
Automated Detection of Session Fixation Vulnerabilities

Yusuke Takamatsu† Yuji Kosuga† Kenji Kono†‡

yusuke@sslab.ics.keio.ac.jp yuji@sslab.ics.keio.ac.jp kono@ics.keio.ac.jp
†Department of Information and Computer Science

Keio University
‡Core Research for Evolutional Science and Technology

Japan Science and Technology Agency

ABSTRACT
Session fixation is a technique for obtaining the visitor’s ses-
sion identifier (SID) by forcing the visitor to use the SID
supplied by the attacker. The attacker who obtains the vic-
tim’s SID can masquerade as the visitor. In this paper, we
propose a technique to automatically detect session fixation
vulnerabilities in web applications. Our technique uses at-
tack simulator that executes a real session fixation attack
and check whether it is successful or not. In the experi-
ment, our system successfully detected vulnerabilities in our
original test cases and in a real world web application.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering—Testing and De-
bugging ; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

General Terms
Security

Keywords
session fixation, web application security

1. INTRODUCTION
Many of recent web applications employ session manage-

ment to keep track of a visitor’s activity over the inherently
stateless protocol such as HTTP. A session identifier (SID)
is usually a hash value uniquely assigned by the web appli-
cation for the purpose of session management and is usually
granted to the visitor on his first visit to the web applica-
tion. The SID is an attractive target for attackers because
attackers can masquerade as the visitor if they can obtain
the visitor’s SID. Session fixation [1] is a technique for ob-
taining the visitor’s SID by forcing the visitor to use the SID
supplied by the attacker. Although session fixation vulner-
ability can be eliminated in the development phase of web
applications, it is laborious to setup a test environment and
imposes the intimate knowledge of the attack on the people
who conduct the test. According to a report from White-
Hat [3], 12% of websites are vulnerable to session fixation
and it takes 106 days on average to fix an vulnerability.

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

!"#$%&&'

()*+,-./*,
0,/#.%%*12.31&+

4"#5&61+

(12317

8"#9::),#$9;

<"#=&-2,#>12317#3&#
:,+?#.#-,@),:3

A"#B,3#.#*&61+#'&-7

C"#5&61+#

D33.2E,-

!"#$%&'(

!"#$%&'(

!"#$%&'(
!"#$%&'(

Figure 1: Session Fixation

We propose a technique to automatically detect session
fixation vulnerabilities in web applications. Our technique
is effective in detecting vulnerabilities because it executes a
real session fixation attack and check whether it is success-
ful or not. Technically, our technique first checks whether
an SID is changed after a user’s login, then it goes on to
the phase of attack simulation. In the experiment, our sys-
tem successfully detected vulnerabilities in our original test
cases. We also performed a test on a real world web appli-
cation, in which our system detected a vulnerability.

2. SESSION FIXATION
Session fixation [1] is an attack technique that forces a

visitor to use an SID that the attacker prepared. After the
visitor’s login, the attacker can masquerade as the visitor by
accessing the web application with the SID.

In Figure 1, the attacker logs into the vulnerable web ap-
plication to obtain an SID, which is usually contained in an
HTTP header or a part of the response document (Step 1
& 2). Then, the attacker extracts the SID to embed it into
an anchor and lure the victim into clicking on it to send
a request to the web application (Step 3 & 4). The web
application establishes a session with the visitor. After the
victim’s login while the session is valid, the attacker can
spoof the victim’s identity (Step 5 & 6).

Session fixation can be avoided by assigning a new SID
each time user logs in to avoid using the SID that the at-
tacker prepared. Restricting the SID usage, for example,
by binding an SID to another information such as a special
token or the browser’s network address, is also effective to
prevent session fixation. These countermeasures should be
implemented in web applications. Even when the web ap-
plication is already in service, the security should be tested.
However, it is laborious to build a test environment and re-
quires a detailed knowledge of session fixation.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1191

3. PROPOSAL
We propose an effective technique for detecting session

fixation vulnerabilities in web applications by actually at-
tempting to perform session fixation attacks. Our technique
automatically performs all the steps in session fixation as
real attackers do, from the acquisition of an SID to the at-
tacker’s malicious login after the valid user’s login.

While current session fixation testing requires knowledge
and labors, our system can alleviate the burden of test oper-
ators by only offering several simple information as follows.

• The parameter name that contains an SID (e.g., PH-
PSESSID in PHP)

• Attacker and victim’s login information (e.g., user name
and password)

• Special keywords that only appear in the response mes-
sage after a valid user’s login. (e.g., ‘Welcome victim’)

With these information, our technique automates the detec-
tion of vulnerabilities with the following three steps.

3.1 Packet Capturing
Our system lies between a user’s browser and a web appli-

cation to intercept innocuous HTTP packets between them
(Figure 2). When the user browses the web pages before
and after his login with his browser, our system captures all
the packets to observe the change of SIDs.

3.2 Initial Inspection
Our system extracts the SIDs from the packets intercepted.

If the SIDs has changed at the user’s login, this step con-
cludes it is not vulnerable since the change of the SIDs at the
login is an effective countermeasure. Otherwise, although
it might be vulnerable, it also can be safe due to another
countermeasure implemented. To make it clear, it goes to
the next step for further inspection.

3.3 Attack Simulation
In this step, our system launches its attack simulator that

automatically generates the same environment as a real at-
tacker performs session fixation attacks. The simulator has
a virtual attacker and a virtual victim. In the same scenario
described in Section 2, the attacker first acquires an SID by
logging in with the attacker’s information the user initially
gave to our system.

After letting the victim access and login to the web appli-
cation with the SID that the attacker obtained, the attacker
check to see if he can successfully log into the web appli-
cation with the victim’s identity. To this end, our system
searches the content of the response document for the spe-
cial keyword that the user gave to our system. If the special
keyword appears in the response document, our technique
considers this web application is vulnerable.

4. EXPERIMENTS
We implemented a prototype version of our technique

against two types of session fixation in terms of where an
SID is contained in: a URL or a cookie separately. Other
than these, an SID can be delivered via a hidden field in an
HTTP response. Additionally, in our current implementa-
tion, the information that the user specifies is hard-coded.

To confirm the effectiveness of our technique, we per-
formed experiments against web applications that we cre-

!"#$%"&&'()*$
+,)-./0().

1.&#$203.

4,)-./0().
5.($066)'708'"-

9&./

:;;%$%07<.8&

=-8./7.68

4'78'>
?8807<./

?8807<$&'>,)08'"/

2=@$A0&$
7A0-B.CD

E.6"/8

!"#$%&'(

!"#$%&'(

!"#$%&'(

",/$&*&8.>

Figure 2: Design of our system

ated deliberately vulnerable to session fixation, and against
a real world web application.

4.1 Original Test Cases
A web application we created works as a real world web

application in terms that it issues an SID in response to the
visitor’s first access, but does not re-issue a new SID after the
visitor’s login, thus it is vulnerable to session fixation. Our
system could find this vulnerability and we also confirmed
that it did not raise a false alert to another version of the
web application that we had modified to re-issue a new SID.

Another web application we created assigns a special to-
ken to each visitor at his login and binds it to an SID for
identifying visitors. Thus it is safe even when a new SID
does not re-issue at login. We confirmed the attack simula-
tor in our system detected the vulnerability.

4.2 Testing for Real World Application
We also executed our system against a real world web

application: Mambo [2]. The login page of Mambo was
vulnerable to session fixation and we confirmed it by hand
before testing with our system.

In this experiment, we gave attacker and victim informa-
tion in advance: ‘attacker’ for the virtual attacker’s user
name and password, and ‘victim’ for the virtual victim’s
user name and password. We also set a special keyword as
‘Hi, victim’ that indicates the victim’s login. Our system
could detect the vulnerability.

5. CONCLUSION
We proposed a technique to automatically detect session

fixation vulnerabilities in web applications by executing real
session fixation attacks. It can reduce laborious work for se-
curity checking against session fixation. In our experiment, a
prototype version of our system could detect a vulnerability
in a real world web application.

6. REFERENCES
[1] M. Koľsek. Session Fixation Vulnerability in Web-based

Applications. http://www.acrossecurity.com/papers/
session fixation.pdf, December 2002.

[2] SecurityFocus. Mambo 4.6.2 CMS - Session fixation
Issue in backend Administration interface. http://www.
securityfocus.com/archive/1/475241, August 2007.

[3] WhiteHat Security, Inc. Website Security Statistic
Report (8th Edition). http://www.whitehatsec.com/
home/resource/stats.html, November 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1192

