
Inquiro.CL: a New Search Engine in Chile

Marcelo Mendoza
∗

marcelo.mendoza@uv.cl
Hipólito Guerrero

hipolito.guerrero@uv.cl
Julio Farias

julio.farias@uv.cl

Department of Computer Science
University of Valparaíso

Avda. Errázuriz 1834, Valparaíso, Chile

ABSTRACT
In this paper we present a new online search engine develo-
ped in Chile: Inquiro.CL. This new search engine lets users
search the Latin-American web (specifically, ten Spanish-
speaking countries) by specifying their search domain (.cl,
.com.ar, .com.mx, and the rest of Latin America). The
structure is based on a distributed architecture that mana-
ges two document collections. The first is a cache of pages
/ sites that provides responses at low computational cost.
The second is a general collection of documents that is visi-
ted when the user extends the search to the second results
page or beyond. The index has been built using a multi-tier
strategy, such that titles, URLs, headers, and complete site
contents that make up the collection are cataloged in diffe-
rent indexes. The search engine uses a ranking function that
combines various relevance measurements, among them user
preferences, page rank, and text. Currently Inquiro’s main
collection reaches more than 1,500,000 pages and approx-
imately 35,000 sites. Experimental results show that the
search engine is precise and compares favorably with similar
search engines, reaching an average of over 60% precision in
the top 5 rankings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Query formulation, Information
Filtering, Search Process

General Terms
Algorithms, Experimentation

Keywords
Search Engines, Latin American Web

1. INTRODUCTION
Due to the explosive growth of the Internet, today it is

unthinkable to search the web without the help of a search
engine. In Latin America we have two types of search en-
gines to make this navigation easier: general purpose search
engines, like Google or Yahoo! Search, which completely

∗Dr. Mendoza is now at Yahoo! Research, Santiago, Chile

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

index the web and permit queries in specific domains, and
vertical search engines that index websites according to a
specific subject or specific domains. Examples of the latter
type are TodoCL, a Chilean engine that searches only sites in
the .CL domain, or the former TodoBR which did the same
on the Brazilian domain. Since 2005, a team from the Uni-
versidad de Valparáıso Department of Computer Science has
been developing a new search engine designed for the web
in Spanish. The ultimate goal is to provide a better tool for
searching by domain and which also helps evaluate new ran-
king algorithms. With the initial phase of the search engine
complete, the site is now available at http://www.inquiro.cl.

1.1 Contributions
In this work, our experience in implementing a search en-

gine for the Latin American web is presented. In this process
we have evaluated three ranking functions and have designed
distributed storage strategies, conducting experiments that
allow us to visualize the advantages and disadvantages of
each technique considered. Thus, the result is a new search
engine that compares favorably in precision to other sim-
ilar systems. We hope our discussion of results and the
conclusions we have drawn will be useful to other groups
working on developing search engine technologies, as well as
academics and researchers in the area.

1.2 Outline
The rest of the paper is organized as follows: in Section

2 we present the related works, in Section 3 we describe the
design of the search engine, in Section 4 we show experimen-
tal results of the proposed engine’s performance compared
to other similar models. Finally, in Section 5 we present our
conclusions and future work.

2. RELATED WORK
There are two types of search engines that lend to domain-

specific web searches: general purpose search engines (uni-
versal) and vertical search engines. Universal search en-
gines index the web entirely and allow for domain-specific
searches. This is the case for Google and Yahoo! Search,
among other commercial search engines. In particular, Goo-
gle [10], began at Stanford University as a spin-off, is imple-
mented on a centralized architecture for indexing and craw-
ling, which allows it to index a significant portion of the web
in just a few months. It operates on a ranking algorithm
based on PageRank [5], among other document relevance
measures. PageRank is a measure of site visibility according
to connectedness of the source in terms of hyperlinks. In par-

ticular, to provide Latin American domain-specific searches,
the Google system manages local collections in data centers,
where those queries are directed.

Yahoo! Search [9] is a search engine that belongs to Ya-
hoo! Inc. and is currently another important search en-
gine on the web. Originally, Yahoo! Search began as a web
directory organized hierarchically that meant searching for
sites associated to specific topics. Later, Yahoo! Search
incorporated a search engine that operated on a collection
of pages indexed by crawling, and on the collection of sites
recommended in its directory, thus combining both types of
results. Yahoo! Search, like Google, allows users to con-
duct Latin American domain-specific searches, using local
collections for each domain.

At the Latin American level, the site-specific search en-
gines that standout are TodoCL and Mexico Global. TodoCL
[11] is a search engine developed as part of family of search
engines that include the former TodoBR, for sites in Brazil.
TodoCL offers its users a search engine and a web direc-
tory affiliated with the OpenDirectory Project initiative.
Because it searches the Chilean web, TodoCL can be con-
sidered a vertical search engine by location. TodoCL works
by locally storing a copy of most Chilean websites, aiding
the search for information and allowing for quick access.
TodoCL’s main objective is to provide precise information
quickly, for which it consults an index of 600,000 indexed
pages. This web search has gone through several improve-
ments to date, in terms of interface, crawler and ranking.
Today it is considered the most important search engine in
Chile.

Mexico Global [12] is a search engine powered by a web
directory of .com.mx domain-specific sites. The directory
is organized hierarchically with 16 categories in the first
level. The search engine recommends categories related to
the query and categorized websites. This hybrid strategy for
recommendations has also been adopted by the Colombian
search engine Conexcol.com and the Cuban Cubaweb.cl. Co-
nexcol [13] powers its searches by combining the results pro-
vided by the search engine with those from a local directory
of 14 principal categories. Cubaweb [15] is primarily fo-
cused on facilitating searches for tourism, so it is considered
a vertical search engine. Cubaweb allows users access to a
directory of 12 main categories and provides access to sites
related to specific places in Cuba. The search engine only
recommends sites found in its local directory.

3. SEARCH ENGINE DESIGN
At the start of 2005, a group of academics and students

from our Department of Computer Science decided to focus
on designing a search engine dedicated to the Latin Ameri-
can internet written in Spanish (that is, excluding sites writ-
ten in Portuguese) by specifying the domains on which the
sites are hosted.

A first version was developed using a centralized architec-
ture and considering one server to hold the collection and
handle the search engine. The ranking function used was
text-based, using the model Tf− Idf [4] and the PageRank
measure was incorporated into this function. The results in
the first precision tests were disappointing, achieving ave-
rage precision between 25% and 30%, according to evalua-
tions based on expert criteria. Starting at the end of 2006,
a second version was developed whose main objective was
to make the following improvements: 1) Restructure the

search engine by introducing distributed process architec-
ture, 2) Improve the search engine’s precision by including
other measures of relevance. With regards to the architec-
ture of the search engine, the downloading and collection
indexing were separated from the search engine itself. The
first of these improvements was called Inquiro, which lends
its name to the search engine, and the second improvement
was called Sator. In this new versions of the search engine,
Inquiro will only store a cache of web pages / sites which
will be pulled from a main repository of data managed by
Sator. Thus, we hope to improve the search engine response
times, given that it will refer to a collection smaller than the
complete collection.

3.1 Search engine architecture
The project is composed of four subsystems operating co-

operatively together. Two of these are characterized by the
way they work and carry out their processes: the first op-
erates offline while the second runs online. We understand
the offline process as everything occurring before interaction
with the user (before the query is processed), while online
implies direct interaction with the user (processing the query
and preparing the ranking). The other two subsystems are
characterized by their support of the site distribution pro-
cesses in both collections.

The offline subsystem is responsible for generating the in-
formation necessary for the entire system to work, perform-
ing tasks like crawling and indexing. The online subsys-
tem is responsible for the ranking and subsequent display
of results. The mediating subsystems are responsible for
distributing the documents between the two main modules
(Inquiro and Sator) and maintaining the primary collections
and cache.

Figure 1 shows the structure of the system expanded to
show subsystems and a description of the information flow.
As shown in the figure, the indexing module that stores the
documents collected in the primary index performs the task
of crawling by using an additional module called WIRE.
WIRE [8] is a set of freeware tools developed by the Center
for Web Research [14], which allow a crawler to be used and
to extract statistics from the crawling process and the do-
cuments indexed. On the other hand, the Inquiro and Sator
modules communicate through their intermediary modules,
whose objective is to maintain both document collections
(cache and primary index).

Next the internal structure of each subsystem is described:

3.1.1 Query Engine
Composed of 4 modules: 1) Vectorized user query module:

responsible for vectorizing the user’s query. This module
processes the query, vectorizing and storing it in the cache.
2) Relevant document search module: responsible for re-
trieving documents relevant to the query from the cache. 3)
Results ranking module: responsible for ordering the docu-
ments retrieved from the collections (ranking process). For
this process, the documents are ranked through a combi-
nation of relevant measures, among them: PageRank, user
preferences registered in the logs (clicks) and the similarity
of the document to the query using Tf− Idf. 4) Document
list module: responsible for the pagination of the references
retrieved from the cache and the primary index. By default
each page result shows ten sites relevant to the query.

3.1.2 Inquiro mediator

Figure 1: Distributed indexer-query engine archi-

tecture

Composed of two modules: 1) Query administrator mo-
dule: responsible for verifying that the quantity of results
obtained from the cache is enough to be displayed on the
first page. If not, it requests more documents from the pri-
mary index to complete the top-ten ranking and the rest
of the page results. 2) Document distribution module: res-
ponsible for maintaining the database cache. Only the ten
most popular documents belonging to the top-k most fre-
quent queries (a value of the k parameter is defined in the
experiments section).

3.1.3 Sator mediator
Composed of two modules: 1) Query administrator mo-

dule: responsible for asking the primary index for pages /
sites relevant to a query. 2) Document distribution module:
sends the cache the top ten most popular documents for the
top-k most frequent queries.

3.1.4 Indexer
Composed of two modules: 1) Indexer module: responsi-

ble for maintaining the primary index updated and incor-
porating new sites / pages. 2) Collection download module:
responsible for communicating with WIRE. In this module
the parameters are configured to for the crawling process,
such as the quantity of process iterations, the ccTLD where
the crawling process will occur (crawling by domain), the
number of pages / sites to download, the list of seed pages
/ sites, the maximum number of sites to visit, among other
parameters in the process.

3.2 Logic Design
In this section we explain the design criteria that were

used to define three sensitive functions of our search engine:
the distribution of data between subsystems, index mainte-
nance, and the design of the ranking function.

3.2.1 Data distribution
The proposed search engine administers two independent

collections, through which searches are conducted. The first
is a cache collection, maintained in the Inquiro subsystem,
which is rapidly accessible given that it handles a smaller in-
dex. The second is a general collection stored on the Sator
subsystem, which has a slower access than the cache collec-
tion because of its larger index size. This later collection is
remotely stored, so it requires a remote invocation of me-
thods. The collections are stored in mixed format, that is,
the index is stored in text files and the rest of the data that
describe the documents and queries, like clicks, PageRank
and URLs among others, are stored in related databases.
Two modules are responsible for coordinating the distribu-
tion of data between the two collections: a mediator stored
in the Sator subsystem and another in the Inquiro subsys-
tem. The Inquiro mediator asks the Sator mediator for the
documents that will allow it to complete the list of results
that has been created considering only sites / pages from
the cache collection. The Inquiro mediator prioritizes these
requests to Sator, giving greater priority to those queries
that have not been able to show the first page of results to
the user (top ten results). In addition to this function that
supports the query processing, the Inquiro mediator is res-
ponsible for incrementing the click counter associated with
each selected document, whether it is in the local collec-
tion (cache) or otherwise notifying the change to the Sator
mediator to update the general collection. Finally, the In-
quiro mediator is responsible for determining the documents
that should form part of the cache, registering the top-k
most popular queries and retrieving the top ten ranked do-
cuments, storing them in the cache if they are in the general
collection. The value of the k parameter is determined in
the experiments section.

The Sator mediator is responsible for responding to the
Inquiro mediator’s requirements. Also, along with the In-
quiro mediator it is responsible for distributing the sites /
pages between the two collections, leaving the most visited
in the cache and keeping the rest of the collection in the pri-
mary index it administers. Upon receiving a request from
Inquiro to complete a list of pages / sites recommended for
a query, it runs a search in the primary index and produces
a list of recommendations which is then sent to Inquiro for
ranking. It also receives the notifications from Inquiro to
add to the document click counter, modifying its value in
Sator’s related database.

Both mediators should communicate every so often to re-
calculate the top-k most frequent queries, to recalculate the
top ten of each of those, and to update both indexes. The
updating period is determined in the experiments section.

3.2.2 Indexer
Both the cache index and the primary index are struc-

tured in multi-tiers. The first tier corresponds to an index
that contains the titles of the sites / pages indexed by Sator.
A second tier contains the URLs. The third tier contains the
site / page header (the first five lines). Finally, a fourth tier
contains the content (complete text) of the indexed sites /
pages. The implementation of multi-tier indexes allows us
to build relevant document lists, weighting differently simi-
larities in titles, URLs, headers and content in the ranking.
This also facilitates and accelerates the document search be-
cause the set of ranked documents has a maximum of 1,000,
discarding the rest of the rankable documents. To deter-
mine the set of 1,000 rankable documents we first look in

the title tier, then at the URLs, then in the header tier, and
finally in the content tier. This allows us to implement a re-
laxed search strategy, since we can discard searches in later
tiers if the first 1,000 documents have been retrieved in the
present tier. The index is built using an incremental algo-
rithm as a base, which allows new documents to be indexed
without discarding the previous index. Because two diffe-
rent collections are maintained and given the redistribution
of sites / pages conducted by the mediators that periodically
remove documents from one index to put into another, we
have added a reverse index to the primary index. That is,
iddoc - idword, so as to facilitate the elimination of docu-
ments, avoiding the need to scan the entire index.

3.2.3 Ranking
The ranking was implemented using a combination of vari-

ous types of relevance measures. First, we consider a scheme
Tf− Idf to estimate the relevance of a document to a text-
based query. The similarity function used is the Cosine sim-
ilarity, which is applied to each tier of text in the index
(title, URL, header, body text). With that, we get 4 mea-
sures of relevance. Another measure of relevance considered
is PageRank [5]. The value of PageRank for each document
has been recovered using the WIRE module attached to our
search engine. Given that the PageRank values are very low,
we use a watered-down logarithmic version of its value given

by PRsoft(u) =
1 + log10(PR(u))

1 + log10(PRMAX(u))
, which is standardized for

the maximum PageRank value in the collection. This allows
PRsoft(u) ∈ [0, 1]. Finally, the last measure of relevance con-
sidered in the ranking function relates to user preferences.
Claypool et al. [3] have shown that user preferences can
be interpreted as implicit measures of relevance. In the In-
quiro ranking we will consider the unbiased version of user
preferences with respect to the position of the documents in
recommendation lists, according to the model proposed by
Baeza-Yates et al. [2]. Following the model for bias reduc-
tion, user preferences adjusted according to their bias to the
position are given by: AdjPop(u, q) = Pop(u, q) × r

b, where
Pop(u, q) corresponds to the fraction of clicks from u docu-
ment over all the sessions of q; r corresponds to the position
of u in the raking of q; and b is a parameter of the model.

Experimental results approximate the value of bb = 1.44.
To combine the six measures of relevance considered in

the ranking function, we use a linear combination. Let
Simtitle(u, q), SimURL(u, q), Simheader(u, q) and Simfull(u, q) be
the Cosine similarities using the Tf− Idf scheme for the
query, title, URL, header, and document content respec-
tively. Let PRsoft(u) and AdjPop(u, q) be the PageRank mea-
surements and Popularity adjusted respectively. The score
of document u with respect to query q is given by:

R(u, q) = α × Simtitle(u, q) + β × SimURL(u, q)

+ γ × Simheader(u, q) + δ × Simfull(u, q)

+ ǫ × PRsoft(u) + ζ × AdjPop(u, q),

where α, β, γ, δ, ǫ and ζ are the factors of the linear
combination of measures, where α+β+γ+δ+ǫ+ζ = 1. The
values of these factors are determined in the experiments
section.

3.3 User Interfaces

Figure 2: Query engine user interface

Figure 3: Answer list user interface

This section describes the design of the human-machine
interface for the subsystems that compose our search en-
gine. Of the four subsystems that make up our search en-
gine, only two of them interact with the user: the indexer,
which is used by the system administrator, and the query
engine, which is used by the end-user. To develop the user
interface of the query engine, the design objective was to be
as intuitive as possible and to offer great ease of use. This
subsystem has two interfaces: the query input interface and
the results display interface. The navigation through these
interfaces is oriented towards a request-response system, fa-
cilitating the use of the search engine. In the input interface
the user can restrict the domain to search to .cl, .com.ar,
.com.mx or the rest of Latin America, as shown in Figure 2.

The results display interface shows ten sites per results
page, showing in the upper right corner the text search box.
Each recommendation shows the title, URL and a snippet
built from the header (the same that is considered for ran-
king, with a maximum length of two lines). In the page
header the number of results retrieved and the query pro-
cessing time in milliseconds are shown. At the foot of the
page is the pagination of results. The interface is shown in
Figure 3.

With respect to the design of the indexer interface for
system administration, it is important to consider that this
user has greater knowledge about the internal processes of
a search engine. Thus the interface can use terminology
specific to the area and can describe more precisely the fea-
tures that can be accessed from within. These interfaces
were developed using interactive menu styles, which lessen
the training time needed to learn how the system works. In
this stage, 6 interfaces were developed: login, main menu,
download collection, collection indexing, statistics, and lo-

Figure 4: Indexer user interface

gout. Figure 4 shows the download collection interface that
interacts with WIRE and allows parameters for crawling to
be specified, such as the location of the seed file and the
maximum number of documents to retrieve.

4. IMPLEMENTATION
In its first version, the system was developed in Java us-

ing J2SE 1.5 over DBMS PostgreSql 8.2 that allowed in-
formation about queries and documents like PageRank to
be stored. The new version uses a DBMS PostgreSql 8.3.
Both Sator and Inquiro have been developed using Java
J2SE 6, including RMI for remotely calling the mediators
procedures. In particular, the Sator module was developed
on Java Swing. Inquiro runs on Apache Tomcat 5.5, given
that part our application works using Servlets. For the de-
velopment we have used IDE NetBeans and PGAdmin III
as GUI for administering the related databases.

We use the 0.14 version of WIRE. FreeBSD version 6.2
was used as operative system for Inquiro and Sator.

5. EXPERIMENTAL RESULTS
The Sator application was evaluated using standard soft-

ware evaluation methodology, considering unitary testing,
integration testing, and system testing, where test had pos-
itive results. In this section we will explain in detail the ex-
perimental results with respect to three basic functions of a
search engine: crawling, indexing, and ranking. The results
that will be shown affirm that the search engine presented
compares favorably with its peers.

5.1 Crawling
Crawlers scan and collect pages / sites from the web from

a set of seeds, from which, following the structure of web hy-
perlinks, they index and collect new sites / pages referenced
from the seeds. This process repeats on the new pages, fol-
lowing in turn the forward links. Different hyperlink scan-
ning strategies can be defined. Basically, the structure of
web hyperlinks defines a graph, which can be run in breadth
or depth. The site / page servers define usage policies that
prohibit an individual crawler from making a large amount

cctld Sites Pages Words Crawling time [m]
.ar 7,483 148,692 21,515,800 6,205
.cl 11,569 400,007 48,781,035 991
.co 2,349 166,962 15,968,117 3,315
.cr 972 155,235 17,445,040 4,188
.ec 841 66,917 13,731,681 660
.mx 6,192 182,231 19,493,372 4,996
.pe 2,015 139,135 27,951,729 4,016
.py 842 50,794 11,045,728 1,643
.sv 557 100,551 11,892,702 2,137
.ve 2,030 173,824 20,887,288 4,877

Table 1: Crawling results by country code domain.

of requests and consuming the page resources. Therefore, in
this sense crawling strategies must be respectful. In general,
a good scheduler strategy is scanning in breadth. However,
for domain indexing, Baeza-Yates et al. [6] have proven that
a better strategy may be ordering the pages by PageRank
value. We will use this strategy in our search engine.

The crawler implemented through WIRE lets a scheduler
be defined according to the PageRank of the downloaded
site / page. To be able to start, the crawler needs to define
the domain to be indexed and a list of seeds from which the
process can start. In our case, we have decided to collect ten
domains: Argentina (.ar), Chile (.cl),Colombia (.co), Costa
Rica (.cr), Ecuador (.ec), Mexico (.mx), Peru(.pe), Paraguay
(.py), El Salvador (.sv) and Venezuela (.ve).

The crawling process was run from a Lanix Spine 5015MT
server with a Pentium processor d940, with a 3.2Ghz Dual
Core with 2 GB RAM and two HDD Sata of 250 GB each,
over a network with limited bandwidth of 300 KBPS. Given
the size constraints we had (500 GB for the main index),
the crawling process will be conducted with band width re-
strictions and a maximum number of document downloads
per domain. We will give certain priority to the.cl domain
with 1,000,000 sites and a maximum of 50,000,000 document
downloads, as opposed to a greater restriction of 100,000
sites and a download limit of 1,000,000 pages for the remain-
ing nine domains. The collection language has been Spanish,
and we have considered a list of 50 stopwords, ISO-8859-1
codification, and PageRank score of 100, so that only do-
cuments with a high PageRank score are downloaded (give
nour size constraints).

Table 1 shows the results for the completed crawling pro-
cess. Each row shows the number of downloaded sites, the
number of downloaded documents, the number of words in-
dexed, and the download time in minutes, per domain.

In total, the collection indexed by Inquiro considers 34,850
sites, 1,584,348 pages, and 208,721,492 words. The processes
that took the longest to complete were the Argentine web
(app. 5 days), the Mexican web (app. 4 days), and the
Venezuelan web (a little less than 3 days). The text pre-
processing was supported with the help of the Swish-e pa-
ckage [7], which contributed to the construction of the main
index.

5.2 Ranking
Given that our ranking function results from a combina-

tion of six measures of relevance, we will assign weights to
each of these measures so they can be prioritized. Since we
do not have evidence that will allow us to weigh one crite-

rion significantly more than another, we will assign values
to the relatively similar coefficients of the score function.
We will evaluate three weight assignments, based on the six
coefficients of the score function, which are shown in Table
2.

Functions (1) and (2) give similar weights to the six crite-
ria, with the only difference being in function (2), the elimi-
nation of the clicks measure to consider the impact of this
criterion. Similarly, function (3) does not consider the use
of multi-tier text, instead considering only measures of re-
levance for complete text and PageRank. Function (3) was
originally used in the first version of Inquiro.

To evaluate document ranking, we will used the metho-
dology described in [1], which consists of a calculation of
performance measures for the top-10 recommended results.
Thus, we have randomly chosen 30 queries from the 1,000
most frequent queries made at TodoCL during the second
semester of 2006 (extracted from the search log), with the
goal of being able to compare our results with the ranking of
that search engine. Considering the above, the evaluation
will be restricted to the domain .CL, understanding that
this result will be generalized and extended to the rest of
the Latin American collections. Likewise, we will conduct
the comparative precision experiment considering Google re-
stricted to .CL.

To evaluate the impact of user preferences, and given that
at the moment of evaluation our search engine logs were not
available (since it was not yet online), we asked 100 first-
year Computer Engineering students to make queries and
select the documents they thought were most relevant. Each
student made 10 queries and checked the first results page
shown by the search engine. The clicks were registered and
incorporated into the score function calculation (1).

For each of the 30 query samples, we have determined
the top 10 recommendations using our method. Seventeen
members of our laboratory have evaluated the document rec-
ommendations made by our search engine as well as Google
and TodoCL, according to their relevance to the query. This
has required the evaluation of 712 document pairs - queries
(there are documents that are recommended by more than
one search engine, for which there is overlap). For each
category, the documents recommended by the three search
engines have been mixed up, so that the expert evaluations
are not biased by their position in the list. Each expert has
evaluated 10 queries, approximately equivalent to the evalu-
ation of relevance of 237 documents. To achieve this, the 17
evaluators have used an evaluation page that allows them to
express their opinions of relevance on a scale of 0 - 4, from
less to greater relevance. Then, for each document pair -
query, we have calculated the average relevance from the
pairs evaluators. Of the 712 total pairs evaluated, 689 re-
ceived evaluations in agreement (that is, 0 or 1 in the case of
no relevance, 3 or 4 in the case of relevance). The remaining
23 pairs were reevaluated by a group of 4 different experts
(who did not participate in the first evaluation), reaching a
consensus on all the remaining pairs.

The precision results by query have been averaged for
each evaluator. Then, for each position, we have calculated
the average of the 30 queries, yielding the average precision
graph shown in Figure 5.

As shown in the average precision graph, Google earned
first place, followed by TodoCL and then Inquiro (1), with
comparable precisions and in the range [0.6, 0.8], which makes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Position

Google.CL
Todocl.CL
Inquiro (1)
Inquiro (2)
Inquiro (3)

Figure 5: Average precision evaluation

our search engine favorably comparable with its peers. The
graph also shows that the average precision does not drop
significantly as the evaluated result ranks lower. The func-
tion with the lowest performance has been Inquiro (3), which
can be attributed to not using clicks nor text in multi-tiers,
as do Inquiro (2) and (1). Particularly, the inclusion of clicks
has caused the performance of Inquiro (1) to surpass Inquiro
(2) in precision, leaving it close to the curve achieved by
TodoCL.

5.3 Data Distribution
Firsts, we will evaluate the size that the cache collection

should be in relation to the quantity of most popular queries
considered (top-k). To do this, we will measure the response
time of the cache collection. This variable is determined
by two factors: the time to search the collection and the
time to display the results. To identify the impact of both
factors on our measurements, we will make the same query
1,000 times, measuring the response time in two scenarios:
1) total system response time, 2) response time with a limit
on the number of results displayed (in this case, top-10).
This way, in the first scenario we are measuring the total
time (search time plus display time) and in the second, we
are only considering the search time. The query made was
Universidad Valparaiso Chile, which has 3,441 resulting sites
/ pages in the collection. Table 3 shows the results achieved
with this experiment.

The first column shows the number of queries considered
in the cache, the second shows the number of sites indexed,
the third lists the number of pages indexed, the fourth the
average response time needed for Inquiro to show the first
results page and the fifth the search time on the cache. As
we can see, the average response time increases with respect
to the cache size. This is because the costs of the search
increase as the size of the collection increases. However, we
can also observe that until a size of 5,000 queries, the time
difference is not significant, which changes from 7,500 and
up. We will therefore choose a cache with 5,000 queries (app.
50,000 indexed documents). Once the size of the cache col-
lection is determined, we can evaluate the impact of the data
distribution strategy used in Inquiro’s design. For that, we

Function Title (α) URL (β) Header (γ) Full-text (δ) Clicks (ǫ) PageRank (ζ)
(1) 0.20 0.20 0.18 0.14 0.14 0.14
(2) 0.24 0.24 0.20 0.16 - 0.16
(3) - - - 0.5 - 0.5

Table 2: Score functions evaluated in our experiments

will measure the search engine response times in accessing
the main index and accessing only the cache, simulating var-
ious users connecting to our search engine. To conduct these
tests, we will use JMeter, a tool which allows us to simulate
user connections through the creation of threads. The ex-
periment considered 1,000 requests. The cache collection
returns lower response times than accessing the main index.
The cache collection reached 5,870 requests per minute with
an average response time of 306 milliseconds, as opposed
to accessing the main index, which reached 66 requests per
minute with an average response time of 904 milliseconds.

We also must evaluate the mediators response times. Par-
ticularly, a critical factor is the response time of the Inquiro
mediator in communicating to the Sator mediator that it
needs more documents to complete a query’s results list.
After 1,000 requests to the Inquiro mediator, the average
response time was 2.03 milliseconds. Similarly, the Sator
mediator response time was evaluated. With 1,000 requests,
the average time was 110.69 milliseconds. On average in this
test, the Sator mediator had to process around 3.400 docu-
ments per request, with a complete search of the multi-tier
index (without relaxed search and without top 1000 restric-
tion).

Finally, we will evaluate how much time is needed to up-
date both indexes. The updating process considers the cal-
culation of the top-k most popular queries, the top-10 ran-
king for each (since the ranking function includes clicks and
therefore can affect the ranking), and finally the updating of
the main index and cache. To determine the updating pe-
riod, we will run the following experiment: With the cache
collection empty of indexed documents, and restricted to the
.cl domain, for the 5,000 most popular queries on TodoCL,
we will generate 1,800 clicks every 12 hours, according to the
click distribution by rank (power law) [2]. We will consider
clicks in this experiment to simulate the effect of users using
our search engine and selecting the shown documents with a
bias towards rank position. With this, we can measure the
effect of the index updates on the ranking function. This
is because by considering clicks in the relevancy calculation,
there will be documents that stop being popular (they leave
the top-10 list and are therefore eliminated from the cache
and are inserted in the main index) and other documents
that will join the top-10 ranking (being extracted from the
main index and inserted into the cache).

We will consider the following as updating periods: 12
hours, 1 day, 3 days, 7 days, 15 days, and 30 days. In Table
4 we show the number of documents that join and leave
the top-10 ranking, according to the updating periods to
evaluate.

We can see in Table 4 that the cost of updating the indexes
increases as the updating period is greater. However, as the
cache fills up, the number of documents that leave / join
the ranking are less. Therefore, as the longer observation
periods are considered, the updating costs relative to the
cost of the first days of operation will be less. That is, on

Queries Sites Pages Tot. cost [ms] Search cost [ms]
100 25 921 466 234
500 103 4,853 473 270

1,000 243 9,365 468 224
5,000 1,012 46,862 472 282
7,500 1,375 72,957 484 372
10,000 2,152 96,102 491 295

Table 3: Time response by cache size.

Clicks Deleted docs Inserted docs Total
1,800 (12 hours) 0 1,145 1,145

3,600 (1 day) 0 1,873 1,873
10,800 (3 days) 1 2,868 2,869
25,200 (7 days) 8 3,860 3,866
54.000 (15 days) 64 4,552 4,617
108.000 (30 days) 216 5,051 5,267

Table 4: Index updating costs

average, between days 15 and 30, 43 documents are updated
daily, as compared to the first days (12 hours or 1 day) where
around 2,000 documents need to be updated. For this, in the
first 15 days we use a shorter updating period, and as the
engine gets more use, the updating period will decrease. In
practice, during the first month we have used daily updates.
After the first month we have used additional updates every
fifteen days.

6. CONCLUSIONS
We have presented our experience in implementing a new

search engine designed for the Latin American web and for
domain restriction. The collection contains over 34,850 sites,
1,584,384 pages, and 208,712,492 words from the crawling
and indexing done over one month. The index has been built
using a multi-tier technique, indexing titles, URLs, headers
and body text in different tiers. The ranking function used
by Inquiro combines six measures of relevance, four of which
are related to the text layers of index sites / pages, in ad-
dition to PageRank which lets us consider the structure of
web hyperlinks and clicks. The average precision achieved
by our ranking function compares favorably to the precisions
achieved by Google and TodoCL. Finally we have evaluated
our distribution strategy, determining that a cache consid-
ering 5,000 queries (app. 50,000 documents in the cache) is
enough. We also determined that when running our search
engine, we should update both indexes daily, increasing that
period to every 15 days once we have surpassed the first
month of use.

There are several ways to improve Inquiro. Possibly the
most relevant of all is that we run experiments that will al-
low us to define a ranking function that achieves precision
equal to or better than similar search engines. What we
have learned in this work is that all the measures of rele-
vance used are useful and allow us to improve our ranking

function. What we still do not know is how to combine
those measures of relevance. In this work we have taken on
this problem using a lineal combination of measures, but we
cannot deny that other combination strategies might pro-
duce better results. This problem can be met by following a
machine learning scheme, where the coefficients of the com-
bination are learned.

We will also work to improve the search engine so that it
can process Boolean operators and also be able to process
phrasal queries. At this time, the index only processes sim-
ple words, for which the processing of two and three words
is a substantial improvement to make.

Finally, we will extend our collection to the rest of the
Latin American countries, including more domains than were
able to be included in this first version, like the Spanish web,
among others.

7. ACKNOWLEDGMENTS
We would like to thank four undergraduate students Jade

Gonzalez, Pablo Rompentin, Claudio Romo and Walter Pare-
des, for working on an initial implementation of the Inquiro
Search Engine. This work was funded under DIPUV project
52/07 from Universidad de Valparaiso, Chile.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, ACM Press,
New York, 1999.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza.
Improving search engines by query clustering. J. Am.
Soc. Inf. Sci. Technol., 58(12):1793–1804, 2007.

[3] M. Claypool, D. Brown, P. Le, and M. Waseda.
Inferring user interest. IEEE Internet Computing,
5(6):32–39, 2001.

[4] G. Salton and C. Buckley. Term-weighting approaches
in automatic retrieval. Information Processing and
Management, 24(5):513–523, 1988.

[5] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer
Networks, 30(1-7): 107 – 117, 1998.

[6] R. Baeza-Yates and C. Castillo and M. Maŕın and
A. Rodŕıguez. Crawling a country: better strategies
than breadth-first for web page ordering. Proceedings
of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005,
pp. 864-872.

[7] Swish-e, Simple web indexing system for humans.
available on http://www.swish-e.org

[8] Center of Web research. Web Information REtrieval
available on http://www.cwr.cl/projects/WIRE/

[9] Yahoo! Inc.. Yahoo Search! available on
http://www.yahoo.com

[10] Google Inc.. Google available on
http://www.google.com

[11] Akwan TIC.. TodoCL available on
http://www.todocl.cl

[12] Victeck Inc.. MexicoGlobal available on
http://www.mexicoglobal.com.mx

[13] Conexcol. Conexcol. available on
http://www.conexcol.com

[14] Center of Web Research. http://www.cwr.cl

[15] CubaWeb. CubaWeb available on
http://www.cubaweb.cu

