
Anycast-Aware Transport for Content Delivery Networks

Zakaria Al-Qudah
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106
zma@case.edu

Seungjoon Lee
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

slee@research.att.com

Michael Rabinovich
Case Western Reserve

University
10900 Euclid Avenue
Cleveland, OH 44106

misha@eecs.case.edu

Oliver Spatscheck
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

spatsch@research.att.com

Jacobus Van der Merwe
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932

kobus@research.att.com

ABSTRACT

Anycast-based content delivery networks (CDNs) have many
properties that make them ideal for the large scale distribu-
tion of content on the Internet. However, because routing
changes can result in a change of the endpoint that termi-
nates the TCP session, TCP session disruption remains a
concern for anycast CDNs, especially for large file down-
loads. In this paper we demonstrate that this problem does
not require any complex solutions. In particular, we present
the design of a simple, yet efficient, mechanism to handle ses-
sion disruptions due to endpoint changes. With our mech-
anism, a client can continue the download of the content
from the point at which it was before the endpoint change.
Furthermore, CDN servers purge the TCP connection state
quickly to handle frequent switching with low system over-
head.

We demonstrate experimentally the effectiveness of our
proposed mechanism and show that more complex mecha-
nisms are not required. Specifically, we find that our mecha-
nism maintains high download throughput even with a rea-
sonably high rate of endpoint switching, which is attractive
for load balancing scenarios. Moreover, our results show that
edge servers can purge TCP connection state after a single
timeout-triggered retransmission without any tangible im-
pact on ongoing connections. Besides improving server per-
formance, this behavior improves the resiliency of the CDN
to certain denial of service attacks.

Categories and Subject Descriptors

C.2.5 [Computer-Communication Networks]: Local
and Wide-Area Networks—Internet ; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Network Communications

General Terms

Performance, Design

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

Keywords

content delivery networks, anycast, connection disruption

1. INTRODUCTION
A significant portion of electronic content in today’s Inter-

net is delivered through content delivery networks (CDNs),
such as Akamai and Limelight. For example, Akamai alone
claims to be delivering 20% of the world’s Web traffic [1].
While the exact numbers are debatable, it is clear that CDNs
play a crucial role in the modern Web infrastructure. Most
current CDNs rely on DNS to redirect client requests to
an appropriate edge server. That is, an edge server that
is close to the requesting client and not overloaded. While
efficient, this redirection mechanism has a few major draw-
backs. First, it can only select the edge server based on
its proximity to the client DNS server, not the client that
will be performing the download, and clients (especially res-
idential clients) are sometimes far removed from their DNS
servers [16]. Second, this method affords a CDN only lim-
ited control over load balancing decisions: caching of DNS
responses by the clients makes server selection decisions per-
sist for a long time, regardless of the current load condi-
tions. This problem is exacerbated by the widely spread
practice of clients disobeying time-to-live directives returned
with the DNS responses, which in principle control how
long the clients can reuse a response, and using cached re-
sponses much longer [17]. Furthermore, malicious users can
intentionally bypass DNS responses and stick to a particu-
lar server, potentially causing significant degradation of the
system performance [21]. Finally, because local DNS servers
cache results, not all DNS requests represent the same client
workload. For example, we expect a significant difference in
workload between a DNS server serving a small community
college and a DNS server serving a large broadband access
provider.

IP anycast is a promising alternative request distribution
mechanism; it was initially considered for CDNs and dis-
missed, but recently re-emerged as a practical approach for
single-network CDNs [6]. An anycast CDN assigns the same
IP address to multiple edge servers and relies on IP routing
to deliver requests to the servers that are close in the net-
work to the clients originating the requests. In particular,
the server selection decision in anycast CDNs is based on the

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

301

proximity to the client itself—not to its local DNS. On the
other hand, anycast CDNs face two major problems (which
were the reasons IP anycast was originally dismissed as a
viable alternative): (1) lack of load balancing and (2) con-
nection disruption in connection-oriented downloads. The
first problem arises from the fact that IP routers do not
consider server load when routing a request. As a result,
servers that happen to be a little closer to many clients may
become overloaded.

The second problem stems from the possibility of a route
change in the middle of a transfer. When that happens,
connection-oriented flows might break because they might
be routed to a server that does not maintain the connection
state needed to continue the transfer.

In our previous work, we proposed a new design to ad-
dress the first problem of load balancing [6]. The focus of
this paper is to address the second problem of connection
disruption due to routing changes in anycast CDNs.

If a connection disruption interrupts a small object down-
load, a client can simply request the object again without
significant impact on user experience, as long as the disrup-
tions are infrequent. In the case of large file downloads (e.g.,
software download or multimedia streaming over HTTP), for
which disruptions can be costly, we proposed in [6] to make
edge servers redirect the requests to the servers’ own unicast
addresses at the beginning of the download. This additional
redirection is done via application-level redirection mecha-
nisms, e.g., an HTTP redirection response. This approach in
effect achieves static binding of the edge server to the client,
taking the download out of the anycast scope.

While static binding is simple to deploy, its performance
may suffer in many scenarios. First, large file downloads
could last several hours, during which the network and load
conditions may change significantly. Static binding would
not allow re-assigning the download to a different server to
respond to these changes. Second, in a flash crowd situation,
a server may have admitted more requests than it could
serve. With static binding, the server will potentially remain
overloaded for a long period of time, even if the CDN makes
more resources available. Third, when the demand increases
from a given geographical area, the CDN may want to bring
up a new server in that area to satisfy the demand locally
even if current servers are not overloaded. We would wish
that the CDN be able to redirect some ongoing downloads
to the new server. This will enhance user experience as well
as reduce the routing cost of these large files for the ISP.
Fourth, by the time a flash crowd ends, the CDN might
have allocated a large amount of resources to serve the flash
crowd. With static binding, the CDN has to wait for all
connections to a server to finish (which might take hours for
large files) before decommissioning that server. The same
problem occurs when a server needs to be taken down for
maintenance. Lastly, with static binding, malicious users
can degrade system performance in a similar way to DNS-
based systems [21].

In this paper, we propose not to fight but embrace ses-
sion disruption, by observing that redirecting long-running
downloads to a new server can be an important tool in
achieving agile server and network load management. We
propose a very simple mechanism to handle session disrup-
tion. If a TCP session is disrupted, the browser or download
manager reacts to the broken connection by issuing a new
HTTP range request for the remaining bytes. The browser

Server A

Server B

Client X

Client Y

R1
R2

R3

R4

R5

Figure 1: TCP session disruption due to routing
changes in an anycast CDN

then reconstructs the entire file from pieces once the last
portion of the file is obtained. The browser has all the in-
formation to construct this request: it obviously knows how
many bytes it has obtained prior to the disruption and it can
request the range from the subsequent byte to the end of the
file. For multimedia downloads, the browser adds pieces of
content to the playback buffer as they arrive. Note that mul-
timedia streaming implemented as progressive HTTP down-
load (e.g., a youtube video) is similar to other types of large
file downloads as long as the download speed is higher than
the playback speed. Therefore, we believe that our scheme
works equally well for this type of traffic as well.

While the proposed scheme may appear simplistic, imple-
menting it requires addressing several important questions.
Specifically, in the rest of this paper, we address the follow-
ing questions:

• How can we ensure the client’s TCP stack will always
learn of the connection disruption and issue the next
range request? (Section 3.1.3)

• What is the implication of the dormant TCP state at
the old servers for the connections that were moved to
the new server? (Section 3.1.2)

• What is the implication of having multiple range re-
quests on the overall download throughput? Does the
overhead due to multiple TCP slow-starts require some
mitigating mechanisms? (Section 3.2)

• What are the implications of our approach on server
performance, especially when a routing change causes
many new range requests to reach a server simultane-
ously? (Section 3.2)

• What are the security implications for a CDN that is
employing our proposed mechanism? (Section 3.3)

The remainder of this paper is organized as follows. The
next section provides necessary background on anycast CDNs
and reviews related work. Section 3 describes our proposed
mechanism and the motivation behind it in more details. In
Section 4, we then present experimental results that evaluate
our design. We conclude in Section 5.

2. BACKGROUND
This section presents necessary background information

regarding anycast CDNs and their relationship with TCP.
It then surveys the alternative mechanisms to support long-
running downloads in an anycast CDN.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

302

SYN

SYN-ACK

ACK

Client Server AServer B

ACK

ACK

RST

Anycast

change

PUSH

RST

RST

Figure 2: Default TCP behavior during anycast end-
point change

2.1 Anycast and TCP
IP anycast enables an IP routing and forwarding archi-

tecture to assign the same IP address to multiple endpoints.
From a routing perspective this behavior is the same as hav-
ing multiple paths to the same endpoint. This means that
routers naturally handle multiple endpoint with the same IP
address by selecting the shortest path from their perspective.
As such IP anycast provides “optimal” (i.e., shortest path)
routing for the delivery of packets to the anycast IP address.

Typically, such anycast endpoints are configured to pro-
vide the same service. For example, the multiple DNS root
servers use a single IP anycast address for redundancy [8].
Among those endpoints, an IP anycast packet is routed to
the “optimal” endpoint from an IP forwarding perspective
(e.g., proximity). As a result, by configuring an IP anycast
address for multiple CDN servers that can serve the same
set of contents, we can get efficiency and redundancy at the
same time, which was the reason why IP anycast was ini-
tially considered for CDNs. However, anycast CDNs face
two major problems. First, since IP routing typically does
not use application-level data, the routing decision can lead
to server load imbalance. Our previous work [6] addresses
this issue by using a fine-grained route controller [23] that
monitors server load and informs route selection in the any-
cast enabled network to realize load aware anycast. Specif-
ically, in this load aware anycast CDN, we override the de-
fault route selection process within the CDN network to af-
fect load balancing between different CDN nodes.

Another problem with anycast CDNs is potential connec-
tion disruptions if a route change occurs in the middle of a
connection-oriented transfer as in TCP. Figure 1 illustrates
two types of route changes that could result in connection
disruption. First, because of a routing change external to the
anycast enabled network, anycast packets from client Y that
first entered the network through router R5 now enters the
network through R4. Assume that based on shortest path
routing R5 will select the anycast route associated with R2

and server A, however, router R4 chooses the route associ-
ated with R3 and server B. Figure 2 illustrates the default
TCP behavior if such a switch were to happen in the middle
of a TCP transfer. TCP ACKs from the client will be redi-
rected to a different server (B in this example), which has
no TCP state for this connection. As a result, the server
will send a TCP reset (RST) message to the client, who will
in turn close the connection, thus terminating the transfer.
Such an external route change happens infrequently in prac-
tice [7] and is therefore not a significant concern.

Figure 1 shows another type of route change which could
result in TCP session reset. In this case anycast traffic from
client X enters the network at router R1. Initially this router
might select the anycast route associated with router R2
and server A. However, due to a routing change internal to
the anycast enabled network, R1 might select the anycast
route associated with router R3 and server B, resulting in
similar behavior as discussed above. As described above, a
load aware anycast CDN informs route selection based on
the server load in the CDN. As such, this internal form of
route change might happen much more frequently, resulting
in TCP session resets. Dealing with this problem is the
primary goal of the work presented in this paper.

A route change in the middle of a TCP transfer also cre-
ates a dormant state at the old server, which can waste
significant system resources for a prolonged period of time.
Indeed, if TCP does not receive an ACK within RTO (Re-
transmission Timeout), it retransmits the unacknowledged
segment multiple times before it gives up. For example,
Linux by default performs 15 retries. Because the time be-
tween each two retries is increased exponentially, the entire
retry interval can be from 13 to 30 minutes [4]. In any-
cast CDNs, after the route change, all ACKs (or subsequent
RSTs) from a client now go to a new server (B in Figure 1);
without the ACKs, the old server (A in our example) will
continue retransmitting the segments to the client for the
full maximum retry interval.

2.2 Related Work
Our previous work [6] utilized two recent developments

to propose a practical anycast CDN design that can bal-
ance the server load in a single-network CDN. First, the
design exploits an observation that Internet routing is re-
markably stable if all anycast endpoints belong to the same
autonomous system (AS), so anycast traffic from the same
external destination will overwhelmingly arrive at the same
AS entry point [7]. Second, it employs recently developed
mechanisms for fine-grain route control within an AS to pe-
riodically change internal IP routing within the AS based
on the load of edge servers [23]. Our present work comple-
ments this anycast CDN design by providing a mechanism
to deal with long-running download session disruptions due
to routing changes, most of which will be the result of route
changes to affect load balancing in the CDN.

As mentioned in Section 1, one way to handle routing
changes in anycast CDNs is to use static binding based on
HTTP redirection [6]. We can potentially apply other ex-
isting schemes to address the issue of connection disruption.
One option is to use socket migration [10,20,22] and transfer
the connection state between the old and new servers when
a server redirection occurs. However, socket migration re-
quires complex and reliable coordination between the new

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

303

and old server (and sometimes the client). Furthermore, it
may incur the socket migration delays.

In addition to socket migration, another key element in
the approach by Szymaniak et al. [22] utilizes mobility sup-
port in IPv6 to intentionally redirect the client to a new
anycast end-point in the middle of an ongoing TCP con-
nection. When IPv6 becomes available, this aspect can be
combined with our approach to avoid socket migration.

Another way to handle connection disruption is to use a
stateless transport protocol such as Trickles [19]. To enable
the stateless operation for servers, Trickles encodes the con-
nection state in every packet in both directions of the con-
nection (data and acknowledgment packets). This entails
a significant overhead in anycast CDNs scenarios, because
Trickles needs to carry at least 87 bytes to every data and
ACK segment even if a server switching does not occur.

Yet another possibility is to use a receiver-centric trans-
port protocol [14], where the server is completely stateless,
and the receiver keeps all the relevant connection state. In
such a scenario, the server could simply be presented with a
file name and an offset in that file to be able to send the next
packet of the connection. This approach requires complex
security protective measures as it puts the untrusted clients
into the driving seat in terms of controlling the sending rate.

An alternative approach to improve the performance of
large file downloads is to divide the file into smaller pieces
and request each of these pieces in a separate connection
in parallel [12, 18]. This approach is only effective when a
single connection cannot fully utilize the link capacity of the
client, that is, when the connection bottleneck is in the core
network or at the CDN servers. However, in a CDN serving
mostly residential clients that we target, the bottleneck is
typically at the last mile to the client.

While CDNs are traditionally considered to show good
resistance to DoS attacks, Su et.al. [21] have recently high-
lighted feasible and simple DoS attacks that can be launched
against DNS-based CDN services such as Akamai’s stream-
ing service. Briefly, multimedia streams require large amount
of network bandwidth and server resources to serve them.
On the other hand, DNS redirections are extremely sluggish
with redirections and decisions remain in effect for tens of
seconds. During this period, an attacker can request a large
number of streams from an edge server with the effect of
overloading the network and/or the edge server. Since Aka-
mai’s CDN performs essentially a static binding between the
attacker’s machines and the edge servers, the CDN will not
be able to offload these servers for the duration of these
streams (potentially several hours). We note that this prob-
lem exists in anycast CDNs that perform static binding, but
is avoided in CDNs that employ our approach.

3. ANYCAST-AWARE TRANSPORT
This section presents our mechanism for handling con-

nection disruptions and examines, on a descriptive level, its
performance and security implications. We quantify the per-
formance implications in the next section.

3.1 Mechanisms

3.1.1 Client-side

We use a very simple mechanism to handle connection
disruption during an HTTP session. When a client detects
a TCP connection failure during an ongoing download, the

client issues an HTTP range request for the remaining por-
tion, assuming that the failure is due to a redirection to a
different server. However, to distinguish a redirection from
a true network outage, the client treats a connection failure
during TCP handshake differently – the client aborts the
download in this case. The client has all the information
to construct the HTTP range request: it knows how many
bytes it has obtained prior to the disruption and it can re-
quest the range from the subsequent byte to the end of the
file.

Note that the client can potentially go through multiple
rounds of connection disruptions and subsequent range re-
quests before completing a download. In the end, the client
reconstructs the entire object of interest from the multi-
ple pieces obtained from potentially different servers or it
can progressively add pieces to the playback buffer for mul-
timedia streaming applications implemented as progressive
HTTP downloads.

In practice, we can implement all the necessary changes
on the client side at the application layer as exception han-
dling in response to TCP socket errors. Failure to open
the socket corresponds to handshake failure; the client han-
dles this exception by aborting of the download. When get-
ting an exception on read from the socket, the client stores
the downloaded portion and issues a range request to the
same IP address for the remaining bytes. Architecturally,
these changes can be implemented as a browser extension or
in a stand-alone “download manager” for a particular con-
tent provider (such as Apple’s iTunes), which many content
providers already require their users to install before they
can access the provider’s content.

3.1.2 Server-side

Functionally, no changes on the server side are required.
However, our approach leads to a potentially significant per-
formance penalty on the server side. After a server redirec-
tion, the old server maintains the open TCP connections
and keeps retransmitting unacknowledged segments, while
the acknowledgments all go to the new server. As men-
tioned in Section 2.1, this can go on for as long a time as 13
to 30 minutes and cause significant waste of server resources
such as CPU, memory, and network bandwidth.

Furthermore, because servers have a limit on the num-
ber of concurrently open connections, these dormant con-
nections reduce the number of useful TCP connections a
server can process. Because server switching in an anycast
CDN is performed through routing change, it is typically
coarse-grained and affects hundreds of connections simulta-
neously [6]. Thus, a server may have a large number of dor-
mant connections and need to wait for a significant amount
of time before it can accept new connections. Yet we cannot
just configure the server to accept more connections to sup-
port such dormant connections, because that would cause
server overload and affect server performance in the com-
mon case where most of connections are active.

We address this problem by operating more aggressively
by simply using a small value (e.g., 1) for the maximum retry
count, thus closing dormant connections quickly. With typ-
ical round-trip times in a CDN are much less than the mini-
mum RTO of 200ms stipulated by TCP, one retry translates
into 600ms of retaining a dormant connection: 200ms before
the retry and 400ms of waiting for the acknowledgment for
the resent segment.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

304

Such a drastic (from at least 13 minutes to 600 ms) re-
duction in connection retaining time certainly addresses the
issue of dormant connections but immediately raises the is-
sue of potential disruption of ongoing connections that may
happen due to normal variation of network delays and not
due to anycast redirection. However, our live Internet ex-
periments show that this change rarely affects the ongoing
connections in practice (Section 4.2). Even if connection
disruptions occasionally occur, the client in our system will
handle them gracefully by continuing the download session
using HTTP range requests. In fact, our results may have
implications beyond the immediate topic of this paper as
discussed in Section 3.3.

We implement the above change by extending the socket
interface on the server host to allow the application to spec-
ify the number of retries when opening a socket, on a per-
socket basis.

3.1.3 Detecting Connection Disruption

As discussed earlier, the client relies on its TCP stack to
detect connection disruption. Specifically, as shown in Fig-
ure 3(a), when a redirection occurs due to anycast routing
change, (1) TCP ACKs from the client will go to a new
server. Then, (2) the new server will respond with an RST
message, which will cause an exception on a read from the
socket. Based on this signal, (3) the client issues a new
HTTP range request.

Note that the TCP ACK from the client or RST from
the new server can get lost inside the network. In this case,
data transmissions from the old server (e.g., due to other
packets in transit or re-transmissions) will normally trigger
another set of ACKs and RSTs between the client and the
new server, as illustrated by the continued transmissions
by server A in Figure 3(a). However, in rare cases when
all (re)transmitted packets from the old server are lost in
the network the connection may go silent from the client’s
perspective.

We implement another extension to the server TCP stack
to make our approach more robust to the above boundary
conditions. As shown in Figure 3(b), we make a server host
send an RST segment to the client and thus explicitly in-
dicate a connection disruption when the server gives up on
the connection after retries (which happens quickly in our
approach as described earlier in Section 3.1.2). Again, we
implement this modification by extending the socket API so
that this behavior can be enacted on a per-socket basis.

If all above fails to deliver an RST message to the client
because they all were lost in the network, the client times
out on the connection, and just issues a new HTTP range
request assuming a connection disruption.

Note that packets from the two connections (before and
after the anycast change) belong to totally different sockets
and thus RSTs or ACKs from the old connection will not
interfere with the new connection.

3.2 Performance Implications
Our seemingly simple approach may potentially have sig-

nificant performance implications. Examining these impli-
cations is important to establishing the viability of our ap-
proach. In particular, we consider the following issues.

First, what is the implication of splitting a download into a
sequence of range requests on the overall download through-
put? When a client detects a new redirection, it needs to

SYN

SYN-ACK

ACK

Client Server AServer B

ACK

ACK

RST

SYN

SYN-ACK

ACK

RST

ACK

ACK

PUSH

SYN

SYN-ACK

ACK

Client Server AServer B

ACK

ACK

RST

SYN

SYN-ACK

ACK

RST

ACK

ACK

PUSH

RST

ACK

RST

RST

ACK

(a) (b)

Anycast

change (1)
(2)

(3)

Figure 3: TCP behavior during anycast endpoint
change: (a) with modified client (b) with modified
client and server

establish a new HTTP/TCP connection to a new server,
which requires a three-way handshake and TCP slow start.
This can potentially degrade the download performance in
modern high-bandwidth environments, especially if the redi-
rection occurs frequently.

One could attempt to mitigate this issue by maintaining
estimates of path characteristics between edge servers and
client subnets. Depending on the estimated parameters, a
server may choose to skip slow start for a new flow and
immediately enter the congestion avoidance phase. We in
fact followed this path in our design, until our performance
results indicated that the impact of repeated slow starts on
the overall download throughput is marginal with the rate of
redirections expected in a CDN (see Section 4.1). Thus, one
of our findings is that no mitigation in this case is required.

Second, what is the implication of closing dormant TCP
connections quickly? Doing so is essential for the well-being
of CDN servers in our approach, yet it could potentially dis-
rupt ongoing downloads in the absence of routing change.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

305

However, our extensive experiments over the global Inter-
net (Section 4.2) indicate to the contrary: these spurious
disruptions are extremely rare. Coupled with the fact that
our approach recovers gracefully from such a disruption, we
conclude our quick purging of dormant connections to be
appropriate, and in fact beneficial beyond the CDN setting
(see Section 3.3).

Third, what are the implications of our approach on server
performance? When we change anycast routes, all traffic to
a given anycast address entering the network at a given entry
router will move from one server to another. This means the
new server will face a large number of simultaneous range
requests from clients trying to recover their disrupted con-
nections. Will this cause the new TCP connections to adjust
their sending rate in a synchronized manner? Intuitively, if
a large number of new connections all go through a slow start
at the same time, they can potentially lead to network-wide
oscillation and significant performance degradation of the
network and server [9].

In our scenario, however, different flows have different
RTTs, which should provide randomization to counter the
synchronization effect. Furthermore, our experiments in
Section 4.3 show that even in the ideal scenario for syn-
chronization to occur, there is enough randomization due
to host processing delays so that we could not observe any
evidence of synchronization.

3.3 Security Implications
What are the security implications on a CDN that is em-

ploying our mechanism? As discussed in Section 2.2, CDNs
have been recently shown to be vulnerable to DoS attacks
targeting streaming services [21] such as Akamai’s streaming
service. The principle vulnerability stems from two issues:
(1) sluggishness of DNS, and (2) the incapability of the CDN
to offload overloaded servers. While the authors in [21] pro-
posed some architectural modifications to Akamai’s stream-
ing service to mitigate this problem, our mechanism can ef-
fectively solve it. Specifically, our mechanism gives the CDN
a tool with which it can offload the overloaded servers and
reassign some of the ongoing downloads to new edge servers
(and thus absorb the attack).

Furthermore, by shortening the connection timeout of servers,
our mechanism provides another security enhancement. Long
timeouts (e.g., up to 30 minutes in Linux) impose great DoS
threats. An attacker can request a large number of down-
loads from a server using relatively small number of botnet
nodes and then simply disappear. Whether the server is a
CDN server or a traditional stand-alone web server, it then
waits for a long time and tries to retransmit unacknowledged
packets before dropping the connection state. During this
time, significant resources (e.g., resources associated with
the open TCP connection, a server process or thread with
the associated memory responsible for the pending HTTP
request, etc.) are allocated for each of these actually dead
connections. Since we reduce these timeouts to a fraction
of a second, the server can get rid of these connections and
make the resources that were allocated for them available to
other requests quickly.

Finally, anycast CDNs in general keep control over re-
quest routing with the CDN. In particular, in DNS-based
CDNs, a client can simply override the DNS redirections al-
together and flood a particular server with requests. In any-
cast CDNs, the client can submit a request, but it has no

Server Client
dummynet

node

10Mbps
varying RTT & lossconnection reset

at varying frequency

Figure 4: Experiment setup for connection resets

control over which server will serve this request. Equipped
with our proposed mechanisms, anycast CDNs can enjoy a
significantly better DoS attack resistance.

4. PERFORMANCE EVALUATION
This section provides quantitative answers to the ques-

tions we raised earlier in the paper: what are the implica-
tions of TCP connection disruptions on the overall application-
level download throughput; what is the effect of quick purg-
ing of dormant TCP connections on active connections; and
what is the performance effect of moving HTTP downloads
en-mass to a new edge server. We consider these issues in
turn in the following subsections.

4.1 Impact of Connection Disruptions
In this section we evaluate the performance implications

of splitting a large file download into a series of downloads
via range requests. In particular, we assess the impact of
this mechanism on the overall download throughput as ex-
perienced by individual clients. Every range request requires
that the client reestablishes a connection to the new server.
This requires the client to perform a new three-way con-
nection establishment and the connection will need to go
through the slow-start phase before reaching its full speed.
Another perspective of the experiments in this subsection
is to establish how often the anycast CDN can reconsider
server load balancing and associated routing decisions with-
out impacting client downloads.

To answer these questions, we conduct the following ex-
periment. As shown in Figure 4, we have a server and a
client machines connected via a FreeBSD dummynet [2] with
100 Mbps links and network interface cards. The band-
width, however, is shaped by the dummynet to 10 Mbps.
The client downloads a 50MB file during which we emulate
the server switching by having the server reset the connec-
tion at a given frequency. We vary the connection reset
(or disruption) frequency. We also experiment with diverse
path characteristics by varying the loss and delay parame-
ters at the dummynet node and observe the overall download
throughput. The result is shown in Figure 5.

Each data point in Figure 5 is the average of 10 trials.
The solid line (No Reset) represents a baseline case of the
throughput achieved by a normal TCP connection that is
never reset. When the connection is reset every 30 sec-
onds, the throughput degradation of disrupted connections
is marginal. The throughput of the disrupted connections is
at most within 6% of the baseline throughput, and this ex-
treme is only reached for unrealistically high 10% loss rate.
Most of the data points show only 1% to 2% drop in through-
put. A switching frequency of once every 30 seconds seems
more than sufficient for anycast CDNs. For example, re-
mapping connections to servers in [6] is done once very 120
seconds. When the server resets the connection very fre-
quently (e.g., once every one or two seconds), the overall

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

306

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RTT delay (ms)

0.01 % loss rate

No Reset
30 seconds
10 seconds
2 seconds
1 second

(a) Loss rate = 0.01%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RTT delay (ms)

1 % loss rate

No Reset
30 seconds
10 seconds

2 seconds
1 second

(b) Loss rate = 1.00%

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RTT delay (ms)

10 % loss rate

No Reset
30 seconds
10 seconds

2 seconds
1 second

(c) Loss rate = 10.00%

Figure 5: Overall throughput of a 50 MB file download with various path characteristics and connection reset
frequency.

download throughput experiences a significant degradation
especially for high loss or long RTT paths. The degrada-
tion becomes less pronounced for high loss and long RTT
paths for which the normal TCP shows low throughput any-
way. When the connection is reset once every 10 seconds,
throughput degradation becomes less tangible especially for
low loss paths. Specifically, at 0.01% and 1% path loss rates,
the throughput of the disrupted connections is within 10% of
the baseline, while, in some experiments, the disrupted con-
nections achieve higher throughput than the baseline. At
10% loss rate, the throughput of the disrupted connections
is within 19% of the baseline.

The marginal penalty under realistic rates of server switch-
ing makes any mitigation unnecessary in the current envi-
ronments. Indeed, mitigation might be counter-productive.
For example, one mitigation approach might involve a new
server starting to serve a range request from a new client in
the congestion avoidance (instead of slow start) phase using
estimated path characteristics from the new server to the
client subnet. The penalty due to inaccurate path estima-
tion could outweigh the potential benefits. Specifically, if
the server underestimates the actual path bandwidth, it will
ramp up the sending rate slower in the congestion avoidance
phase than using slow start. If it overestimates the band-
width, it will incur unnecessary loss. Should we find situa-
tions in the future that require high switching frequency, we
might have to revisit these design choices.

4.2 Quick State Purging
In addition to an endpoint change, normal variations in

network delay and loss could potentially cause a server to
miss client’s ACKs for a period of time enough to cause
server to retransmit packets. The purpose of this section
is to answer the question of how small the maximum retry
count can be set before the percentage of dropped connec-
tions due to normal network variation increases to an“unac-
ceptable”value. Note that we have a large degree of freedom
in defining what is an unacceptable rate because the conse-
quence of a spurious connection drop is only that the client
needs to reconnect with a range request. Therefore, from
the perspective of the client, a spurious connection drop is
equivalent to a server switching to the same server.

We address this question by performing live Internet ex-
periments which are prepared as follows. We setup two
servers next to each other: one server uses regular TCP
(number of retries equals 15) while the other uses a short-

Figure 6: The five Keynote clients that achieved the
worst successful download rate for 0 maximum retry
count: For 1 retry, the the successful download rate
increases dramatically.

timeout TCP (the number of retries is an experimental pa-
rameter with 0 retries corresponds to 1 RTO timeout, 1 retry
corresponds to 3 RTOs timeout, and so on). We sign up
for 59 Keynote [13] clients distributed across the Internet.
(Most agents were in the United States, and some in Eu-
rope and Asia). Each client issues one request to download
a 2 MB file from each of the two servers every 15 minutes in a
randomized fashion. Logs of these downloads are maintained
both at the sever (by us) and at the clients (by Keynote).
The 2 MB file size restriction is imposed by Keynote. How-
ever, we verified the results of this experiment by download-
ing a 50 MB file from 3 residential machines that we own for
various setting of maximum retry count. The results were
consistent with the those obtained from Keynote with 2 MB
file size.

We set the number of retries to 0 for the short-timeout
TCP in the first experiment and to 1 in the second exper-
iment. We ran each experiment for over a week and we
collected over 33 thousand connections to each of the two
servers. Table 1 summarizes the results of these experi-
ments. The field “Log” in the table represents which log
the results are extracted from (server logs or client logs).

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

307

Retries Count Log Percentage of dropped connections (%)
Regular TCP Short-Timeout TCP Difference

0 Server 0.145 2.57 2.42
0 Client 1.18 3.66 2.48
1 Server 0.006 0.167 0.161
1 Client 0.02 0.171 0.151

Table 1: Summary of live Internet results

Server ClientR1 R2

Exit Interface (From R1 to R2)

Figure 7: Experimental topology for the synchro-
nization experiment

While the relative difference between the two TCP con-
figurations is similar in both logs, the actual average drop
rates are different. This is attributed to the fact that some
Keynote clients can fail due to for example client overload
and network problems. While Keynote try to minimize fail-
ures caused by its clients/network [3] and try to compensate
for these failures when reporting statistics from client logs,
this creates a small discrepancy between client and server
logs.

In the first experiment, the majority of the difference in
connection drop rate is due to one client which was able
to complete the download successfully only 13.11% of the
time according to the client logs and 13.23% according to
the server logs. The server timed out on the rest of the
downloads. Looking at the the average file download time
for this client, we notice that it is 19.2 seconds compared to
2.91 seconds the average download time of all other clients,
which suggests that the path quality to this client seems to
be extremely poor.

Interestingly, only a small increase in the timeout period
results in a dramatic decrease in the average spurious con-
nection drop rate. For example, Figure 6 plots the five
clients that achieved the lowest rate of successful downloads
(highest connection drop rate) with 0 retries. The figure
shows that the setting of 1 maximum retry count dramat-
ically increases the percentage of successful downloads for
these clients. For example, even the earlier problem client
is now able to successfully download the file 97.61% of the
time despite its apparent poor network path.

With this extremely low drop ratio achieved by a maxi-
mum retry count of one, we conclude that setting the time-
out to as short as three RTOs does not impact the perfor-
mance due to spurious connection dropping. However, this
quick timeout (typically a fraction of a second) helps the
server clean up the dormant connections’ state quickly and
resist some DoS attacks.

4.3 Synchronization Concerns
An existing mechanism for an anycast CDN with load-

balancing capability maps connections to edge servers at the
granularity of an ingress router [6]. In other words, the load
balancing controller (e.g., [6]) re-maps all connections com-

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

Q
u
e
u
e
 l
e
n
g
th

 (
p
k
ts

)

Time(seconds)

Queue length

Figure 8: Queue length versus time. There is no
evidence on synchronization.

ing into a particular ingress router to a new server.1 The im-
plication of such mapping granularity is that the new server
might be faced with a burst of new TCP connections trying
to perform range requests for the remaining part of their
respective files. In such a situation, one concern is that the
server might experience synchronization problems whereby
many TCP connections ramp up and back off around the
same time. On the other hand, random influences such as
RTT variations would dampen any oscillations.

This oscillating behavior would result in low network and
server utilization. Thus, one would need to implement mit-
igating traffic shaping at the server to prevent oscillations.
It is therefore important to assess the likelihood of synchro-
nization.

We design the following experiment for this purpose. We
set up a client and a server with two routers in between as
shown in Figure 7. R1 is a Linux box that is connected to
Case Western Reserve University’s campus network. Traceroute
from R1 to the client (which is also at Case) shows that there
is a one hop between R1 and the client and ping from R1
to the client shows roughly 0.2 ms round trip time. R1’s
network interface to the campus network is 100 Mbps. The
traffic exiting the router interface (marked with “Exit inter-
face” in the figure) is shaped using Linux TC [15] to 50 Mbps
to create a bottleneck. We emulate a large number of con-
nections arriving at the server at around the same time by
starting 1000 connections from the client machine to down-
load a 5.2 MB file from the server. The server machine runs

1One could extend the mechanism of [6] to allow remapping
at the granularity of particular interfaces of ingress routers.
However, this does not change the argument in this section
because even this finer granularity still involves hundreds of
connections.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

308

Apache [5] web server that is configured to accept this large
number of connections and serve them simultaneously.

The rationale behind this experiment is as follows. Our
setup imitates the worst-case scenario where synchronization
would be most likely to happen. Indeed, in our experiment,
the network path characteristics are homogeneous among
all the connections, thus any randomization due to RTT
variation would be minimal. The fact that connections are
originated from the same client machine creates some ran-
domization that stems from resource sharing. However, this
randomization should be small as compared to that available
in the Internet with many flows competing for bandwidth.
We plot the bottleneck queue length sampled every 200 ms.
In situations where synchronization problem exists, we ex-
pect the bottleneck queue to oscillate for a long time.

Figure 8 shows the result of this experiment. Despite
minimal RTT variations, what little randomization is con-
tributed by host processing is sufficient to prevent synchro-
nization as evidenced by the lack of oscillations in queue
length. Again, we expect much higher randomization effect
in a real deployment with variable RTTs. With this re-
sult, we believe that the new server does not need to handle
switched connections in any special way.

5. CONCLUSIONS
In the paper, we address the issue of supporting long-

running client sessions, such as large file downloads and mul-
timedia streams implemented as progressive HTTP down-
loads, in anycast CDNs. Existing CDNs, including anycast
CDNs, “pin” these sessions to a given server at the begin-
ning of the download, regardless of the changing network
and server load conditions. This reduces the adaptability of
the CDN and, as shown recently [21], its resiliency to de-
nial of service attacks. This paper presents our approach to
overcome these limitations. The contributions of this paper
are summarized as follows.

• We propose a simple mechanism to handle TCP con-
nection disruptions that occur in an anycast CDN,
whereby clients detect the disruptions when they oc-
cur, and re-request the remaining portion of the file.
While simple, we demonstrate that this mechanism
works efficiently and thus dismiss the need for more
complicated mechanisms. In particular, our mecha-
nism results in no tangible download throughput re-
duction for all reasonable server switching frequency
and network path characteristics.

• We recognize the ability of switching servers in the
middle of a large file download as an important tool
for server offloading. Particularly, the characteristics
of these downloads (long duration and large resource
requirements) impose many performance and security
problems if these downloads are statically bound to
servers as in existing CDNs.

• We discuss the security enhancements provided by our
mechanism. For example, in addition to quickly mak-
ing server resources available to active connections,
rapid purging of dormant TCP state in our mecha-
nism increases server resistance to DoS attacks with
no tangible penalty. We have conducted live Internet
experiments to demonstrate this point. Furthermore,
server offloading capability offers an effective solution

to a recently identified DoS threat in a commercial
CDN streaming service [21].

• We verify that en-mass redirection of ongoing down-
loads that occurs in anycast CDNs employing our mech-
anism does not cause any global synchronization ef-
fects. We have demonstrated the lack of synchroniza-
tion in a controlled lab experiment, which maximizes
the potential for synchronization. Thus, we certainly
do not expect this problem to occur in practice, where
variable network delays introduce significant random-
ness into the behavior of different TCP sessions.

Anycast CDNs are based on the assumption that anycast-
addressed packets are usually delivered to the nearest end-
point within the anycast group. Policy-based routing may
distort this assumption. While policy routing applies equally
to both anycast and unicast routing paths, a careful study
of its effect on the benefits of the anycast CDNs remains a
topic for future work.

With large file and progressive streaming downloads tak-
ing a growing part of Internet traffic [11], we believe our
mechanism fills an important emerging gap in the CDN ca-
pabilities. Furthermore, the simplicity of our mechanism
increases its chances of being employed in a real network.

6. REFERENCES

[1] Akamai Inc.
http://www.akamai.com/html/perspectives/index.html.

[2] IP Dummynet.
http://info.iet.unipi.it/~luigi/ip_dummynet/.

[3] Keynote Data Accuracy and Statistical Analysis for
Performance Trending and Service Level Management.
http://www.keynote.com/docs/whitepapers/

keynote_data_accuracy_for_WebPerformance.pdf.

[4] TCP Manual. http://linux.die.net/man/7/tcp.

[5] The Apache Web Server. http://httpd.apache.org/.

[6] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck,
and J. V. der Merwe. Anycast cdns revisited. In
Proceeding of WWW ’08, pages 277–286, New York,
NY, USA, 2008. ACM.

[7] H. Ballani, P. Francis, and S. Ratnasamy. A
Measurement-based Deployment Proposal for IP
Anycast. In Proc. ACM IMC, Oct 2006.

[8] T. Hardie. Distributing Authoritative Name Servers
via Shared Unicast Addresses. IETF RFC 3258, 2002.

[9] G. Huston. Faster. The ISP Column, June 2005.

[10] H. Jun, M. Sanders, M. H. Ammar, and E. W. Zegura.
Binding clients to replicated servers: Initial and
continuous binding. In Proceedings of the 9th IEEE
Workshop on Future Trends of Distributed Computing
Systems (FTDCS’03), page 168, Washington, DC,
USA, 2003. IEEE Computer Society.

[11] C. R. Kalmanek. Evolving nature of content delivery.
http:

//www.dcia.info/activities/p2pmsla2007/ATT.pdf.

[12] R. P. Karrer and E. W. Knightly. Tcp-paris: a parallel
download protocol for replicas. In WCW ’05:
Proceedings of the 10th International Workshop on
Web Content Caching and Distribution, pages 15–25,
Washington, DC, USA, 2005. IEEE Computer Society.

[13] Keynote. http://www.keynote.com/.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

309

[14] K.-H. Kim, Y. Zhu, R. Sivakumar, and H.-Y. Hsieh. A
receiver-centric transport protocol for mobile hosts
with heterogeneous wireless interfaces. Wirel. Netw.,
11(4):363–382, 2005.

[15] Linux TC. http://lartc.org/.

[16] Z. Mao, C. Cranor, F. Douglis, M. Rabinovich,
O. Spatscheck, and J. Wang. A Precise and Efficient
Evaluation of the Proximity between Web Clients and
their Local DNS Servers. In USENIX Annual
Technical Conference, 2002.

[17] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and
S. Seshan. On the Responsiveness of DNS-based
Network Control. In Proceedings of Internet
Measurement Conference (IMC), October 2004.

[18] P. Rodriguez and E. W. Biersack. Dynamic parallel
access to replicated content in the internet.
IEEE/ACM Trans. Netw., 10(4):455–465, 2002.

[19] A. Shieh, A. C. Myers, and E. G. Sirer. Trickles: a
stateless network stack for improved scalability,
resilience, and flexibility. In NSDI’05: Proceedings of
the 2nd conference on Symposium on Networked
Systems Design & Implementation, pages 175–188,
Berkeley, CA, USA, 2005. USENIX Association.

[20] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan.
Fine-grained failover using connection migration. In
USITS’01: Proceedings of the 3rd conference on
USENIX Symposium on Internet Technologies and
Systems, pages 19–19, Berkeley, CA, USA, 2001.
USENIX Association.

[21] A.-J. Su and A. Kuzmanovic. Thinning akamai. In
IMC ’08: Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement, pages 29–42,
New York, NY, USA, 2008. ACM.

[22] M. Szymaniak, G. Pierre, M. Simons-Nikolova, and
M. van Steen. Enabling service adaptability with
versatile anycast. Concurrency and Computation:
Practice and Experience, 19(13):1837–1863, September
2007.

[23] P. Verkaik, D. Pei, T. Scholl, A. Shaikh, A. Snoeren,
and J. Van der Merwe. Wresting Control from BGP:
Scalable Fine-grained Route Control. In 2007
USENIX Annual Technical Conference, June 2007.

WWW 2009 MADRID! Track: Performance, Scalability and Availability / Session: Performance

310

