
HTTP Database Connector (HDBC):
RESTful Access to Relational Databases

Alexandros Marinos
Department of Computing

University of Surrey
a.marinos@surrey.ac.uk

Erik Wilde
School of Information

UC Berkeley
dret@berkeley.edu

Jiannan Lu
Department of Computing

University of Surrey
jiann.lu@yahoo.com

ABSTRACT
Relational databases hold a vast quantity of information and
making them accessible to the web is an big challenge. There
is a need to make these databases accessible with as little
difficulty as possible, opening them up to the power and
serendipity of the Web. Our work presents a series of pat-
terns that bridge the relational database model with the
architecture of the Web along with an implementation of
some of them. The aim is for relational databases to be
made accessible with no intermediate steps and no extra
metadata required. This approach can vastly increase the
data available on the web, therefore making the Web itself
all the more powerful, while enabling its users to seamlessly
perform tasks that previously required bridging multiple do-
mains and paradigms or were not possible.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services, Data sharing

General Terms
Design, Documentation, Languages

Keywords
REST, Web Architecture, Relational Databases

1. INTRODUCTION
Relational databases hold a vast quantity of information

and making them accessible to the web is an open issue. The
need to make it accessible with as little difficulty as possi-
ble has led us to examine the potential of making a generic
bridge between the architecture of the Web as expressed by
Representational State Transfer (REST) [1], and the meta-
model of relational databases. REST is a set of constraints
for architecting distributed systems. These constraints in-
clude manipulation of resources through representations, a
uniform interface, statelessness, and hypermedia as the en-
gine of application state. In the implementation of REST
that is the World Wide Web, these constraints are applied
through its fundamental specifications, HTTP, URI and rep-
resentation formats such as HTML, XML, and Atom among
others. The HTTP Database Connector (HDBC) aims to

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

make databases available through the Web, along with a
large subset of the querying capabilities of SQL, aimed for
both machine and human users, in a manner that is consis-
tent with REST. It should achieve this without putting the
data owners through unnecessary steps.

2. RELATED WORK
Relational databases have standard connectors for most

programming languages, such as Java’s JDBC, which make
them accessible to programmers coding in that language.
However, no such“connector”exists for making all the power
of relational databases available on the Web. Of course, soft-
ware packages exist to query and manage relational databases
on the Web (e.g., phpMyAdmin), but they are geared to-
wards human users and even there, their architecture does
not observe the constraints of REST well. Methods to make
models in some Web frameworks available as RESTful Web
services (e.g., Djata) require an additional level of modeling
beyond the relational database, a potential barrier to entry
for the use cases considered. Some projects exist to make
databases directly available on the Web (e.g., SQLREST
and REST-SQL), but the querying capabilities that they
provide are limited to listing the contents of a given table.
Finally, Google’s GData and Microsoft’s WCF Data Services
offer querying models for data on the Web, but neither of
them are tailored to the relational model and therefore lack
essential SQL features such as joins.

3. CONNECTOR DESIGN
Making Resources Available. The first step for any REST-

ful system is to decide what resources will be made available.
This enables usages such as users exchanging query URIs, a
common use case on the Internet, which however is rather
unusual when it comes to database queries. In the case of
the relational model, the obvious candidates are tables (rela-
tions) and the records (tuples) which make them up. These
can be cast as resources, with the table resources providing
links to the record resources. As with all resources, these
should be granted their own URIs. We can also model query
results as resources, with the respective URI encoding the
query. Such queries can contain filters, ordering, paging,
and joins. Finally, the database schema itself can be mod-
eled as a set of resources, therefore enabling inspection and
modification of the schema.

Uniform Interface. The uniform interface constraint re-
quires that a resource is accessible by a limited set of op-
erations with well-defined semantics. HTTP offers the op-
erations GET, PUT, POST, and DELETE, among others. With

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1157



operations beyond GET, we can achieve write access to the
database. For instance, by using PUT on a table URI with
a new record as a request body, we are requesting that the
new record is added to the table.

Representations. In REST, resources can have multiple
representations. In HTTP, the appropriate representation
is theoretically determined through content negotiation. Al-
ternatively, some services rely on URI suffixes instead for
reasons of practicality. Multiple representations for a re-
source allow human-to-machine and machine-to-machine use
cases to co-exist with the same URI structure, with only
the returned representation differing. Humans can consume
HTML, while machines may prefer XML, JSON, or Atom.
The authors have previously discussed the benefits and im-
plications of serializing query results as feeds [2]. In the case
of serializing query results as Atom, users can subscribe to
queries through a feed reader and therefore be notified of
updates to their queries, a capability that can be backed by
streaming databases. In addition, the publishing capabilities
of AtomPub can be used as a way to relay updates back to
the database.

Statelessness. The aforementioned use case of sending
query URIs through an email or IM message hinges on an-
other property of RESTful systems, namely statelessness. It
requires that all that is needed to interpret a request is con-
tained within that request, and not in intangible server-side
state. Thus, a URI that is bookmarked can be used at a
different time or even from a different machine to request
the same resource. This is relevant to the issue of authen-
tication, where HTTP authentication and cookies are two
popular approaches. Regardless of the specifics of the au-
thentication mechanism, by linking the internal user access
mechanism of a database to a HTTP-compatible authenti-
cation mechanism, there can be granular control of access
rights per user without additional information stored out-
side the database.

4. HYPERMEDIA CONNECTIONS
Perhaps the least understood constraint is that of Hyper-

media as the Engine of Application State. The intent is that
RESTful APIs should be discoverable and not dependent on
external information for construction of the URIs. This de-
couples the clients from the URI-space of a server. Clients
follow links, which can also be discovered through HTML
forms, and discover resources one at a time. The next poten-
tial states at each step are determined by the server. Thus,
if the server decides to change their URI-space, a client can
simply rediscover the resources. Thus, while we have earlier
mentioned encoding the queries as URIs, the precise man-
ner in which this happens should not concern the end-users
as they should be discovering their resources through link
traversal and not URI construction. This implies that in a
complete system, queries can also be constructed by follow-
ing links, progressively narrowing a coarse initial query with
additional elements, through propagating links.

5. IMPLEMENTATION
The current version of the implementation1 of this soft-

ware is focused on machine-to-machine interactions, in par-
ticular based on the atom publishing protocol. A user can

1The source code can be found at http://code.google.
com/p/rest-hdbc/

therefore browse an Atom feed serialization of a table or
query result and therefore subscribe to the feed through their
feed reader of choice and be informed of any updates to the
resource. An example query resource with a simple filter
URI would be formatted in URI template syntax as follows:
http://example.org/{database}/{table_name}({id}). A
more complex query involving a join such as the template
. . .{database}/{table1_name}/{table2_name} would yield
an inner join of the two tables, assuming that they have a
foreign key relation declared in the database schema. The
query engine infers from this how the tables are to be joined.
In case a more complex join is required, more specific infor-
mation can be embedded in the URI. Of course, features
such as filtering, joining, sorting, paging, and simple SQL
functions such as count() can be combined to yield complex
queries. Beyond GET, HDBC also offers the ability to relay
updates to the database by using PUT, POST, and DELETE.

The implementation has been adapted to both Apache
Derby (also known as JavaDB) and MySQL which has brought
to our attention an interesting inconsistency between the two
different databases: While MySQL is case insensitive in the
strings it receives in its queries, JavaDB is not. There is no
simple way to remedy this incompatibility at the URI level,
so the behavior at the URI level corresponds to the database
engine that is being used in the back end.

6. CONCLUSIONS
In this paper we present first steps towards a RESTful

way of interacting with a query-oriented back-end. While
the approach we present is specifically designed to work
with the relational structures of the SQL model and lan-
guage, the same patterns could be applied to create RESTful
access methods for other query-oriented back-ends as well.
SPARQL would be a promising candidate, the current ver-
sion of SPARQL shares SQL’s approach of a “service end-
point” through which all calls and responses are channeled.

Starting from the design patterns presented here, it is our
intention to extend these to cover more advanced scenarios
such as RESTful transactions and the composition of vari-
ous of these services (possibly across different back-end data
models, thus merging the worlds of SQL and RDF data on
the REST level). In essence, such an approach would then
allow the publication of “linked data” regardless of the back-
end technology, and instead of requiring to cast all data into
a single metamodel (which is what the narrow definition of
“linked data” as RDF-only requires), this view of linked data
would focus on REST as the main architectural principle of
the Web.

7. REFERENCES
[1] Roy Thomas Fielding and Richard N. Taylor.

Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology,
2(2):115–150, May 2002.

[2] Erik Wilde and Alexandros Marinos. Feed
Querying as a Proxy for Querying the Web. In Eighth
International Conference on Flexible Query Answering
Systems, volume 5822 of Lecture Notes in Artificial
Intelligence, pages 663–674, Roskilde, Denmark,
October 2009. Springer-Verlag.

This work was partly supported by the (INFSO-IST) OPAALS
Project, funded by the European Commission (Project num-
ber:034824)

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1158

http://code.google.com/p/rest-hdbc/
http://code.google.com/p/rest-hdbc/

	Introduction
	Related Work
	Connector Design
	Hypermedia Connections
	Implementation
	Conclusions
	References

