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ABSTRACT

This paper focuses on selectivity estimation for SPARQL
graph patterns, which is crucial to RDF query optimization.
The previous work takes the join uniformity assumption,
which would lead to high inaccurate estimation in the cases
where properties in SPARQL graph patterns are correlated.
We take into account the dependencies among properties in
SPARQL graph patterns and propose a more accurate es-
timation model. We first focus on two common SPARQL
graph patterns (star and chain patterns) and propose to use
Bayesian network and chain histogram for estimating the se-
lectivity of them. Then, for an arbitrary composite SPARQL
graph pattern, we maximally combines the results of the star
and chain patterns we have precomputed. The experiments
show that our method outperforms existing approaches in
accuracy.
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1. INTRODUCTION
Since the use of RDF to represent data has grown dra-

matically over the last few years, query processing on RDF
data becomes an important issue. Selectivity estimation for
SPARQL graph patterns is crucial to RDF query process-
ing. As we know, RDF data is a set of triples with the form
(subject, property, object). This fine-grained model leads to
SPARQL queries on RDF data with a large number of joins.
As such, precise estimation of the selectivity of joined triple
patterns is very important. In [1, 2] the join uniformity as-

sumption is made when estimating the selectivity of joined
triple patterns, which assumes that each triple satisfying a
triple pattern is equally likely to join with the triples sat-
isfying the other triple pattern. However, this assumption
does not hold in many cases.
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2. ESTIMATION FOR STAR PATTERNS US-

ING BAYESIAN NETWORKS
The star graph pattern is common in SPARQL graph pat-

terns. It has the form of a number of triple patterns with
different properties sharing the same subject (an example
is shown in Figure 1). For estimating the selectivity of fre-
quent star patterns, we construct the cluster-property table
R for each one.

?z

'<=70
K'

Income

'Prof.'

Position

'Advance
d course'

(Adc)

TeacherOf

?Z, Income, '<=70K'
?Z, Position,  'Prof.'
?Z, TeacherOf , 'Advanced course'

Figure 1: Star-style graph pattern

Given a frequent star pattern Q with predicates prop1,
prop2, · · · , propn, if we know the joint probability distribu-
tion over values of properties Pr(prop1 = o1, prop2 = o2,
· · · , propn = on) in R, we can easily obtain the selec-
tivity sel(Q) of Q as: sel(Q) = Pr(prop1 = o1, prop2 =
o2, ..., propn = on) · |R|, where |R| is the number of rows
in R. However, it is impossible to explicitly store the joint
probability distribution over property values in R, since the
possible combinations of values of properties could be expo-
nential. We employ Bayesian network to approximately store
the joint probability distribution information. Bayesian net-
works make use of Bayes’ Rule and conditional independence
assumption to compactly represent the full joint probability
distribution using a little space. Given a star pattern Q and
Bayesian network β learned from table R, we have:

sel(Q) = Pr(prop1 = o1, prop2 = o2, ..., propn = on) · |R|

≈ Prβ(prop1 = o1, prop2 = o2, ..., propn = on) · |R|

=
n∏

i=1

Pr(propi = oi | Parents(propi) = ~ok) · |R|

where Parents(propi) denotes the set of immediate prede-
cessors of propi in the Bayesian network; ~ok denotes the
set of values of Parents(propi). Note that for computing
Pr(propi | parents(propi) = ~ok), we only need to know the
values of propi’s parent properties, which would save a lot
of space in practice.

3. ESTIMATION FOR CHAIN PATTERNS
The chain graph pattern is another kind of common SPARQL

query patterns, which consists a sequence of triple patterns
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where the object of the previous triple pattern is also the
subject of the next pattern. We construct the chain count
table TC (shown in Figure 2) for frequent chain patterns,
which has two attributes: Head-Chain-Rear and Count. Each
row of TC indicates a chain pattern with their frequencies
(selectivities). However, chain table TC could be too large.

?course
?stud

ent
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Head-Chain-Rear Count

Adc/p1/20-22 50
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Bloom Filter     Count

{Adc/p1/20-22,Adc/p1/23-25, Prc/p1/?} 52

{Prc/p1/20-22,Prc/p1/23-25} 29

{?/p1/20-22,?/p1/23-25,Adc/p1/?} 85

{?/p1/?} 156

Frequent chain patternP1: "TakenBy-Age"

Chain Count Table TC
Chain Histogram  H

Figure 2: An example of the chain count table and
the chain histogram. “?” indicates a variable.

Thus, we group the chain patterns in TC into several
buckets according to their frequencies. And for each bucket
we only need to save the average frequency and its chain pat-
tern members. So given a chain pattern and which bucket
it belongs to, we can easily get the frequency of this chain
pattern. For efficient processing the membership queries, we
use bloom filter, a space-efficient probabilistic data structure
often used to test whether an element is a member of a set.
Here, we use bloom filter to test whether a chain pattern is
a member of a bucket.

4. ESTIMATION FOR COMPOSITE GRAPH

PATTERNS
To estimate the selectivity of a composite SPARQL graph

pattern Q, we propose to maximally use the statistics of the
sub star and chain patterns we have precomputed to obtain
the overall selectivity of Q. We wish to find the maximum
precomputed pattern cover of Q and process the uncovered
part of Q with independence assumption. Based on dynamic

programming, we can get an optimal algorithm for finding
the maximum pattern cover of Q.
For a composite graph pattern decomposed the precom-

puted patterns, we need to combine the selectivity of pre-
computed star and chain patterns. There are three basic
cases: Case 1 (star-chain join): The composite graph
pattern Q can be decomposed into a precomputed star pat-
tern S and a chain pattern C joined on a variable Y . Case
2 (star-star join): Q can be decomposed into two precom-
puted star patterns joined on a variable Y . Case 3 (chain-
chain join): Q can be decomposed into two precomputed
chain patterns joined on a variable Y .
For these cases, we go through all values of the join node

Y . We can acquire the selectivity of star pattern S with
different values on Y through inference on the Bayesian net-
work. Similarly, we can obtain the selectivity of chain pat-
tern C through the chain histogram. If two patterns have
the same value on the join node Y , we combine the selec-
tivity of two patterns in the product form. For the case
where a graph pattern Q can be decomposed into multiple

patterns, we select two joined patterns from Q and compute
the selectivity of the joined patterns. Iterate this process
until the overall selectivity of Q is obtained.

5. EXPERIMENTS
We run all algorithms on a windows XP system with 3G

CPU and 2 GB RAM. We use the data set LUBM in our
experiment and we generate 600k distinct triples; We com-
pare our method with two other methods PF and RDF-3X
proposed in [1] and [2] :
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Figure 3: Performance of our method.

Figure 3 shows the accuracy of three methods for the
queries on the LUBM dataset. In all figures, X-axis is the
space limit and Y-axis is the average relative error RE(RE =
|sel−s̃el|

max(1,sel)
). We first develop 50 star queries and 50 chain

queries respectively and vary the the space limit from 2K
bytes to 16K bytes for storing CPTs and chain histogram for
star and chain patterns. Figure 3(a), (b) show the perfor-
mance of three methods. “BNM” and “CHM” indicate our
Bayesian network and chain histogram based methods for
star and chain patterns. Our method outperforms the other
methods. Then we develop 50 composite query patterns.
All these query patterns can be decomposed into star pat-
terns and chain patterns we have precomputed. Figure 3(c)
shows the results of three methods, where “Optimal” stands
for the optimal decomposition algorithm. Our method ob-
tains more accurate estimations since we construct the re-
fined model when dealing with joined triple patterns and do
not adopt join uniformity assumption.

6. CONCLUSION
In this paper, we construct the Bayesian networks and

chain histogram for estimating the selectivity of star and
chain patterns. For an composite graph pattern, we combine
the results of precomputed chain patterns and star patterns
to estimate the overall selectivity. Experiments demonstrate
the effectiveness of our method.
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