
Caching Search Engine Results over Incremental Indices

Roi Blanco
Yahoo! Research
Barcelona, Spain

roi@yahoo-inc.com

Edward Bortnikov
Yahoo! Labs
Haifa, Israel

ebortnik@yahoo-inc.com

Flavio Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com

Ronny Lempel
Yahoo! Labs
Haifa, Israel

rlempel@yahoo-inc.com

Luca Telloli
Barcelona Supercomputer

Center
Barcelona, Spain

telloli.luca@bsc.es

Hugo Zaragoza
Yahoo! Research
Barcelona, Spain

hugoz@yahoo-inc.com

ABSTRACT
A Web search engine must update its index periodically
to incorporate changes to the Web, and we argue in this
work that index updates fundamentally impact the design
of search engine result caches. Index updates lead to the
problem of cache invalidation: invalidating cached entries of
queries whose results have changed. To enable efficient inval-
idation of cached results, we propose a framework for devel-
oping invalidation predictors and some concrete predictors.
Evaluation using Wikipedia documents and a query log from
Yahoo! shows that selective invalidation of cached search
results can lower the number of query re-evaluations by as
much as 30% compared to a baseline time-to-live scheme,
while returning results of similar freshness.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Search engine, Search results, Cache, Real-time indexing

1. INTRODUCTION
Search engines are often described in the literature as

building indices in batch mode [1]. That is, the phases of
crawling, indexing and serving queries occur in generations,
with generation n+1 being prepared in a staging area while
generation n is live. The length of each crawl cycle is mea-
sured in weeks, implying that the index may represent data
that is several weeks stale. In reality, modern search engines
try to keep at least some portions of their index relatively up
to date. This is realized by modifying the live index rather
than replacing it with the next generation. Such search en-
gine indices are said to have incremental indices.

Caching of search results has long been recognized as an
important optimization step in search engines [2]. An under-
lying assumption, however, has been that the same request,

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

when repeated, will result in the same response previously
computed. Hence, returning a cached entry does not de-
grade the application. This does not hold in incremental in-
dexing scenarios, where the corpus is continuously updated
and thus the results of any query can potentially change
at any time. Namely, the engine must decide whether to re-
evaluate repeated queries, thereby reducing the effectiveness
of caching, or to save computational resources at the risk of
returning stale results. Existing solutions are as simple as
foregoing caching altogether and applying time-to-live poli-
cies on cached entries to ensure worst-case staleness bounds.

Our goal is to selectively invalidate only those queries
whose results are affected by the updates to the underlying
index. We formulate this as a prediction problem, in which
a component that is aware of both the new content being
indexed and the contents of the cache, invalidates cached
entries it estimates that have become stale. To this end, we
propose an architecture for incorporating predictions into
search engines, and measure the performance of several pre-
diction policies.

2. CACHE INVALIDATION PREDICTORS
Cache invalidation predictors (or CIP’s) bridge the index-

ing and runtime processes of a search engine, which typically
do not interact in search engines operating in batch mode,
or limit their interaction to synchronization and locking. In-
validation prediction means that the cache needs to become
aware of documents coming into the indexing pipeline. We
envision building a CIP in two major pieces (Figure 1):

The synopsis generator: resides in the ingestion pipe-
line, e.g., right after the tokenizer, and is responsible for
preparing synopses of the new documents coming in.

The invalidator: receives synopses of documents pre-
pared by the synopsis generator, and through interaction
with the runtime system, decides which entries to invalidate.

Our architecture allows composing different synopsis gen-
erators with different invalidators, yielding a large variety
of behaviors. Below we show how the traditional age-based
time-to-live policy (TTL) fits within the framework, and
proceed to describe several policies of synopsis generators
and invalidators, which we later compose in our experiments.

TTL: age-based invalidation. Age-based policies con-
sider each cached entry to be valid for a certain amount of
time after evaluation. Each entry is expired once its age
reaches τ . At the two extremes, τ = 0 implies no caching

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1065



Runtime system

Index pipeline

Cache Query
Processor

IndexParser/
Tokenizer

Synopsis
Generator

Invalidator

Crawled
Documents

User
Queries

Figure 1: CIP Architecture.

as results must be recomputed for each and every query,
whereas with τ =∞ no invalidation ever happens.

Synopsis generation and selective invalidation. To
improve over TTL, we exploit the fact that the cached re-
sults for a given query are its top-k scoring documents. By
approximating the score of an incoming document to a query
we can try to predict whether it affects its top-k results.

The synopsis generator attempts to send compact rep-
resentations of a document’s score attributes, albeit to un-
known queries. Its main output is a vector of the document’s
top-scoring TF-IDF terms [1] for which the document might
have a high score. To control the length of the synopsis, the
generator sends a fraction of top terms in the vector. Se-
lective (short) synopses will lower the communication com-
plexity of the CIP but will increase its error rate.

Once a synopsis is generated, the CIP invalidators make a
simplifying yet mostly accurate assumption that a document
(and hence, a synopsis) only affects the results of queries
that it matches: a synopsis matches query q if it contains
all of q’s terms in conjunctive query models, or any term in
disjunctive models. Then, the invalidator may invalidate all
queries matched by a synopsis (note that match computation
can be implemented with an inverted index over the cached
query set). Alternatively, it can use the same ranking func-
tion as the underlying search engine to compute the score of
the synopsis with respect to cached query q, and invalidate
q iff the computed score exceeds that of q’s last result. This
projection is feasible for many ranking functions, e.g., TF-
IDF, probabilistic ranking, etc. [1]. However, it is imperfect
for an incremental index. Cached scores for an incremental
index might degrade over time as term statistics of the index
drift away.

Finally, similarly to TTL, CIP invalidates all queries whose
age exceeds a certain time-to-live threshold. This bounds
the maximum staleness of the cached results.

3. EXPERIMENTS
We evaluate multiple CIP instances in a realistic setting.

We use the history log of Wikipedia, and assess the perfor-
mance of predictors on 10, 000 cached queries, sampled from
the Yahoo! query log. We process the document revisions
in single-day batches (epochs). In parallel with applying the
CIP, we compute the “ground truth” oracle by indexing the
epoch and running all queries on epoch boundary, retriev-
ing the top-10 documents per query. A CIP is evaluated by
comparing its decisions to the ground truth. We measure

the ratio of false positives (queries which have been evalu-
ated unnecessarily) versus the ratio of stale traffic (queries
for which stale results are returned).

We contrast instances of CIP against the TTL policy for a
variety of parameters in Figure 2. Our results show that for
every point of TTL, there is at least one point of CIP that
obtains a significantly lower stale traffic for the same value
of false positives. For example, tolerating 6% of stale traffic
requires below 20% of false positives, in contrast with TTL’s
44.6%. When highest freshness is required, CIP performs
particularly well – the number of query evaluations is 30%
below the baseline.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

False Positives ratio (unnecessary invalidations)

S
ta

le
 T

ra
ff

ic
 r

a
ti
o

False Positives vs Stale Traffic

 

 

!=1 (no caching)

!=2

!=3

!=4

!=5

Cache Invalidation Predictor (CIP)

TTL (1 " ! " 5)

Figure 2: Stale traffic versus False Positives for the
best cases of CIP versus the TTL baseline. The τ
parameter is measured in epochs.

4. FINAL REMARKS
The implication of our results to the design of caching

systems is the following. False positives impact negatively
the cache hit rate as they lead to unnecessary misses in our
setting. Consequently, selecting a policy that enables a low
ratio of false positives is important for performance. With
our CIP policies, it is possible to set a desired ratio of false
positives as low as 0.2. Lowering the ratio of false positives,
however, causes the ratio of stale traffic to increase, which
is undesirable when the degree of freshness expected for re-
sults is high. A caching system designer must confront such
a trade-off and choose parameters according to the specific
requirements of precision and performance. Our CIP poli-
cies enable such choices and improve over the TTL solution.

5. REFERENCES
[1] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto.

Modern Information Retrieval. ACM Press / Addison
Wesley, New York, NY, 1999.

[2] Evangelos P. Markatos. On Caching Search Engine
Query Results. Computer Communications,
24(2):137–143, 2001.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1066


