
Towards Person Name Matching for Inflective Languages

Jakub Piskorski
Joint Research Centre

of the European Commission
Via Fermi 1

21020 Ispra, Italy
Jakub.Piskorski@jrc.it

Karol Wieloch
Poznań University

of Economics
al. Niepodległości 10

60-967 Poznań, Poland
K.Wieloch@kie.ae.poznan.pl

Mariusz Pikuła
Polish-Japanese Institute
of Information Technology

Koszykowa 86
02-008 Warsaw, Poland

s3065@pjwstk.edu.pl

Marcin Sydow
Polish-Japanese Institute
of Information Technology

Koszykowa 86
02-008 Warsaw, Poland
msyd@pjwstk.edu.pl

ABSTRACT
Web person search is one of the most common activities of
Internet users. Recently, a vast amount of work on applying
various NLP techniques for person name disambiguation in
large web document collections has been reported, where the
main focus was on English and few other major languages.

This paper reports on knowledge-poor methods for tack-
ling person name matching task in Polish, a highly inflected
language with complex person name declension paradigm.
These methods apply mainly well-established string distance
metrics, some new variants thereof, automatically acquired
simple suffix-based lemmatization patterns and some com-
binations of the aforementioned techniques. Results of nu-
merous experiments are presented.

Categories and Subject Descriptors: H.4.m [Informa-
tion Systems]: Miscellaneous I.6 [Computing methodolo-
gies]: Artificial Intelligence I.7 [Computing methodologies]:
Document Processing

General Terms: Algorithms, Languages

Keywords: person name matching, processing highly in-
flected languages, string distance metrics

1. INTRODUCTION
Finding information about people in the World Wide Web

is one of the most popular activities of Internet users. How-
ever, the major problem with personal names is that they
are not unique and sometimes even for one name many varia-
tions exist. Variations may be caused by permutations (e.g.,
Simon Perez and Perez Simon might refer to the same per-
son), abbreviations (e.g., Jan Maria Rokita may become J.
M. Rokita), spelling mistakes (e.g., George Bush vs. George
Buhs), usage of accents and foreign characters (e.g., Scha-
effer, Schaffer and Schäffer), different transcriptions (e.g.
Jakub, Jacob, Giacomo may refer to the same person), post-
fixes (e.g., names may end with a title like Jr. or a number
- John Paul II vs. John Paul), declension paradigm (e.g,
W ladimirze Putinie might be a locative form of W ladimir

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

Putin in Polish), and other factors. In a multilingual data
repository like Web the number of variants for a single per-
son name may quickly rise to couple of hundreds [23].

The task of person name matching is to find synonym
and homonym personal names in a given dataset, e.g. Web.
Various research communities, ranging from artificial intel-
ligence to databases, have reported on a vast bulk of work
on tackling this problem, under a variety of terms such as
name disambiguation [20, 16, 5], record linkage [9], dupli-
cate detection [8, 2], or merge/purge [12]. Up to now, the
research in this area focused mainly on English texts [1, 7]
and few other major languages. Nevertheless, even consider-
ing only English web pages most commercial search engines
frequently return for a given person name search queries ei-
ther a blend of links to pages referring to different people,
who share the same name (e.g. Michael Jordan), or just a
tiny fraction of all pages referring to the sought-after person.
This is mainly due to the aforementioned types of potential
name variations and the fact that significant number of per-
son names in most of the languages is not unique.

In this paper, we explore knowledge-poor methods for
supporting and tackling (full) person name matching task
in Polish, a lesser studied language with very rich inflec-
tion and complex person name declension. In particular,
the proposed methods utilize mainly well-established string
distance metrics, some new variants of the latter ones, and
automatically acquired suffix-based lemmatization patterns.
Further, we also investigated whether better accuracy can
be obtained via merging different techniques, e.g. comb-
ing string distance metric with lemmatization patterns, etc.
Results of numerous experiments carried out on a Polish
person-name dataset extracted from a Web news corpus are
described. We believe that the results presented in this pa-
per could be of importance to solving the same problem
for other highly inflective languages, e.g., for most other
Slavonic languages (over 400 million speakers).

Our work was mainly inspired by the comprehensive stud-
ies on using string distance metrics for name matching tasks
presented in [5, 6, 3]. The main motivation of carrying
out this research is the fact that processing highly inflective
languages adds another complication to the person name
matching task. The intuitive way of tackling the inflec-
tion problem in Polish and languages which similar inflection

paradigm, would be to lemmatize person names, and then to
apply string-distance techniques, which turned out to work
fine for inflection-poor languages like English. One could
argue that the set of inflectional suffixes of names in Pol-
ish is finite and the description of combinatorial constraints
between such suffixes and corresponding stems is not out of
reach. Unfortunately, the person name declension paradigm
in Polish is extremely complex and knowledge intensive. Ac-
curacy figures of reported knowledge-based lemmatization
systems do not exceed 76%.

As reported by other authors, the inflection in name match-
ing tasks has been dealt with in two ways. The first approach
is based on converting names into some kind of canonical
form via stripping off inflectional suffixes [4] or truncating
all letters after the first k letters of a name [14] (in most
languages the inflections are affixed to the end of a word
stem with some possible minor alternation of the stem at
the junction) and normalizing language specific diacritics
(e.g., converting ä into a in German). In the second step
the canonical forms can be used for matching names by using
conventional techniques, e.g., string distance metrics [5, 6].
The second approach, reported for instance in [25], is based
on generating all possible inflected morphological variants of
a given person name in order to capture all potential named
mentions of the same person. Although, over-generation in-
flection forms does not pose a problem (non-existing names
would not be matched), such approach requires that base
forms are known, which in general might not be the case.

The aim of the work described in this paper was not to
provide a fully-fledged solution to person name matching for
Polish and related languages, but to explore whether appli-
cation of knowledge-poor and approximative methods based
on string-distance metrics might be useful in the whole pro-
cess of name matching. In particular, it can be seen in a way
as complementary to the previous work mentioned earlier in
this paper, i.e., [25], [5], [4] and [14]. However, it is impor-
tant to note that we did not investigate the context person
names appear in, but considered only matching given per-
son names (possibly inflected) against a set of other names,
which might be seen as the first step of name matching in
textual collections, i.e., collecting documents which might
refer to persons with the same name.

The organization of the paper is as follows. First, in 2 we
describe the phenomena which complicate person name de-
clension in Polish. In section 3 we briefly report on accuracy
figures achieved by some knowledge-based systems for per-
son name lemmatization for Polish, which demonstrates the
hardness of the task and shows that there is a lot of space
for improvement. Next, in section 4 an overview of string
distance metrics and their modifications, which were used in
our study, is given. The test data, evaluation methodology
and the results of numerous experiments on using string-
distance metrics, statistically learned inflection suffixes and
combination of the latter two are described in section 5 and 6
resp. The results are discussed in section 7. Finally, we end
with a summary and present perspectives for future work in
section 8.

2. PERSON NAMES IN POLISH
Polish is a West Slavonic language with rich nominal in-

flection: nouns and adjectives are inflected for case, num-

Table 1: Declension of Polish male vs. female names
case male name female name

nom Stanis law Polak Stanis lawa Polak
gen Stanis lawa Polaka Stanis lawy Polak
dat Stanis lawowi Polakowi Stanis lawie Polak
acc Stanis lawa Polaka Stanis law ↪e Polak
ins Stanis lawem Polakiem Stanis law ↪a Polak
loc Stanis lawie Polaku Stanis lawie Polak
voc Stanis lawie Polaku Stanis lawo Polak

ber and gender1. Just like common nouns, Polish person
names undergo declension but the inflectional paradigm is
more complex. In general, both the first and surname can
be inflected, e.g., Marian Kowalski (nom.) vs. Mariana
Kowalskiego (gen./acc.). If the surname is also a regular
word form, things get more complicated. Whether it can
be inflected in such cases depends on several factors, e.g.,
on the gender of the first name, a category (part-of-speech)
and gender of the (common) word used as a surname. For
instance, if the surname is a masculine noun, it is inflected
only if the first name is also masculine. The declension of the
male name Stanis law Polak (‘Stanislas Pole’) and its variant
with the female first name Stanis lawa given in Table 1 illus-
trates this phenomenon. If the surname is an adjective (e.g.,
Niski ‘short’ - opposite to ‘tall’), it is inflected (according to
the adjectival paradigm) and agrees in gender with the first
name, i.e., male and female last name forms are different
(e.g., Niski ‘Short’ (masc.) vs. Niska ‘Short’ (fem.)).

The declension of foreign surnames may strongly depend
on their origin, and in particular on the pronunciation. For
example, the name Wilde is pronounced differently in En-
glish and German, which impacts its declension in Polish.
If it is of English origin, a nominal declension is applied,
i.e., Wilde’a (gen.), whereas if it comes from German, an
adjective-like declension is adopted: Wildego (gen.). Clearly,
inferring the origin of a name from the surface string alone
can not be done accurately.

Declension of surnames which are also common nouns can
be different from the declension of common nouns2, e.g., the
genitive form of the common noun go l ↪ab ‘dove’ is go l ↪ebia,
whereas the genitive form of the surname Go l ↪ab is Go l ↪aba.

First names present problems too. Foreign masculine first
names, whose pronounced version ends in a consonant or
whose written version ends in -a, -o, -y or -i do in general get
inflected (e.g., Jacques (nom.) vs. Jacques’a (gen./acc.)),
whereas names whose pronounced version ends in a vowel
and are stressed on the last syllable (e.g., François) usu-
ally do not change form. For female first names created
from a male first name there is a frequent homonymy be-
tween the nominative form of the female name and the gen-
itive/accusative form of the corresponding male form, e.g.,
Józefa is nominative of Józefa (fem.) and genitive/accusative
of Józef (masc.).

To give a final example of the complicacies, consider the
person name Marka Belki. The first name Marka could be
either interpreted as a genitive form of the male name Marek
or Mark (foreign version of Marek), or as a nominative form
of a foreign female name Marka. As for the last name Belki,

1There are 7 cases, 2 numbers and 3 genders.
2The declension of such surnames depends on the local tra-
dition and sometimes can be identical with the pattern used
for common nouns.

it is a genitive form of the common Polish noun belka ‘beam’,
but due to the fact that inflection of proper names differs
from that of common nouns, we cannot exclude the spe-
cial proper name form Belki. Consequently, there are 6 po-
tential base forms for Marka Belki, namely: Marek Belka
(masc.), Marka Belka (fem.), Marek Belki (masc.), Marka
Belki (fem.), Mark Belki (masc.), Mark Belka (masc.). Even
considering the document-level context of the occurrence of
the name Marka Belki might not be sufficient for resolving
the base form ambiguity [21].

A comprehensive overview of this rather intriguing declen-
sion paradigm of Polish names is given in [11].

3. PERSON NAME LEMMATIZATION
WITH KNOWLEDGE-BASED SYSTEMS

We have carried out some initial experiments on apply-
ing existing knowledge-based systems for lemmatization of
person names.

In our first experiment, we have tested Stempelator [27]
a full-form lexicon-based lemmatizer, which uses a bunch of
heuristics for guessing base forms of words not found in the
lexicon. To be more precise, we have applied Stempela-
tor on each part of the name (first name, surname) sepa-
rately. Although Stempelator performs relatively well for
common words, the accuracy achieved with the datasets de-
scribed later in this paper in section 5 were not better than
35%, which leaves a lot of space for improvement.

In the second experiment we have tested a more complex
and time-intensive system dedicated to person name recog-
nition and person name lemmatization for Polish [21], which
exploits: (a) a dictionary of circa 6000 most frequent Polish
first names and their morphological variants, (b) a set of
sure-fire patterns matching most frequent surname suffixes
to their corresponding base forms (e.g, skiego → ski, and
(c) a set of more sophisticated rules relying on higher-level
linguistic information, which encode most of the types of
phenomena described in section 2. In order to evaluate this
system, a set of 30 articles (including 856 person names)
on various topics (politics, finance, sports, culture and sci-
ence) has been randomly chosen from Rzeczpospolita [28], a
leading Polish newspaper. From the set of recognized per-
son names, only 75.6% have been lemmatized correctly (the
correct base form was in the set of candidate base forms
returned by the system). It is important to note that for
12.4% of the recognized person names more than one base
form was returned. The detailed description of the afore-
mentioned experiment is presented in [22].

The observations learned from the two aforementioned ex-
periments were our main motivation for studying whether
utilization of string distance metrics, other knowledge-poor
techniques, and amalgamation of such methods with the sys-
tems like the first one mentioned in this section would yield
comparable or better accuracy of lemmatization and person
name variant matching for Polish.

4. STRING DISTANCE METRICS
In our experiments on using string distance metrics for the

name matching task and lemmatization we used mainly the
metrics applied by the database community for record link-
age. The point of departure constitutes the well-known Lev-
enshtein edit distance metric given by the minimum number
of character-level operations (insertion, deletion, or substi-

tution) needed to transform one string into the other [15].
Further we used an extension of Levenshtein, namely Smith-
Waterman (SW) metric [24], which additionally allows for
variable cost adjustment to the cost of a gap and variable
cost of substitutions (mapping each pair of symbols from
alphabet to some cost). We tested two settings for this
metric namely, one which normalizes the Smith-Waterman
score with the length of the shorter string and one which
uses for the same purpose the Dice coefficient, i.e., the av-
erage length of strings compared (SW-D). Further variants
of the latter metric and other edit distance metrics, e.g.,
Needleman-Wunsch, were not taken into consideration since
in our prior experiments [21] they did not perform better
than the Smith-Waterman metrics. In general, most of the
edit-distance metrics can be computed in O(|s| · |t|), where
s and t are the two strings being compared.

Good results for name-matching tasks [5] have been re-
ported using variants of the Jaro metric [29], which is not
based on the edit-distance model. It considers the num-
ber and the order of the common characters between two
strings. Given two strings s = a1 . . . aK and t = b1 . . . bL,
we say that ai in s is common with t if there is a bj = ai in t
such that i−R ≤ j ≤ i+R, where R = bmax(|s|, |t|)/2c−1.
Further, let s′ = a′1 . . . a′K be the characters in s which are
common with t (with preserved order of appearance in s)
and let t′ = b′1 . . . b′L be defined analogously. A transposition
for s′ and t′ is defined as the position i such that a′i 6= b′l.
Let us denote the number of transposition for s′ and t′ as
Ts′,t′ . The Jaro similarity is then calculated as:

J(s, t) =
1

3
· (|s

′|
|s| +

|t′|
|t| +

|s′| − bTs′,t′/2c
|s′|)

A Winkler variant of Jaro metric boosts this similarity for
strings with agreeing initial characters and is calculated as:

JW (s, t) = J(s, t) + δ · boostp(s, t) · (1− J(s, t))

,where δ denotes the common prefix adjustment factor (de-
fault value is 0.1) and boostp(s, t) = min(|lcp(s, t)|, p). Here
lcp(s, t) denotes the longest common prefix between s and
t. For multi-token strings we extended boostp to boost∗p. Let
s = s1 . . . sK and t = t1 . . . tL, where si (ti) represent i-th
token of s and t resp., and let without loss of generality
L ≤ K. boost∗p is calculated as:

boost∗p(s, t) =
1

L
·

L−1X
i=1

boostp(si, ti) +
boostp(sL, tL..tK)

L

We denote the metric which uses boost∗p as JWM . The time
complexity of ’Jaro’ metrics is O(|s| · |t|).

The q-gram metric [26] is based on the intuition that two
strings are similar if they share a large number of character-
level q-grams. We used a variant thereof, namely so called
skip-gram metric [13]. It is based on the idea that in ad-
dition to forming bigrams of adjacent characters, bigrams
that skip characters are considered. Gram classes are de-
fined that specify what kind of skip-grams are created, e.g.
{0, 1} class means that normal bigrams are formed, and bi-
grams that skip one character. This metric can be computed
in O(max{|s|, |t|}). Our previous experiments showed that
it outperforms the classic q-gram metric and suchlike met-
rics, e.g., (positional q-grams), which takes into account only
common q-grams that occur within a maximum distance to
each other [10].

Considering the declension paradigm of Polish we also
considered a basic and time efficient metric based on the
longest common prefix information, which would intuitively
perform well in the case of single-token names.3 It is calcu-
lated as: CPδ(s, t) = (|lcp(s, t)|+ δ)2/|s| · |t|. The symbol
δ in CPδ(s, t) is an additional parameter for favouring cer-
tain suffix pairs in s (t). We have experimented with two
variants, CPδ1 and CPδ2 . In CPδ1 the value of δ is set to
0. In CPδ2 , as a result of empirical study of the data and
the declension paradigm δ has been set to 1 if s ends in:
o,y, ↪a, ↪e, and t ends in an a. Otherwise δ is set to 0. For
coping with multi-token strings we introduced a new sim-
ilar metric called weighted longest common substrings dis-
tance (WLCS) - a variant of the better-known longest com-
mon substrings distance metric, which recursively finds and
removes the longest common substring in the two strings
compared. Let lcs(s, t) denote the ’first’ longest common
substring for s and t and let s−p denote a string obtained
via removing from s the first occurrence of p in s. The LCS
metric is calculated as:

LCS(s, t) =

(
0 if |lcs(s, t)| ≤ φ

|lcs(s, t)|+ LCS(s−lcs(s,t), t−lcs(s,t))

The value of φ is usually set to 2 or 3. The time complexity
of LCS is O(|s| · |t|). In the extended version, i.e., WLCS,
an additional weighting to the |lcs(s, t)| is introduced. The
main idea is to penalize longest common substrings which
do not match the beginning of a token in at least one of the
compared strings. Let α be the maximum number of non-
whitespace characters, which precede the first occurrence
of lcs(s, t) in s or t. Then, lcs(s, t) is assigned the weight
(|lcs(s, t)|+α−max(α, p))/(|lcs(s, t)|+α), where p has been
experimentally set to 4.

Finally, we tested the recursive schema, known also as
Monge-Elkan (ME) distance [19]. Let us assume that the
strings s and t are broken into substrings (tokens), i.e.,
s = s1 . . . sK and t = t1 . . . tL. The intuition behind Monge-
Elkan measure is the assumption that si in s corresponds
to a tj with which it has highest similarity. The similar-
ity between s and t equals the mean of these maximum
scores. Formally, the Monge-Elkan metric is defined as fol-
lows, where sim denotes some secondary similarity function.

ME(s, t) =
1

K
·

KX
i=1

max
j=1...L

sim(si, tj)

Inspired by the multi-token variants of the JW metric pre-
sented in [3] we introduced two additional metrics, which are
similar in spirit to the Monge-Elkan metric. The first one,
Sorted-Tokens (ST) is computed in two steps. Firstly, the
tokens constituting the full strings are sorted alphabetically.
Next, an arbitrary metric is applied to compute the simi-
larity of the ’sorted’ strings. The second metric, Permuted-
Tokens (PT) compares all possible permutations of tokens
constituting the full strings and returns the maximum cal-
culated similarity value.

5. TEST DATA AND EVALUATION
3This metric was used as an inner metric in recursive metrics
described later in this section since it is not capable ’alone’
to accurately match multi-token strings

This section describes the test data and evaluation method-
ology used in our experiments on using different techniques
for the name matching (and lemmatization) task.

We define the problem as follows. Let A, B and C be three
sets of strings over some alphabet Σ, with B ⊆ C. Further,
let f : A → B be a function representing a mapping of
inflected forms into their corresponding base forms. Given,
A and C (the latter representing the search space), the task

is to construct an approximation of f , namely bf : A → C.

If bf(a) = f(a) for a ∈ A, we say that bf returns a correct

answer for a, otherwise, bf is said to return an incorrect

answer. We say that bf returns a quasi-correct answer for

a if bf(a) = f(a) or f(bf(a)) = f(a) (the answer is the base
form or another variant thereof).

Secondly, we defined an additional task consisting of con-
structing another approximation of f , namely function f∗ :
A → 2C , where f∗ is said to return a quasi-correct answer
for a ∈ A if ∀a′ ∈ f∗(a) : f(a) = a′ ∨ f(a) = f(a′), i.e.,
f∗(a) contains only strings which are either the base form
of a or a variant of a, e.g., morphological variant.

5.1 Test Data
For the experiments we have used two datasets: (a) a map-

ping of full person names (first name + surname) to their
base forms (PFN-1) consisting of 1548 pairs4, and (b) an-
other variant of the latter one with some hard-to-tackle cases
(e.g., inverted order of first name and surname) and consist-
ing of 1538 entries (PFN-2). The aforementioned resource
were created semi-automatically as follows. We have auto-
matically extracted a list of circa 22952 full person-name
candidates from a corpus of 15,724 on-line news articles
from the Rzeczpospolita corpus [28], via using first name lex-
icon consisting of over 6000 most popular Polish first names
(including their morphological variants) and an additional
list of 58038 uninflected foreign first names. Subsequently,
we have selected an excerpt of circa 1900 entries (inflected
forms) from this list. 1/3 of this excerpt are the most fre-
quent names appearing in the corpus, 1/3 are the most rare
names, and finally 1/3 of the entries were chosen randomly.
Finally this list was cleaned and duplicates were removed.
The full set of the person name candidates was extended in
order to include all base forms (22064 entries) and was used
as the search space in all experiments.

5.2 Accuracy Metrics
We measured the accuracy in four ways. Firstly, we calcu-

lated the accuracy with the assumption that a multi-result
answer is incorrect and we defined all-answer accuracy (AA)
measure which penalizes the accuracy for multi-result an-
swers. Second measure, all-answer relaxed accuracy (AAR)
is a relaxed variant of the latter one, where quasi-correct an-
swers are counted as true positives (the answer is either the
base form or another variant of the name, e.g., inflectional
variant of the base form). Next, we measured the accuracy
of single-result answers (single-result accuracy - SR) dis-
regarding the multiple-result answers. Finally, we defined
somewhat weaker measure relaxed accuracy (RA), which is
an extension of AAR, and additionally treats a multi-result
answer as true positive if all of the returned results are quasi

4Pairs, where inflected form is identical with the base form
have been excluded from the experiments since in such a
case finding an answer is straightforward.

CommonPrefix-MostSimilar(s = s1s2, Space)
1 Cand← �
2 for s′ = s′1s

′
2 ∈ Space

3 do if TotalCommonPrefix(s, s′) > |s1|+ α · |s2|
4 then Cand← Cand ∪ {s′}
5 return Cand

Figure 1: Algorithm CommonPrefix-MostSimilar

α AA SR AAR AAR2
0.4 0.689 0.894 0.719 0.846
0,45 0.698 0.883 0.728 0.855
0.5 0.696 0.829 0.738 0.849
0.55 0.696 0.821 0.740 0.848

Table 2: Top results for CommonPrefix-MostSimilar

correct (see definition of f∗ in the beginning of section 5),
i.e., the result set contains solely strings which are base forms
or other variants of the given name.

Let s denote the number of strings, for which a single
result was returned. Analogously, m is the number of strings
for which more than one result was returned. Next, let sc

(sqc) denote the number of correct (quasi-correct) single-
result answers returned. Further, let mqc denote the number
of quasi-correct multi-result answers. The accuracy metrics
are computed as: AA = sc/(s + m), AAR = sqc/(s + m),
SR = sc/s and RA = (sqc + mqc)/(s + m).

The SR and AA accuracy measures were basically defined
for evaluating the usefulness of the explored string distance
metrics for performing lemmatization, whereas the intuition
behind AAR and RA accuracy metrics was to measure the
usability for the more general name matching task.

6. EXPERIMENTS

6.1 Baseline Experiment
In our baseline experiment we evaluated a simple method,

which for a given name s = s1s2, where s1 and s2 are tokens
representing the first name and the surname resp. returns
as an answer all names s′ in the search space, for which the
total length of common prefixes with s is above a certain
threshold. The idea is depicted in the pseudo code in Fig-
ure 1. The function TotalCommonPrefix(s,s’) in line 3
returns the sum of the lengths of common prefixes of s and
s′. The parameter α ∈ [0, 1] is aimed to determine the min-
imum overlap factor of surnames. The top results obtained
with the baseline method on PFN-1 dataset with various α
values is given in Table 2.

6.2 Simple String Distance Metrics
In our next experiment we tested the basic non-recursive

metrics described in section 4. The results are given in
Table 3. Smith-Waterman turned out to achieve the best
scores in the AA accuracy for both datasets (79.1% and
57.1% resp.), whereas WLCS was the best metric w.r.t. SR
accuracy for PFN-1 (84.1%), followed by Smith-Waterman
metrics. In case of PFN-2 Smith-Waterman family of met-
rics achieved the best results in SR accuracy, although the
figures around 60% are not impressive. Smith-Waterman
metrics and JWM achieve the best results in AAR accuracy
for PFN-1 (ca. 87.9-89.7%), whereas WLCS performs best

Table 3: The results for simple metrics
PFN-1

Metrics AA SR AAR RA

Levenshtein 0,551 0,722 0,664 0,811
Smith-Waterman 0,791 0,829 0,879 0,905
Smith-Waterman-D 0,782 0,813 0,897 0,931
JW 0,643 0,700 0,761 0,788
JWM 0,758 0,783 0,889 0,917
skip-grams 0,605 0,704 0,749 0,846
LCS 0,586 0,751 0,694 0,851
WLCS 0,692 0,841 0,806 0,968

PFN-2
Metrics AA SR AAR RA

Levenshtein 0,386 0,558 0,481 0,593
Smith-Waterman 0,571 0,620 0,681 0,710
Smith-Waterman-D 0,557 0,592 0,776 0,813
JW 0,475 0,495 0,598 0,620
JWM 0,542 0,560 0,659 0,683
skip-grams 0,430 0,476 0,832 0,906
LCS 0,410 0,487 0,787 0,906
WLCS 0,473 0,548 0,847 0,970

PFN-1
Metrics AA SR AAR RA
SW 0.801 0.833 0.886 0.914
SW-D 0.789 0.819 0.901 0.933

PFN-2
SW 0.575 0.611 0.685 0.712
SW-D 0.563 0.591 0.767 0.802

Table 4: The top results for optimized Smith-
Waterman metrics. The overall improvements are
written in bold.

for PFN-2 (84.7%) since it can cope best with the inverted
order of first name and surname in PFN-2 dataset. Finally,
WLCS significantly outperforms all other metrics in RA
category for both datasets (96.8% and 97.0% resp.).

The top results obtained with simple metrics on PFN-
1 dataset significantly outperform the corresponding scores
obtained with the baseline algorithm presented in 6.1, except
the SR accuracy. The latter score is higher in case of the
baseline algorithm most likely due to the low number of
single-answer results returned.

6.3 Fine-tuning Smih-Waterman Metrics
The results achieved with Smith-Waterman metrics, as

reported in the previous subsection, are among the best for
the both PFN-1 and PFN-2 datasets. Encouraged by these
observations we carried out additional experiments in order
to optimize their accuracy performance.

Smith-Waterman metric depends on numerous parame-
ters including MinCost, MaxCost and GapCost (default val-
ues are: −2.0, 1.0, 0.5, resp.). We applied random search
through this 3-dimensional parameter space, repeating the
experiment 500 times. Checking only the tiny fraction of
the possible parameter settings, resulted in an accuracy im-
provement for PFN-1 when compared to the default set-
ting. The top accuracy results achieved with MinCost =
−0.55391, MaxCost = 0.29161 and GapCost = 0.11144
are presented in Table 4. In the remaining part of this pa-
per we will refer to the ‘optimized’ versions of these Smith-
waterman metrics as SW2 and SW -D2 resp.

As for the substitution cost matrix, we also experimented
with various search heuristics including random search, grid-
search, hill-climbing and simulated annealing for searching

the parameter space of around 1000 dimensions. Random
search method allowed to improve AAR measure by 1.7%
with respect to the values achieved for the default setting.
To be more precise, the top score achieved for the random
search through the substitution matrix space of the Smith-
Waterman with Dice Coefficient metric was: 77.3% (AA),
78.6% (SR), 91.4% (AAR) and 92.6% (RA). Regular grid-
search around the best setting did not improve the results
significantly. Further, application of simulated annealing for
the default setting yielded some insignificant improvement
over the default setting. Therefore, we omit the details of
the aforementioned experiments.

6.4 Recursive String Distance Metrics
The recursive metrics performed in some settings signifi-

cantly better. In particular, the Monge-Elkan scheme per-
formed best with CPδ2 as internal metric and somewhat
worse results were obtained with JWM and CPδ2 as inter-
nal metrics. The 10 top results in all accuracy categories are
summarized in Table 5. As for PFN-1 dataset, an improve-
ment of circa 4 − 5% could ba achieved for AA, AAR and
SR when compared to the top results for the basic metrics.
In case of PFN-2, the somewhat more ’hard’ dataset, the
top result in AA and SR accuracy are only slightly better
(1, 3% and 0, 1% resp.). However, top AAR accuracy is by
circa 10% higher.

Table 5: The results for recursive metrics
PFN-1

Metric AA SR AAR RA

ME & CPδ2 0,846 0,883 0,933 0,967
ME & CPδ1 0,802 0,850 0,915 0,962
ME & JWM 0,785 0,837 0,884 0,937
PT & JWM 0,781 0,828 0,895 0,943
ST & SW -D2 0,765 0,811 0,879 0,924
ST & JWM 0,760 0,800 0,881 0,923
ST & SW-D 0,756 0,803 0,873 0,917
ME & SW-D 0,749 0,799 0,855 0,903
PT & SW-D 0,746 0,787 0,869 0,911
ME & SW -D2 0.743 0.789 0.849 0.897

PFN-2
Metric AA SR AAR RA

ME & CPδ2 0,588 0,621 0,929 0,960
ME & CPδ1 0,556 0,580 0,941 0,962
ME & JWM 0,549 0,574 0,927 0,951
PT & JWM 0,549 0,574 0,932 0,956
ST & JWM 0,533 0,554 0,922 0,944
ST & SW -D2 0.533 0.557 0.914 0.935
ST & SW-D 0,525 0,549 0,909 0,930
ME & SW-D 0,524 0,549 0,904 0,926
PT & SW -D2 0.523 0.544 0.914 0.934
ME & SW -D2 0.520 0.543 0.901 0.923

6.5 Combining Metrics
The first and obvious way of merging distance metrics is

to combine the ‘best’ metrics in SR accuracy with the ‘best’
metrics in the AA category. Let us assume, that two met-
rics m1 (good in SR) and m2 (good in AA accuracy) are
too be merged. The idea is to first use m1 and if it returns
a single answer, return it, otherwise return the result of ap-
plication of m2. The pseudo code of the corresponding algo-
rithm CombinedMostSimilar is given in Figure 2, where
s denotes the input string and Space denotes the search
space. The function MostSimilar(m1, s, Space) returns for

CombinedMostSimilar(m1, m2, s, Space)
1 Cand←MostSimilar(m1, s, Space)
2 if |Cand| = 1
3 then return First(Cand)
4 return MostSimilar(m2, s, Cand)

Figure 2: The algorithm CombinedMostSimilar

the metric m1 and the string s the most similar string(s)5

in the search space Space.
Application of the algorithm CombinedMostSimilar to

PFN-1 revealed that best results in AA accuracy (around
87.0−87.4%) could be achieved (unsurprisingly) with Monge-
Elkan & CPδ2 as m1 and simple metrics as m2. In partic-
ular, the best result was achieved with JW (87.4%) and
JWM (87.34%). Compared to the the recursive metrics an
improvement of 2.8% could be observed. Clearly, the top
scores for SR were similar as those for recursive metrics, i.e.,
around 88%. The top result was achieved with Monge-Elkan
& CPδ2 (m1) and Smith-Waterman (m2) (88, 3%). The
AAR accuracy could be improved by ca. 3.4%. The best
scores (96.7%) in this category were obtained with WLCS
(m1) and Monge-Elkan & CPδ2 (m2). Finally, in the RA
category, the best results were achieved via combining WLCS
(m1) and Monge-Elkan & CPδ2 as m2 (97.93%).

Similarly, the AA and AAR scores for PFN-2 could be im-
proved (by 2.45% and 2.71% resp.). Again, for AA the best
results (61, 25%) were achieved with Monge-Elkan & CPδ2

(m1) and JW or JWM (m2). As for AAR, many combi-
nations of m1 being either Monge-Elkan & CPδ2 or Sorted-
Tokens & WLCS or Permuted-Tokens & WLCS and m2

being either JWM or JW or WLCS or Smith-Waterman
yields a AAR score between 96.1% and 96.81%. In par-
ticular, the top score (96.81%) was achieved with Monge-
Elkan & CPδ2 (m1) and LCS (m2). The best SR accuracy
for PFN-2 (62.3%) was achieved with Monge-Elkan & CPδ2

(m1) and Levenshtein (m2). Finally, the best RA score was
obtained with Sorted-Tokens & WLCS (m1) combined with
SW -D2 as m2 (98.8%).

Another variant of the algorithm CombinedMostSimi-
lar computes first all strings, whose distance from s is
among the first k distance values in the search space (in an
ascending order). These strings constitute then the search
space for the metric m2 in the second step. The corre-
sponding pseudo code (CombinedMostSimilar-2) is pre-
sented in Figure 3. The method GetKthDistanceValue
(m1, s, Space, k) returns the k-th ’least’ distance value for
the string s in the search space Space.

Surprisingly, the application of this variant on PFN-1 did
not result in significantly different accuracy figures from
those obtained with CombinedMostSimilar. Interestingly,
top ranking settings in each category involved Jaro-Winkler,
Smith-Waterman and WLCS as m1, and Monge-Elkan &
CPδ2 as m2 metric. In particular, the best score in each
category was achieved with WLCS (m1) and Monge-Elkan
& CPδ2 (m2). See Table 6 for details. Contrary to PFN-1,
significant improvement could be obtained with the algo-
rithm CombinedMostSimilar-2 on PFN-2. In particular,
the top scores for AA, SR and AAR were improved against

5There is potentially more than one string in the search
space, whose distance from s is the smallest.

CombinedMostSimilar-2(m1, m2, s, Space, k)
1 λ← GetKthDistanceValue(m1, s, Space, k)
2 Cand← {s′|distm1(s, s

′) ≤ λ}
3 return MostSimilar(m2, s, Cand)

Figure 3: Algorithm CombinedMostSimilar-2

the recursive metrics by 6.5%, 9.1%, and 1.2% resp. The
top metric combinations are given in Table 7.

Table 6: Top results for CombinedMostSimilar-2,
PFN-1

category AA (SR) AAR RA

k 2 3 2 2
score 0.872 0.886 0.960 0.973

Table 7: Top AA, SR, AAR, and RA results for
CombinedMostSimilar-2 on PFN-2 with k = 3

PFN-2
metric1 metric2 AA SR

ME & JWM SW2 0.653 0.712
PT & JWM SW2 0.643 0.704
ST & JWM SW2 0.643 0.702
ST & SW2 SW2 0.640 0.695
PT & WLCS SW2 0,638 0,699
ST & WLCS SW2 0,638 0,694
PT & SW -D2 SW2 0,635 0,692
ME & CPδ2 SW2 0.633 0.689

PFN-2
metric1 metric2 AAR RA

WLCS ME & CPδ1 0,953 0,975
WLCS ME & CPδ2 0,952 0,976
WLCS PT & JWM 0,943 0,969
PT & JWM ME & CPδ1 0,943 0,964
ME & JWM ME & CPδ1 0,942 0,964
ST & JWM ME & CPδ1 0,942 0,963

Finally, we experimented with ’merging’ the results of var-
ious distance metrics via computing a global rank, which is
a linear combination of the corresponding distance values.
Since the top score achieved in this way with Monge-Elkan
& CPδ2 , Monge-Elkan & CPδ1 , WLCS, SW -D, and JWM
did not result in an improvement of the accuracy (AA =
82.9%, SR = 85.0%, AAR = 94.4%, and RA = 96, 5%) we
droped this line of explorations.

6.6 Pattern-based method
In our next experiment we have explored whether uti-

lization of a simplistic lemmatization model based on au-
tomatically acquired suffix-based patterns can improve the
accuracy. We have automatically acquired from a large set
of training data a set of triples (TrainedTriples) of the form
(sinfl, sbase, f), where sinfl is a suffix of an inflected word
form, sbase is a corresponding suffix in the base form for
sinfl, and f is the frequency of the pair (sinfl, sbase) in the
training data. We considered all pairs of suffixes of length
up to 5 characters. The training data consisted of 1093149
noun entries extracted from the morphologically tagged dic-
tionary taken from Morfologik project [18]. These suffix-
based patterns were then used to select the base form in case
of multi-result answers by the given string distance metric.

PatternBased(m, s, Space, k)
1 λ← GetKthDistanceValue(m, s, Space, k)
2 Cand← {s′|distm(s, s′) ≤ λ}
3 if |Cand| = 1
4 then return First(Cand)
5 return SelectUsingPatterns(s, Cand)

Figure 4: The algorithm PatternBased

SelectPatterns(s = s1s2 . . . sn)
1 Ptrns← ∅
2 for i← 1 to n
3 do Ptrns← Ptrns ∪AllPatterns(si . . . sn)
4 return Ptrns

AllPatterns(s = s1s2 . . . sn)
1 Ptrns← ∅
2 for (sinfl, sbase, f) ∈ TrainedTriples
3 do if sinfl == s1s2 . . . sn

4 then Ptrns← Ptrns ∪ {(sbase, f)}
5 return SortDescendingByFreq(Ptrns)

SelectUsingPatterns(s, Space)
1 first← getFirstName(s)
2 last← getLAstName(s)
3 f−Ptrns← SelectPatterns(first)
4 l−Ptrns← SelectPatterns(last)
5 Cand← ∅
6 for c ∈ Space
7 do cfirst ← getFirstName(c)
8 clast ← getLastName(c)
9 pfirst ← BestPattern(cfirst, f−Ptrns)

10 plast ← BestPattern(clast, l−Ptrns)
11 rank ← α · rank(pfirst) + β · rank(plast)
12 Cand← Cand ∪ {(c, rank)}
13 return TopCandidate(Cand)

Figure 5: Algorithm for selecting base forms

The formal description of the algorithm (PatternBased) is
given in Figure 4. In line 5, a call to SelectUsingPatterns
method returns for the string s the preferred base form from
the list of candidates in the search space Cand, via ranking
of suffix-based lemmatization patterns, which match s. The
pseudo code of the aforementioned method is given in Fig-
ure 5. Initially (line 3-4) lemmatization patterns for the
first name and surname resp. are created. Subsequently,
for each candidate c (line 6), we select from the lemmatiza-
tion pattern sets the ones which are compatible with c, i.e.,
the corresponding ’stem’ part of the pattern matches with
c, and which have the highest rank (call to BestPattern
in lines 9-10). Subsequently candidate c is assigned a rank
(line 11), which is a linear combination of the rank for the
best first-name pattern and the rank of the best surname
pattern (in our experiments α and β are set to 0.5). Finally,
the candidate with the best rank (or more if there are more
with the same rank) is returned (line 13).

The top results for PFN-1 and PFN-2 tested with sim-
ple and recursive metrics are given in Table 8. These re-
sults were obtained with k = 1, i.e., considering only the
smallest distance value. Unfortunately, increasing the value
of k did not improve the accuracy figures. As can be ob-
served, the suffix-based algorithm turned to perform signif-
icantly better for both PFN-1 and PFN-2 in all categories

when compared to the the best results obtained for sim-
ple and recursive metrics. However, in case of PFN-1 the
results are not significantly different from those obtained
with CombinedMostSimilar-2, i.e., AA, AAR and RA are
slightly better, whereas SR is the same. For PFN-2 the top
AA and SR scores obtained with the suffix-based algorithm
are worse by 3.9% and 8.3% resp., whereas the AAR% score
is better by 3.2% compared to CombinedMostSimilar-2

Table 8: Top results for PatternBased alg.
PFN-1

Metric AA SR AAR RA

ME & CPδ2 0,882 0,886 0,970 0,971
ME & CPδ1 0,848 0,851 0,963 0,965
WLCS 0,841 0,846 0,972 0,976
PT & WLCS 0,838 0,842 0,970 0,974
ST & WLCS 0,837 0,842 0,976 0,979

PFN-2
Metric AA SR AAR RA

ME & CPδ2 0,614 0,629 0,956 0,977
SW2 0.597 0.614 0.708 0.715
ME & CPδ1 0,590 0,591 0,978 0,979
PT & JWM 0,588 0,588 0,973 0,973
WLCS 0,587 0,590 0,974 0,977
ME & JWM 0,587 0,588 0,966 0,968
WLCS 0.587 0.590 0.974 0.977
PT & WLCS 0,586 0,588 0,982 0,984
ST & WLCS 0,587 0,585 0,985 0,987

Next, we have explored whether deployment of Combined-
MostSimilar algorithms as the m metric in PatternBased
yields any improvement. We call this variant PatternBased-
2. The top scores for both datasets are given in Table 9.
Only slight improvement could be observed.

Table 9: Top results for PatternBased-2. (CMS
and CMS-2 stand for CombinedMostSimilar and
CombinedMostSimilar-2 resp.)

PFN-1
Acc. Alg. m1 m2 k score

AA CMS-2 ST & WLCS ME & CPδ2 3 0,884
SR CMS-2 WLCS ME & CPδ2 3 0,887
AAR CMS ST & WLCS ME & CPδ2 n.a. 0,979
RA CMS ST & WLCS ME & CPδ2 n.a. 0,981

PFN-2
Acc. Alg. m1 m2 k score

AA CMS-2 ME & JWM SW2 3 0,674
SR CMS-2 ME & JWM SW2 3 0,715
AAR CMS ST & WLCS PT & JWM n.a. 0,987
RA CMS-2 ME & CPδ2 ST & WLCS 2 0,988

Subsequently, we have experimented with the suffix-based
patterns in another way, i.e., via replacing the string-distance
metric used in the PatternBased algorithm with a can-
didate preselection heuristic, which for a given name s =
s1 . . . sk (where si’s denote tokens not characters) accepts
only such names s′ = s′1 . . . s′k in the search space, for which
|lcp(si, s

′
i)| ≥ |si|/2 for all i ∈ {1, . . . , k} holds, i.e., the

length of the common prefix of each corresponding token in
s and s′ is at least 50% of the length of the token in s. The
tokens constituting the names are sorted alphabetically be-
fore the aforesaid heuristic is applied. In this manner, the
‘candidate’ sets were significantly larger than in the case
of applying other string distance metrics. We refer to this

algorithm as PatternBased-WithPreselection. All ac-
curacy results for PFN-1 were significantly worse than the
best overall scores obtained so far. Clearly, one could not
expect to gain anything w.r.t. AAR and RA due to larger
candidate sets. Surprisingly, the results for PFN-2 in AA
and SR category could be improved. All figures are given
in Table 10.

Table 10: PatternBased-WithPreselection results
Dataset AA SR AAR RA

PFN-1 0,706 0,818 0,799 0,868
PFN-2 0,660 0,775 0,801 0,866

Finally, we have explored another very simple technique,
which solely utilizes automatically acquired suffix-based pat-
terns of the form {(finfl, fbase), (linfl, lbase)}, where finfl

(linfl), and fbase (lbase) stand for the corresponding suffixes
in the inflected first name (surname) and base form of the
first name (surname) resp. In other words, the inflection
transitions for first names and surnames were not learned
independently, but in parallel. The aforementioned pat-
terns were extracted solely from the PFN-1 dataset. They
were then used as follows. For an input name, all ‘compat-
ible’ patterns were used in order to produce candidate base
forms via performing appropriate suffix transitions of the
first name and surname. If a candidate base form is in the
search space, it is added to the results list. We will refer
to this technique as ParallelPatterns. Application on
PFN-1 resulted in following accuracy figures: AA - 82.0%,
SR - 86.6%, AAR - 82.3%, and RA 86.8%. Clearly, they
are not better than any top results obtained so far, but com-
pared to PatternBased-WithPreselection they seem to
perform better. In case of known order of first name and sur-
name, this method constitutes an alternative, and should be
studied more thoroughly, e.g., exploring usage of larger dic-
tionary, which maps inflected forms to their base forms.

7. DISCUSSION
In section 6 we have presented results of numerous ex-

periments on measuring lemmatization and name matching
accuracy for several knowledge-poor methods. In particu-
lar, we have measured AA accuracy, which says how often
a single-result answer constituting the base form could be
returned (multiple-answer results are counted as false posi-
tives, i.e., they are penalized). Further, SR accuracy mea-
sures the precision of single-result answers w.r.t. returning a
base form. Next, AAR accuracy measure gives the precision
of returning the base form or some other variant of the same
name, where multiple-answer are penalized again. Finally,
the RA metric, the most ‘relaxed’ one, gives the percentage
of results, which are either single-result answer or multiple-
result answer, where all returned strings in the answer are
either the base form or other variant of the same name.

In order to get a better picture of all results achieved with
various techniques, an overview of the best AA, SR, AAR ac-
curacy figures is given in Figures 6, 7, and 8 resp. The sym-
bols CP, S, R, CMS, CMS-2, PMS, PMS-2, PWP, and
PP correspond to CommonPrefix-MostSimilar, simple
metrics, recursive metrics, CombinedMostSimilar algo-
rithms, PatternBased algorithms, PatternBased With-
Preselection, and ParallelPatterns method resp.

As can be observed, one can gain in AA accuracy via com-
bining string distance metrics and further improve the ac-
curacy figures by integrating automatically acquired suffix-
based patterns for ‘best’ candidate selection. However, the
integration of the latter ones results only in a small gain in
accuracy. Interestingly, some fine-tuning of ParallelPat-
terns, e.g., via considering larger training dataset, would
possibly result in accuracy gain for PFN-1. Nevertheless,
going beyond the 90% mark seems to be difficult. In case of
PFN-2 dataset, which contains harder to tackle cases (e.g,
inversions, etc.) the AA accuracy figures are not very im-
pressive, but this is due to the fact that in many cases the
inverted base forms are being returned as the result (which
is penalized). Most of the errors encounterd in the AA
category were due to: (a) matching another variant of the
same name, but not the base form itself, i.e., for many met-
rics distance between inflected variants is frequently smaller
than between an inflected form and the corresponding base
form, e.g., dist(‘Ramazotiemu′, ‘Ramazotiego′) is less than
dist(‘Ramazotiemu′,′ EnricoRamazoti′), (b) reverse order
of first name and surname in PFN-2, (c) homonymy of male
and female variants of the same first name (see section 2),
(d) similar surnames in the search space with wrong spelling,
(e) inconsistency in declension of both first name and sur-
name due to the declension rules for foreign first names and
transliteration issues (see section 2). It is interesting to men-
tion in this context that in Polish a base form of a proper
name (masc) preserves original spelling while inflected ver-
sions use Polish transliteration.

As for AAR accuracy, similarly to AA, one could obtain
best results for both datasets via combining string distance
metrics and further significantly improve the accuracy by in-
tegrating automatically acquired suffix-based patterns. Due
to the specification of AAR, PFN-1 and PFN-2 results were
not much different except the simple metrics. Interestingly,
almost optimal score could be achieved. Consequently, the
best methods in the AAR category presented here are suf-
ficient for performing person name matching tasks in Pol-
ish. Most likely, deployment of more sophisticated linguistic
would not be highly beneficial.

The situation with SR is a bit different. The performance
of almost all techniques, which go beyond the simple metrics
is around 88-89%. Analogously to AA the figures for PFN-2
are not very impressive, but we could at least improve the
SR figures via amalgamating various string distance met-
rics and other lightweight techniques. In the context of
SR metric the top result obtained with CommonPrefix-
MostSimilar should be ignored since it is probably due to
the very small number of single-result answers, i.e., the other
scores for this method were very poor, which indicates the
low number of single-result answers.

As for RA figures, most of the top accuracy figures achieved
with various methods for both datasets were oscillatting be-
tween 97% (simple metrics) and 98.7% (PatternBased al-
gorithm). Therefore we do not discuss them in more detail
here.

8. SUMMARY AND OUTLOOK
In this paper we studied the usability of several knowledge-

poor methods for supporting and tackling the task of match-
ing Polish person names. The presented techniques utilize
string distance metrics, combinations thereof and automati-
cally acquired suffix-based lemmatization patterns. The ma-

CP S R

CM
S

CM
S-
2

PM
S

PM
S-
2

PW
P PP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AA accuracy

PFN-1
PFN-2

Figure 6: Summary of the AA accuracy

CP S R

CM
S

CM
S-
2

PM
S

PM
S-
2

PW
P PP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SR acuracy

PFN-1
PFN-2

Figure 7: Summary of the SR accuracy

C
P S R

C
M
S

C
M
S-
2

PM
S

PM
S-
2

PW
P PP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AAR accuracy

PFN-1
PFN-2

Figure 8: Summary of the AAR accuracy

jor aim of our work was to explore how good results can be
obtained with such lightweight techniques without linguis-
tic sophistication. For solving some of the tasks they seem
to be suffcient, whereas for other tasks, e.g., lemmatization,
deployment of more elaborated techniques might result in
better accuracy.

Since we did not consider and did not exploit the context
the names appear in, the results presented in this paper con-
stitute only useful guidelines for developing a fully-fledged
solution to person name matching for Polish and similar
highly inflective languages. To our knowledge this is one of
the first efforts on tackling the person name matching task
in Polish via application of linguistically poor methods.

Further, application of other machine learning techniques
is envisaged too. For instance, in [17] a new probabilis-
tic model for determining base forms for previously unseen
words by analogy with a set word and base form pairs has
been introduced. This new language-independent method
for automatically learning a base form guesser, achieves a
recall of 89-99% and precision of 76-94%, without any apri-
ori knowledge of the declension paradigm. It would be inter-
esting, to explore whether it could be utilized in the context
of lemmatizing Polish person names and other tasks related
to name matching.

Finally, we intend to apply the methods presented in this
paper in a framework for clustering large web page collection
in Polish according to persons mentioned in these pages.

To sum up, lemmatization of proper names and name
matching in highly inflective languages poses an interest-
ing and challenging problem. We strongly believe that work
in this area is of paramount importance in the context of im-
proving Web search quality since the number of non-English
pages steadily increases.

9. ACKNOWLEDGEMENTS
The work reported in this paper was partially supported

by the EMM project (http://emm.jrc.it/overview.html)
carried out at the Joint Research Center of the European
Commission. Further, the work was also supported by the
Polish-Japanese Institute of Information Technology grants
no. ST/SI/06/2006 and no. ST/SI/06/2007.

10. REFERENCES
[1] E. Agirre, L. Marquez, and R. Wicentowski. Proceedings of

SemEval2007 4th international Workshop on Semantic
Evaluations, Prague, Czech Republic. ACL, 2007.

[2] M. Bilenko and R. Mooney. Adaptive Duplicate Detection
Using Learnable String Similarity Measures. In Proceedings of
the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003),
Washington, USA, 2003.

[3] P. Christen. A Comparison of Personal Name Matching:
Techniques and Practical Issues. Technical report,
TR-CS-06-02, Computer Science Laboratory, The Australian
National University, Canberra, Australia, 2006.

[4] S. Coates-Steohens. The Analysis and Acquisition of Proper
Names for the Understanding of a free Text. Computers and
the Humanities., 26:441–456, 1992.

[5] E. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of
String Metrics for Matching Names and Records. In
Proceedings of KDD Workshop on Data Cleaning and Object
Consolidation, 2003.

[6] W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of
String Distance Metrics for Name-Matching Tasks. In
Proceedings of IJCAI-03 Workshop on Information
Integration on the Web (IIWeb-03), pages 73–78, Acapulco,
Mexico, 2003.

[7] S. Cucerzan. Large Scale Named Entity Disambiguation Based
on Wikipedia Data. In Proceedings of the EMNLP-CoNLL
Joint Conference, Prague, Czech Republic. ACL, 2007.

[8] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate Record
Detection: A Survey. IEEE Transactions on Knowledge and
Data Engineering, 19(1), 2007.

[9] I. Fellegi and A. Sunter. A theory for record linkage. Journal of
the American Statistical Association, 64(328):1183–1210, 1969.

[10] L. Gravano, P. Ipeirotis, H. Jagadish, S. Koudas,
N. Muthukrishnan, L. Pietarinen, and D. Srivastava. Using
q-grams in a DBMS for Approximate String Processing. IEEE
Data Engineering Bulletin, 24(4):28–34, 2001.

[11] J. Grzenia. S lownik nazw w lasnych — ortografia, wymowa,
s lowotwórstwo i odmiana. PWN, Warszawa, 1998.

[12] M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose,
California, USA, pages 127–138. ACM Press, 1995.

[13] H. Keskustalo, A. Pirkola, K. Visala, E. Leppanen, and
K. Jarvelin. Non-adjacent digrams improve matching of
cross-lingual spelling variants. In Proceedings of SPIRE, LNCS
22857, Manaus, Brazil, pages 252–265, 2003.

[14] A. Klementiev and D. Roth. Weakly Supervised Named-Entity
Transliteration and Discovery from Multilingual Comparable
Corpora. In Proceedings of ACL 2006 Conference. ACL, 2006.

[15] V. Levenshtein. Binary Codes for Correcting Deletions,
Insertions, and Reversals. Doklady Akademii Nauk SSSR,
163(4):845–848, 1965.

[16] X. Li, P. Morie, and D. Rothd. Identification and Tracing of
Ambiguous Names: Discriminative and Generative Approaches.
In Proceedings of the National Conference on Artificial
Intelligence 2004, 2004.

[17] K. Lindén. A Probabilistic Model for Guessing Base Forms of
New Words by Analogy. In Proceedings of CICling-2008, 9th
International Conference on Intelligent Text Processing and
Computational Linguistics, Haifa, Israel, 2008.

[18] M. Mi lkowski. Morfologik. Web document:
http://morfologik.blogspot.com, 2007.

[19] A. Monge and C. Elkan. The Field Matching Problem:
Algorithms and Applications. In Proceedings of Knowledge
Discovery and Data Mining 1996, pages 267–270, 1996.

[20] B. On, D. Lee, J. Kang, and P. Mitra. Comparative study of
name disambiguation problem using a scalable blocking-based
framework. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries, JCDL 2005, Denver, CA,
USA, pages 344–353. ACM, 2005.

[21] J. Piskorski. Named-Entity Recognition for Polish with
SProUT. In L. Bolc, Z. Michalewicz, and T. Nishida, editors,
LNCS Vol 3490: Proceedings of IMTCI 2004, Warsaw,
Poland., 2005.

[22] J. Piskorski, M. Sydow, and A. Kupść. Lemmatization of Polish
Person Names. In Proceedings of the ACL Workshop on
Balto-Slavonic Natural Language Processing 2007 - Special
Theme: Information Extraction and Enabling Technologies
(BSNLP’2007). Held at ACL’2007, Prague, Czech Republic,
2007. ACL Press, 2007.

[23] B. Pouliquen and R. Steinberger. Automatic Construction of
Multilingual Name Dictionaries (in progress). Learning
Machine Translation, 2008.

[24] T. Smith and M. Waterman. Identification of Common
Molecular Subsequences. Journal of Molecular Biology,
147:195–197, 1981.

[25] R. Steinberger and B. Pouliquen. Cross-lingual Named Entity
Recognition. Journal Linguisticae Investigationes, Special
Issue on Named Entity Recognition and Categorisation,
30(1):135–162, 2007.

[26] E. Ukkonen. Approximate String Matching with q-grams and
Maximal Matches. Theoretical Computer Science,
92(1):191–211, 1992.

[27] D. Weiss. A Survey of Freely Available Polish Stemmers and
Evaluation of Their Applicability in Information Retrieval. In
Proceedings of the 2nd Language and Technology Conference
(LTC’2005), Poznań, Poland, 2005, pages 216–221, 2005.

[28] D. Weiss. Korpus Rzeczpospolitej. Web document:
http://www.cs.put.poznan.pl/dweiss/rzeczpospolita, 2007.

[29] W. Winkler. The state of record linkage and current research
problems. Technical report, Statistical Research Division, U.S.
Bureau of the Census, Washington, DC, 1999.

