVM−NDCG@5
RSVM−NDCG@1
RSVM−NDCG@3
RSVM−NDCG@5

(b) MQ2008

Figure 6: Ranking performance (NDCG@K) of TRSVM

against varying amount of noisy queries

[7] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank:
from pairwise approach to listwise approach. In Proc. of ICML,
2007.

[8] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. In Journal of
JMLR, 2003.

[9] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum.
Query dependent ranking using k-nearest neighbor. In Proc. of
SIGIR, 2008.

[10] R. Herbrich, T. Graepel, and K. Obermayer. Support vector
learning for ordinal regression. In Proc. of ICANN, 1999.

[11] K. Jarvelin and J. Kekalainen. Cumulated gain-based
evaluation of ir techniques. In ACM Transactions on
Information Retrieval, 2002.

[12] T. Joachims. Optimizing search engines using clickthrough
data. In Proc. of KDD, 2002.

[13] I. Kang and G. Kim. Query type classification for web
document retrieval. In Proc. of SIGIR, 2003.

[14] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proc. of SIGIR, 2001.

[15] P. Li, B. Christopher, and Q. Wu. Mcrank: Learning to rank
using multiple classification and gradient boosting. In Proc. of
NIPS, 2007.

[16] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank for
information retrieval. In Proc. of SIGIR, 2007.

[17] S. Robertson. Overview of the okapi projects. In Journal of
Documentation, 1998.

[18] G. Salton and M. E. Lesk. Computer evaluation of indexing
and text processing. In Journal of ACM, 1968.

[19] D. Shen, J. Sun, Q. Yang, and Z. Chen. Building bridges for
web query classification. In Proc. of SIGIR, 2006.

[20] R. Tibshirani, G. Walther, and T. Hastie. Estimating the
number of clusters in a dataset via the gap statistic. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology), 63:411–423, 2000.

[21] E. Voorhees and D. Harman. Trec: Experiment and evaluation
in information retrieval. In MIT Press, 2005.

[22] H. Zha, Z. Zheng, H. Fu, and G. Sun. Incorporating query
difference for learning retrieval functions in information
retrieval. In Proc. CIKM, 2006.

[23] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using relative
relevance judgments. In Proc. of SIGIR, 2007.

[24] Z. Zheng, H. Zha, and G. Sun. Query-level learning to rank
using isotonic regression. In Proc. of the 46th Allerton Conf.
on Comm., Control and Computing, 2008.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

140

