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ABSTRACT
Ad auctions in sponsored search support“broad match”that
allows an advertiser to target a large number of queries while
bidding only on a limited number. While giving more ex-
pressiveness to advertisers, this feature makes it challenging
to optimize bids to maximize their returns: choosing to bid
on a query as a broad match because it provides high profit
results in one bidding for related queries which may yield
low or even negative profits.

We abstract and study the complexity of the bid optimiza-
tion problem which is to determine an advertiser’s bids on a
subset of keywords (possibly using broad match) so that her
profit is maximized. In the query language model when the
advertiser is allowed to bid on all queries as broad match,
we present a linear programming (LP)-based polynomial-
time algorithm that gets the optimal profit. In the model
in which an advertiser can only bid on keywords, ie., a sub-
set of keywords as an exact or broad match, we show that
this problem is not approximable within any reasonable ap-
proximation factor unless P=NP. To deal with this hardness
result, we present a constant-factor approximation when the
optimal profit significantly exceeds the cost. This algorithm
is based on rounding a natural LP formulation of the prob-
lem. Finally, we study a budgeted variant of the problem,
and show that in the query language model, one can find
two budget constrained ad campaigns in polynomial time
that implement the optimal bidding strategy. Our results
are the first to address bid optimization under the broad
match feature which is common in ad auctions.
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1. INTRODUCTION
Sponsored search is a large and thriving market with three

distinct players. Users go to search engines such as Yahoo!
or Google and pose queries; in the process, they express their
intention and preferences. Advertisers seek to place adver-
tisements and target them to users’ intentions as expressed
by their queries. Finally, search engines provide a suitable
mechanism for doing this. Currently, the mechanism relies
on having advertisers bid on the search issued by the user,
and the search engine to run an auction at the time the user
poses the query to determine the advertisements that will be
shown to the user. As is standard, the advertiser only pays
if the user clicks on their ad (the ”pay-per-click”model), and
the amount they pay is determined by the auction mecha-
nism, but will be no larger than their bid.

In this paper, we assume the perspective of the advertiser.
The advertisers need to target their ad campaigns to users’
queries. Thus, they need to determine the set S of queries
of their interest. Once that is determined, they need to
strategize in the auction that takes place for each of the
queries in S. A lot of research has focused on the game
theory and optimization behind these auctions, both from
the search engine [1, 16, 6, 2, 10, 4] and advertiser [3, 8,
5, 11] points of view. There has been relatively little prior
research on how advertisers target their campaign, i.e., how
they determine the set S.

The criterion for choosing S is for the advertiser to pick
a set of keyphrases that searchers may use in their query
when looking for their products. The central challenge then
is to match the advertisers keyphrases with the potential
queries issued by the users. It is difficult if not impossi-
ble for the advertisers to identify all possible variations of
keyphrases that a user looking for their product may use in
their query. As an example, consider a vendor who chooses
the keyphrase tennis shoes. Users searching for them may
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use singular or plural, synonyms and other variations (“clay
court footwear”), may misspell (“tenis shoe”), use exten-
sions (“white tennis shoes”) or reorder the words (“shoes
lawn tennis”). In fact, users may even search using words
not found in the keyphrase (“Wimbledon gear”, ”US Open
Shoes”, “hard court soles”), and may still be of interest to
the advertiser. These artifacts such as plurals, synonyms,
misspellings, extensions, and reorderings are very common,
and the problems get compounded since typical ad cam-
paigns comprise several keyphrases, each with its own set of
artifacts.

Major search engines help advertisers address this chal-
lenge by providing a structured bidding language. While the
specific details differ from search engine to search engine [17,
20, 19], at the highest level, the bidding language supports
two match types: exact and broad. In exact matchtype
(called “exact” in MSN AdCenter and Google, and “stan-
dard” in Yahoo), ad would be eligible to appear when a
user searches for the specific keyphrase without any other
terms in the query, and words in the keyphrase need to
appear in that order. In broad matchtype (called “broad”
in MSN, related to “phrase” and “broad” in Google, and
“advanced match type” in Yahoo), the system automati-
cally makes advertisers eligible on relevant variations of their
keyphrases including for the various artifacts listed earlier,
even if the search terms are not in the keyphrase lists. Thus,
the search engines automate the aspect of detecting artifacts
and matching the query to keyphrases of interest to adver-
tisers.1 Thus the task of advertisers becomes determining
the keyphrases and choosing the match type on each.

The question we address here is, how does an advertiser
bid in presence of these match types? Say each query q has
a value v(q) per click for the advertiser that is known to
the advertiser and is private. Further, we let c(q) be the ex-
pected price per click and let n(q) be the expected number of
clicks. These are statistical estimates provided by the search
engines [18, 23, 21]. Then, we consider two optimization
problems: (i) in one variant, we assume that the advertiser
wishes to maximize their expected profit, that is,

P
q(v(q)−

c(q))n(q), and (ii) in the other variant, given a budget B
for the advertiser, we assume that the advertiser wishes to
maximize their expected value, that is,

P
q v(q)n(q) subject

to the condition that the expected spend
P

q c(q)n(q) does
not exceed the budget.

The technical challenge arises due to query dependencies.
When one bids on a keyphrase for query q, as a result of
a broad match, it may apply to query q′ as well. The ad-
vertiser has different values v(q) and v(q′) on these because
users for q and q′ differ on their intentions and therefore on
their respective values to the advertiser. So, the advertiser
may make good profit on q and may wish to bid on that
query, but is then forced to implicitly bid on q′ as well, and
may even make negative profit on q′! Under what circum-
stances is it now desirable for the advertiser to bid for q?

Note that query dependence is a fundamental aspect of
sponsored search since advertisers can realistically only choose
and strategize on a small set of keyphrases because of the

1These match types may be further modified by ensuring
that the ad be not shown on occurrence of certain keywords
in the query; this feature (called “negative” in MSN and
Google or ”excluded” by Yahoo) and other targeting crite-
ria associated with keyphrase campaigns do not change the
discussion and the results here.

effort involved, and have to typically rely on the search en-
gine to carefully apply their strategy to variants of their
keyphrases. But beyond that, even an ad campaign that
is willing to exert a lot of effort and use a large number of
keyphrases or relies on a search engine to provide rich bid-
ding languages [9] will still find it impossible to include all
search variations of the keyphrases as exact matches, and
must necessarily rely on broad match for the variations that
search users develop and prefer over time. Thus, the ad-
vertisers bid implicitly on queries on which they can not
directly control the tradeoff between the cost and the value.

Query dependence introduces a complex optimization prob-
lem of trading off the benefits of bidding on a keyphrase
against the impact of bidding on its dependent queries. In
the sponsored search world, there is a keen awareness of this
complexity of bidding, and most search engines and third-
party bidding agents provide detailed tips and guidelines for
advertisers [24, 22]. Beyond these guidelines, what is miss-
ing is a clear theoretical understanding of the tradeoffs and
the complexity of the bidding problem that advertisers face.

We initiate principled study of bidding in presence of broad
matches. Specifically, our contributions are as follows.

1. We abstract two models — query and keyword lan-
guage models — to study bidding optimization prob-
lems.

In the query language model, the advertiser bids di-
rectly on user queries and wishes to determine which
query if any to bid on, to maximize expected profit.
This models both the theoretical extreme where an
advertiser can bid on any of the queries the search
engine will see, and the practical reality where the ad-
vertiser has a select set of queries in mind and wishes
only to optimize within that set. In the keyword lan-
guage model, advertisers may bid only on a subset
of queries, and broad match implicitly derives bids as
needed. This directly models the common reality.

2. We present efficient, polynomial time algorithms for
the bid optimization problem under these two models.

In query bidding, we get a polynomial-time algorithm
that maximizes the profit, using a reduction to the
well-known Min-Cut problem in graphs. This is in
contrast to the poor performance of natural greedy al-
gorithms for this problem. We also study the budgeted
variant of the problem, and propose a novel strategy
using two distinct budgeted ad campaign that gets the
optimal profit. We do so by studying the structure of
the basic feasible solutions of a corresponding linear
programming formulation of the problem.

For keyword bidding, we show that even limited in-
stances are NP-Hard to not only optimize, but even
to approximate; to deal with this hardness result, we
present a constant-factor approximation when adver-
tisers profit following an optimal bid is considerably
greater than her cost. This result is based on applying
a randomized rounding method on the optimal frac-
tional solutions of the linear programming relaxation
of the problem.

These represent the first known theoretical results for the
problem of bid optimization in presence of broad matches,
a problem advertisers face now since this feature is offered
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by the major search engines. Prior research in bid optimiza-
tion for advertisers [3, 5, 13] primarily focused on determin-
ing suitable bids for exact match types and does not study
the query dependence and implicit bids; [8, 11] studied the
problem of maximizing the number of clicks, and not the
profit which is the more standard metric. At the technical
core, our challenge is to tradeoff positive profit from bidding
on a keyphrase that applies to one query q against possibly
a negative profit from the implied bids of broad match on
queries q′. This query dependence is a novel feature in spon-
sored search auctions, not explicitly studied in prior litera-
ture, and our results for this problem may have applications
beyond, in the general auction theory area.

Finally, we report experimental results on a small family
of instances of the bid optimizations problem, and compute
the optimal bidding using the integer linear programming
formulation. Our main observation in these experiments is
that by considering only the broad match, we do not lose
much in the maximum profit of the solution. This supports
our hope that under reasonable circumstances (similar to
the ones in our experiments), considering only broad match
is effective, and in turn, that would enable advertisers to
focus on campaigns with small lists of keyphrases.

2. MODEL
We consider the optimization problems that an advertiser

faces while bidding in an auction for queries with a broad
match feature.

The Advertiser. We consider a single advertiser who is
interested in showing her ad to users after they search for
queries from a set Q. The advertiser has some utility from
having a user click on her ad. In reality, clicks associated
with different queries may have different utility to the adver-
tiser; The advertiser has a value of v(q) units of monetary
value associated with a ‘click’ that follows a query q ∈ Q.

We assume a posted price model where prices are posted
and the search volume of every query as well as its click
through rate (i.e., the probability that users would click her
ad) are known to the advertiser. Namely, every query q is
associated with a pair of parameters, known to the adver-
tiser, (c(q), n(q)), where c(q) is the per click cost of q, and
n(q) is the expected number of clicks that would result from
winning q (the expected number of clicks can be determined
from the search volume of q and the advertiser’s specific click
through rate for q).

Thus, when an advertiser wins a query q, her overall
profit 2 from winning, denoted w(q) is

w(q) = (v(q)− c(q)) n(q) .

Note that although each query has a positive value, winning
it may result in an overall negative profit.

Bidding languages. A bidding language is a way for an ad-
vertiser to specify her value or willingness to pay for queries.
Eventually, the auctioneer needs to have a bid for every pos-
sible query 3. The choice of a bidding language is critical

2In this paper, we use terms utility and profit inter-
changably.
3A bid of 0 for a query may be regarded as the default in
a case where the advertiser is not explicitly interested in a
query q and nor in queries that q match broadly.

for the auction mechanism. At the one extreme, it may
be infeasible to allow an advertiser to specify explicitly her
value for every possible query. On the other hand, a lan-
guage that is too restrictive would not allow an advertiser
to communicate her preferences properly.

In order to study the complexity of the optimal bidding
in the broad match framework while taking into account the
intersections among broad matches for different keywords,
we first consider a bidding language in which an advertiser
can specify a bid for every query q but only as a broad-
match. We refer to this language as the query language.

To allow the most accurate description of an advertisers
value per query, the ultimate way is to let the advertiser
specify all possible queries with exact or broad match, and
a monetary bid for each of them. If an advertiser is allowed
to bid on each type of query as an exact match as well as
broad match, she can decide for each query independent of
the other queries, and the complexity of the bidding problem
is not captured in such a bidding language.

To capture the complexity of the optimal bidding prob-
lem and the fact that advertisers may only bid on a subset
of queries, we study the keyword language that allows ad-
vertisers to place a bid only on (single) keywords or short
phrases. More precisely, in the keyword language, we as-
sume that advertisers are allowed to bid only on a subset
S ⊂ Q of queries.

A further improvement of this language would allow the
advertiser to specify, besides a value bid for s ∈ S, whether
s is to be matched exactly or broadly.

A bid b ∈ R|Q|+ in some bidding language is associated with
a set of ‘winning queries’ denoted by ϕ(b) = {q ∈ Q | b(q) ≥
c(q)}. A subset T of queries which is a winning set of some
bid b is referred to as a feasible winning set. The utility
associated with a winning set T is

u(T ) =
X
q∈T

(v(q)− c(q)) n(q),

where v(·) and n(·) are advertiser specific.
A feasible winning set with optimal utility is referred to

as an optimal winning set.

The Auction. For every query, the auctioneer should de-
cide the bid of every advertiser. This decision is easy for
queries on which the advertiser bids explicitly (as an exact
match). However, for the queries that the advertiser has
not bid directly, but only through a broad match frame-
work, the auctioneer should compute an appropriate bid for
the advertiser to participate in the auction.

A natural way for setting such a value is to aggregate the
bid values of all the phrases matched by the query. While
there are several choices for the aggregation method, in this
paper, we consider the max aggregation operator — when
a query q matches phrases w1, . . . , wk (as a broad match)
from the advertiser list of phrases, its bid is interpreted as
b(q) = maxi b(wi).

We can now state formally the bid optimization problem.
Given advertiser’s specific data (A set Q, value for queries v,
search volume and click through rates n(·) ) and a bidding
language L, an optimal bid b∗, is a feasible bid in the lan-
guage L that maximizes the advertisers’ utility from winning
a set ϕ(b) of queries. Formally,

b∗ ∈ argmaxb∈L{u(ϕ(b))}. (2.1)
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Query dependencies. We say that a query q depends on a
query q′ if winning query q′ implies winning query q. In the
broad match auction in which the bid interpretation strategy
is done using the max operator, this happens if q matches q′

broadly, and its cost c(q) is less than that of c(q′). In other
words, if a bid b wins q′, it must be that b(q′) ≥ c(q′), but
the interpreted bid for q is then at least b(q′) ≥ c(q) since
c(q′) ≥ c(q), hence the bid b must be winning q as well. As
a result, the cost structure incurs a set of pairs (q′, q) where
the first entry of each pair q′ ∈ S is a valid phrase in the
bidding language and the second entry is a valid query in the
set of queries Q such that winning query q′ implies winning
query q. This set of pairs is denoted by C and formally:

C = {(q′, q)|q′ ∈ S, q ∈ Q, q matches q′ broadly , c(q′) ≥ c(q)}.
Moreover, we define D(q) = {q′|(q′, q) ∈ C}, and N(q) =

{q′|(q, q′) ∈ C}.

Budget-constrained Ad Campaigns. A variant of the
optimal bidding problem in the broad match framework is to
find a set of queries to bid on that maximizes the total value
of the queries won by the advertiser subject to a budget
constraint, i.e, our goal is to bid on a subset T of queries
to maximize

P
q∈T v(q)n(q) subject to the budget constraintP

q∈T c(q)n(q) ≤ B. To handle such a budget constraint, we
assume that one can run a budget-constrained ad campaign
by bidding on a subset T of keywords and setting a budget B.
Assuming B′ =

P
q∈T c(q)n(q), there are two possibilities

in this budget-constrained ad campaign: (i) If B′ ≤ B, the
auction is run in a normal way and the value from this ad
campaign for the advertiser is

P
q∈T v(q)n(q), (ii) On the

other hand, if B′ > B, we assume that the queries arrive

at the same rate and as a result, for each query, we get B′
B

fraction of the value of an ad campaign without the budget
constraint. In other words, the value that the advertiser

gets is
P

q∈T v(q)n(q)B′
B

. We can also interpret the above
assumption by a throttling method in which, in order to
cope with the budget constraint, at each step, we let the

advertiser participate in the auction with probability B′
B

.

3. BIDDING IN THE QUERY LANGUAGE
In this section, we study the query language that allows

placing a bid on every query. We observe that in the query
language, the task of computing an optimal bid is equiva-
lent to that of computing an optimal winning set: Given an
optimal feasible set T set a bid b(q) = c(q) for every query
q ∈ T with positive weight and b(q) = 0 otherwise.

Lemma 3.1. A bid b derived from an optimal winning set
T , as described above, is an optimal bid.

Proof. By construction, the bid b wins all the queries
with positive weight from T , and every other query must
belong to T (otherwise T would not be feasible).

We therefore consider algorithms for computing an opti-
mal feasible winning set. First, we consider a greedy al-
gorithm, denoted by Max-Margin Greedy. Initially, Max-
Margin Greedy sets the winning set to be empty. Then,
iteratively, it adds a bid on a query with the highest mar-
ginal benefit to the winning set utility. Unfortunately, Max-
Margin Greedy fails to compute an optimal winning set due
to the following example.

Example. Consider a set Q of queries which contains n
keywords and another

�
n
2

�
queries, each of which is a pair of

keywords. The cost of each query is set to $1. Hence, the
query dependencies is such that winning a keyword implies
winning the set of n − 1 queries made of pairs of keywords
in which this keyword appears. The value of a keyword
is set to $2; The value of a each pair is set to 1 − 1.5/n.
So, every keyword attains a positive utility of $1, and every
pair causes a loss of $1.5/n. Initially, Max-Margin Greedy ’s
bid is empty. At this point Max-Margin Greedy is stuck
— every single query it adds to the winning set results in
a negative overall utility. Thus, this instance, Max-Margin
Greedy would yield 0 utility. An optimal solution wins all the
queries and has a utility of n×(2−1)−�n

2

�
(1− 1.5

n
−1) = n−3

4
.

One can explore other variants of greedy algorithms for
this problem. For example, a natural greedy algorithm is
Max-Rate Greedy algorithm: Initially set the winning set to
the empty set, and then iteratively, add a bid on a query
with the highest ratio of marginal profit over the marginal
cost, or the query with the highest ratio of marginal value
over marginal cost. We note that all these iterative greedy
algorithms pefrom poorly for the above example. Even a
significant look-ahead will not resolve this bad example.

We turn to the next algorithm OptBid1 for computing an
optimal winning set. OptBid1 is a solution to the following
integer linear program:

ILP : max
X

qi∈Q

Xqiw(qi)

For every pair (qj , qi) ∈ C : Xqi −Xqj ≥ 0

∀qi ∈ Q : Xqi ∈ {0, 1} (3.1)

For every query q, an integral variable Xq is a 0-1 variable
which is equal to 1 if and only if q belongs to the winning
set of queries. In order to solve the above ILP, we relax it
to a linear program where instead of integer 0-1 variables,
we have fractional Xq variables with values between 0 and 1
(0 ≤ Xq ≤ 1). Here, we observe that the integrality gap of
this linear programming relaxation is 1, i.e., for any instance
of this linear program, there exists an optimal solution X∗

in which all the values are integer X∗
q ∈ {0, 1} for all q ∈ Q.

Lemma 3.2. The integrality gap of the linear program-
ming relaxation of the ILP 3.1 is one.

Proof. The lemma follows from the fact that the con-
straint matrix of the LP relaxation of ILP 3.1 is totally uni-
modular4. A sufficient condition for a matrix to be totally
uni-modular is that every row has either two non-zero en-
tries, one is 1 and the other −1, or a single non zero entry
with value 1 or −1. An integer program whose constraint
matrix is totally uni-modular and whose right hand side is
integer can be solved by linear programming since all its
basic feasible solutions are integer (see [12] pp. 316).

The above lemma implies the following polynomial-time
algorithm OptBid1 for optimal bidding in the query lan-
guage: compute a basic feasible solution X∗ of the LP relax-
ation of ILP 3.1, and find a bidding strategy corresponding
to the winning set of X∗, i.e., {q ∈ Q|X∗

q = 1}.
4A matrix A is totally uni-modular if every square submatrix
of it is uni-modular, i.e., every submatrix has a determinant
of 0, -1 or +1.
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Figure 1: An example of running algorithm Opt-
Bid2 on the set of queries (with the following profit:
{(a, 11), (b, 8), (ab,−8), (abc,−9), (ef, 7), (efg,−5), (efh,−4)}),
and dependency graph as illustrated. ObtBid2 will
choose the winning set {a, b, ab, abc}. The optimal
bid is {(a, 11), (b, 8)}.

The running time of Algorithm OptBid1 is that of solving
a linear program with Ω(|Q|2) constraints, which although
polynomial in |Q|, might be inefficient. Next, we present a
faster algorithm, OptBid2.

For the purpose of presenting Algorithm OptBid2, we de-
fine a weighted flow graph G = (V, E), derived from the
input. The vertex set of G is V = {s, t} ∪Q+ ∪Q−, where
s is a source node, t is a target node and Q+ and Q− are
the sets of queries with positive/non-positive weights respec-
tively, i.e., Q+ ≡ {q | w(q) > 0}. The source vertex s is
connected to each vertex q ∈ Q− with an edge of weight
|w(q)| = |(v(q) − c(q))n(q)|. The target vertex t is con-
nected with each vertex p ∈ Q+ with an edge of weight
w(p). Two vertices q ∈ Q−, p ∈ Q+ are connected with an
edge of weight ∞ if and only if (p, q) ∈ C.
Algorithm OptBid2

1. Compute a min-cut of G. Let S, T be the two sides of
the cut.

2. Assume, without loss of generality, that t ∈ T . Return
T \ {t}, that is, the set of queries that are on the same
side of the cut as t is an optimal winning set.

The running time of Algorithm OptBid2 is that of min-
cut, i.e., O(|Q|3) [14].

Theorem 3.3. Algorithm OptBid2 finds an optimal win-
ning set.

Proof. We show T is an optimal winning set using the
dual program of ILP.

DUAL : min
X

q∈Q+

Zq

∀q ∈ Q+ :
X

q′:(q,q′)∈C
Yq,q′ + Zq ≥ w(q)

∀q′ ∈ Q− :
X

q:(q,q′)∈C
Yq,q′ ≤ −wq′ (Notice that wq′ ≤ 0)

∀(q, q′) ∈ C : Yq,q′ ≥ 0

∀q ∈ Q+ : Zq ≥ 0

Let f = (fe)e∈E be a maximum flow in G, with value c. For
every (q, q′) ∈ C, set Yq,q′ := fq,q′ and for every q ∈ Q+,
set Zq := w(q) −Pq′|(q,q′)∈C Yq,q′ . It is straightforward to
verify that this is a feasible solution of DUAL with valueP

q∈Q+ w(q)− c.
Now, observe that T is a feasible set in the query language.

For every pair (q, q′) ∈ C, we have that if q ∈ T then also
q′ ∈ T . Otherwise, the edge (q, q′), with weight ∞, would
be part of the cut. Thus, the value of the min cut is

c =
X

q∈Q−∩T

|w(q)|+
X

q∈Q+\T

w(q).

and therefore,

u(T ) =
X
q∈T

w(q) =
X

q∈Q+

wq −
X

q∈Q+\T

w(q) +
X

q∈Q−∩T

w(q)

=
X

q∈Q+

wq − c.

We already found a feasible solution for the dual of ILP,
with the same value. We therefore conclude, using the weak
duality theorem, that T is an optimal solution of ILP.

4. BIDDING IN THE KEYWORD LANGUAGE
In this section, we study optimal bidding for the keyword

language, where the advertiser is restricted to bid on a subset
of (possibly short) queries S ⊂ Q.

Note that in the case that all queries have positive utility,
the optimal bid is trivial by simply placing a high bid for
every query in S. In addition, finding the optimal bid when
all queries are associated with a negative utility is trivial (a
bid of $0 for every phrase in S is optimal). Moreover, in the
case of uniform value from every query, the optimal bid is
easy — a uniform bid equal to the uniform value guarantees
winning every query with positive weight and losing every
query with negative weight, which is of course optimal. In
realistic settings, some queries have positive utility and some
have negative utility. In this case the problem of finding the
optimal bid becomes intractable. More precisely, as we show
now, even when the set of queries Q is made up from single
keywords and pairs of keywords, this problem becomes hard
to approximate within a factor of |S|1−ε, for every ε > 0:

Theorem 4.1. In the keyword language broad match frame-
work, it is NP-hard to approximate the optimal value of the
optimal bidding problem within a factor of |S|1−ε, for any
ε > 0.

Proof. We give a factor-preserving reduction to the in-
dependent set problem. Given a graph G with n nodes, and
m edges, we construct the following instance of our problem:
put a singleton keyword for each node v of G with weight
wv = −(deg(v)− 1), and put a query consisting of a pair of
keywords corresponding to each edge e of G with weight 1.
The maximum value we can get from picking a keyword is
1, and we get this value if all of its neighbors do not appear
in the output. It can be seen that the optimum solution is
an independent set of nodes (since otherwise, we get zero or
negative from a picked node), and as a result, the maximum
value is the same as the size of the independent set.

4.1 A Constant-Factor Approximation
In this section, in light of the above hardness result, we de-

sign a constant-factor approximation algorithm for a special
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