
Deep Mashup

A Description-Based Framework for Lightweight Integration of Web Contents

Hao Han, Junxia Guo, and Takehiro Tokuda
Department of Computer Science, Tokyo Institute of Technology

{han, guo, tokuda}@tt.cs.titech.ac.jp

ABSTRACT
In this paper, we present a description-based mashup frame-
work for lightweight integration of Web contents. Our im-
plementation shows that we can integrate not only the Web
services but also the Web applications easily, even the Web
contents dynamically generated by client-side scripts.

Categories and Subject Descriptors
H.4.m [Information Systems]: Information Systems Ap-
plications—Miscellaneous

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Web Application, Web Service, Web Feed, Mashup

1. INTRODUCTION
Mashup enables users to view diverse Web contents in

an integrated manner. However, there is not an uniform
interface used to access the data, computations and user
interfaces provided by different Web contents. The inte-
gration of multi-type Web contents (Web applications, ser-
vices and feeds) needs more programming and configuration
than single-type Web services integration. It is beyond the
skills of typical Web users, and restricted to specific tech-
nologies or domains. Moreover, with the development of
RIA technologies, there are more and more Web contents
dynamically generated by client-side scripts, which brings
new problems to the traditional mashup methods. In this
paper, we present DEEP for flexible and lightweight integra-
tion of Web contents. We Describe the target Web contents,
Emulate the interaction between the server side and client
side, Extract the partial information, and Personalize the
generated mashup applications.

2. DEEP
As shown in Figure 1, we describe the target Web contents

in a WCDL file. Then, the client requests are sent to the
target Web sites. According to the defined WCDL file, the
partial information is extracted from the response pages if
the target Web contents comes from Web applications. The
contents are transformed into HTML format. Finally, the

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

contents are integrated, and we personalize their layouts to
generate a resulting page of mashup application.

Figure 1: The outline of DEEP

2.1 Web Contents Description Language
We propose Web Contents Description Language (WCDL)

to describe Web applications and services. It is XML-based
and intelligible to the typical Web users without professional
programming ability/experience. WCDL uses the following
items to reflect the Web application end-user operations.
From StartPage, users send requests through request-input
element of InputType (e.g. InputBox, OptionList, LinkList)
in InputArea (XPath). The partial information of Content-
Type (e.g. text, image, dynamic contents) is extracted from
ContentArea and displayed in ContentStyle (XSLT).

The most-used style architectures of Web services are SOAP
and REST. We use the following items to describe RESTful
services in WCDL. BaseURL contains the hostname, ser-
vice name, version number, and method name. Query is the
query string of request URL. Type (GET or POST) specifies
how to send requests to target Web service. ContentStyle is
the display style. For the SOAP Web services, we transform
them into REST queries.

2.2 Emulation and Extraction
Different from Web service, the response from Web ap-

plication is the Web page. According to the description in
WCDL file, we get the response pages as the target Web
pages, and search for the target parts in the response pages.
Web applications provide the request-submit functions for
the end-users usually. In order to get the response pages
from all kinds of Web applications automatically, we use
HtmlUnit to emulate the submitting instead of URL tem-
plating mechanism. ContentArea is used to find the target

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1109

parts from the Web page. After the target parts are found,
the Web contents are extracted from the nodes in text for-
mat excluding the tags of HTML document according to the
corresponding ContentType for the static Web contents.

For the dynamic Web contents, we use an effective Hide-
and-Display method to control their visibility instead of the
static contents extraction method because we need to keep
the functionalities of client-side scripts. If we remove the
other parts from the target parts by traditional extraction
method, the original execution environment of scripts would
be broken and the scripts could not run normally. Here, we
keep all the parts of each Web page and change the visibility
in order to hide the other parts (node.style.display=”none”)
of Web page and display the target parts only. By the
Web contents extraction method and the hide-and-display
method, we can get any parts from any Web applications,
and maintain the functionalities of dynamic Web contents.

2.3 Integration and Personalization
Except the dynamic Web contents generated by client-side

scripts, both the Web service response and the extracted
partial information from Web application are in XML for-
mat. We need a template processor (ContentStyle) to trans-
form XML data into HTML or XHTML documents. DEEP
provides an XSLT library for user selection. After the de-
scription, extraction and transformation, we integrate the
Web contents from different Web applications or services
into a resulting page. We use HTML iframe (or div, span)
as the default Web contents container. We provide a default
resulting page, which shows two iframes each row. It sends
the request from input field to target Web sites in a multi-
thread way, and show the responses in the containers. Our
iframe supports the layout personalization. In the resulting
page, end-users can move iframes by dragging and dropping
operations to adjust the locations, which is more compact
than the default layout arrangement of iframes.

3. IMPLEMENTATION AND EVALUATION
We generated an example of mashup application. It real-

izes the search function of country information. As shown in
Figure 2, after the users input the country name and send
the request, the mashup application sends the request to
each target Web site and receives the response Web contents,
which are shown in an integrated resulting page. Our ex-
ample includes the following contents and Table 1 gives the
description of one target Web content. Target A is the real-
time local time from Localtimes.info. Target B is weather
information from WeatherBonk.com, which is a mashup ap-
plication integrated by weather service and Google Maps
service. Target C is the country’s location, basic informa-
tion and leader’s photo from BBC Country Profiles. Target
D is the latest corresponding news from BBC.co.uk. Tar-
get E is the photos from Trippermap.com shown with the
map, which can dynamically respond to click event and
show the relevant pictures. Target F is Web service of
Wikipedia. Target G is RSS feeds of YouTube. We also
provide PathReader, which is a tool to get the XPath and
type by mouse clicking selection mechanism.

DEEP makes it possible for users with no or little pro-
gramming experience to implement the integration of Web
contents from various Web applications and services. The
users can personalize the layout of each target content and
resulting page. Compared with Yahoo Pipes or Microsoft

Figure 2: Personalized mashup application

Table 1: WCDL example (target D)
Item Value
StartPage {[http://search.bbc.co.uk/searc

h?tab=ns&scope=all]}
InputArea {[//*[@id=”blq-mast”/FORM[1]]}
InputType {[InputBox]}
ContentArea {[//*[@id=”primary”/DIV[0]/UL[2

]/LI[0]/A[0]/SPAN[0]], [//*[@id=
”primary”/DIV[0]/UL[2]/LI[0]/A[0]]}

ContentType {[text list],[link list]}
ContentStyle {[search-result-layout.xslt]}

Popfly, the integration of DEEP is extended from traditional
Web services to the general Web applications. Compared
with MashMaker [1], any contents from any kind of Web ap-
plications are available in DEEP, not only the ordinary static
HTML pages but also the dynamic HTML pages containing
Web contents dynamically generated by client-side scripts,
even the parts from mashup application. Our WCDL gives
a shorter and simpler description format, and is applicable
to the description of general Web applications. It is easier to
read, write, reuse and update any part of mashup applica-
tion than end-user programming methods. Compared with
C3W [2] and Marmite [3], DEEP is applicable to general
Web browsers. Also, we provide PathReader to reduce the
manual analysis and configuration.

4. CONCLUSION AND FUTURE WORK
In this paper, we have presented an effective approach

to integrate Web contents. Our approach uses the WCDL
to describe the Web contents and functionalities, and real-
izes the lightweight integration by Web contents extraction
method and hide-and-display method. By DEEP system,
the typical Web users can construct the mashup applica-
tions easily and quickly. As future work, we will modify
DEEP to explore more flexible ways of integration of Web
applications, Web services and other Web contents.

5. REFERENCES
[1] R. Ennals et al, MashMaker: Mashups for the Masses,

SIGMOD 2007, 1116-1118.

[2] J. Fujima et al, C3W: clipping, connecting and cloning
for the Web, WWW 2004, 444-445.

[3] J. Wong et al, Making mashups with marmite:
Towards end-user programming for the Web, SIGCHI
2007, 1435-1444.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1110

