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ABSTRACT
Recent interests on XML, Semantic Web, and Web ontology, among
other topics, have sparked a renewed interest on graph-structured
databases. A fundamental query on graphs is the reachability test
of nodes. Recently, 2-hop labeling has been proposed to index large
collections of XML and/or graphs for efficient reachability tests.
However, there has been few work on updates of 2-hop labeling.
This is compounded by the fact that Web data changes over time. In
response to these, this paper studies the incremental maintenance of
2-hop labeling. We identify the main reason for the inefficiency of
updates of existing 2-hop labels. We propose two updatable 2-hop
labelings, hybrids of 2-hop labeling, and their incremental main-
tenance algorithms. The proposed 2-hop labeling is derived from
graph connectivities, as opposed to SET COVER which is used by
all previous work. Our experimental evaluation illustrates the space
efficiency and update performance of various kinds of 2-hop label-
ing. The main conclusion is that there is a natural way to spare
some index size for update performance in 2-hop labeling.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; E.1
[Data]: Data Structure—Graphs and Networks

General Terms
Algorithms, Performance

Keywords
Reachability Test, Graph Indexing, 2-hop, Incremental Maintenance

1. INTRODUCTION
Recent interests on XML, Semantic Web, and Web ontology,

among other topics, have sparked a renewed interest on graph-
structured databases. There has been some work on large XML

repositories [18], ontology data on the Web [11], graph networks [3],
and classical graph databases with recursive query language sup-
port. A fundamental query on graphs is the reachability test. Specif-
ically, given two nodes u and v of a graph, the test returns true if
and only if v is reachable from u. This query evidently cannot be
expressed by first order languages, e.g., SQL. For all the reasons
that reachability tests are important in classical graph databases,
it is also useful to XML and the Semantic Web. In particular, the
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descendant axis, “//”, in XPATH can be considered a special appli-
cation of reachability tests. The descendant axis in XPATH deter-
mines a set of the nodes that are reachable from a set of input nodes
(the context nodes). This can be implemented by simply extending
the reachability test to support sets of nodes.

Another example of graphs is the Semantic Web. Resources [23]
on the web can be naturally represented as a graph. We sketch an
example of resources on the Web in Figure 1. One may want to
ask: What resources/services are related/reachable to Resource A?
In addition, reachability test can also be used in implementing OWL

queries, a W3C recommendation for Semantic Web [24].
Various techniques have been proposed to implement reachabil-

ity tests efficiently. On the one hand, reachability tests on a graph
can be evaluated using a traversal of the entire graph. However,
this method cannot handle data at Web-scale. On the another hand,
one may precompute and materialize the transitive closure of the
graph. Then, the reachability test becomes a simple selection on
the transitive closure. However, the size of the transitive closure
may be large, O(|G|2) in the worst case. Previous work on indexes
for reachability tests has mainly focused on optimizing query per-
formance and the size of the transitive closure, e.g., [1].

Recently, a number of indexes for reachability tests have been
proposed for optimizing the query performance and/or index size
on trees (e.g., [29]), DAGs (e.g., [25]) or arbitrary graphs (e.g., [21]).
Web data is often cyclic. Thus, we focus on methods that sup-
port arbitrary graphs. This paper studies a popular indexing tech-
nique for reachability tests on arbitrary graphs called 2-hop label-
ing, originally proposed by [9] and later studied in [20, 21, 7],
among others. When data evolves, there is a need for maintenance
of 2-hop labeling. We study the incremental maintenance of such
labeling, which receives little attention. For ease of presentation,
we may use 2-hop labeling and 2-hop interchangeably.

Previous work on 2-hop labeling has mainly focused on time-
efficient index construction and optimization of the index size. How-
ever, determining the 2-hop labeling with the minimum size is an
NP-hard optimization problem [9]. To minimize the index size, all
previous work used SET COVER as a heuristics for computing a
minimal 2-hop labeling of an input graph [9, 20, 21, 7]. Unfor-
tunately, it is also known that the heuristic construction of 2-hop
labeling is computationally intensive. For example, [21] reported
that the original algorithm [9] spends almost two days to construct
the 2-hop labels for a subset of the DBLP XML document – a bib-
liography repository for Computer Science publications. A divide-
and-conquer approach [21] and a geometric approach [7] have been
proposed to improve the performance of 2-hop construction with a
small tradeoff in index size.

Since the construction of 2-hop labeling is costly, it is not fea-
sible to rebuild the labels in response to each single update of the
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Figure 1: Semantic Web example

graph. What is desirable is an efficient 2-hop label maintenance al-
gorithm. To the best of our knowledge, the only work that studied
incremental maintenance of 2-hop labeling is [21]. [21] determines
the elements in the transitive closure that are affected by an update
(deletions or insertions). Then, a 2-hop construction is applied to
the affected elements. Since a single deletion (or insertion) of a
graph may affect many elements in the transitive closure, the cor-
responding updates of its 2-hop labeling is not trivial. In Section 4,
we perform a case analysis of the affected elements of the deletion
of a node and determine the bottleneck of deletions in 2-hop label-
ing. (We skip the analysis on insertions since it is simple). Since
the heuristics for the construction does not take update into con-
siderations, the incremental maintenance of 2-hop labeling can be
inefficient.

Based on a case analysis on updates, we define a node-separation
property of 2-hop labels. When 2-hop labeling satisfies this prop-
erty, the deletion of 2-hop labeling can be simplified, as the ineffi-
cient cases in deletion are no longer necessary. (In any case, inser-
tions are simple.) In this paper, we propose a few heuristic func-
tions, derived from cut vertex or minimum graph bisection, that
produce 2-hop labeling that satisfies the node-separation property.

The drawback of such heuristics is that it has a relatively remote
relationship with the index size, when compared to the heuristics
using SET COVER. As a consequence, the size of our 2-hop la-
belings is relatively larger than those in [21, 7]. We derive some
properties of our heuristics that facilitate many hybrids 2-hop la-
beling of our and previously proposed 2-hop labeling. We yield a
family of updatable 2-hop labeling, called u2-hop labeling, and the
hybrids of 2-hop labeling from these heuristics.

The main contributions of this paper are the followings:

• We illustrate inefficient cases in deletions of 2-hop labeling
and propose a simple algorithm for processing them;

• We present the node-separation property that leads to effi-
cient 2-hop maintenance. Based on this, we present two
heuristic algorithms derived from graph connectivity for 2-
hop labeling construction and analyze their complexities. The
size of our 2-hop labels, however, is often larger than the pre-
vious proposed 2-hop labels;

• We propose hybrids of 2-hop labels from different heuristics;

• We propose a novel incremental maintenance algorithm for
deletion that works very efficiently on our updatable 2-hops.
In addition, the algorithm is extended to work on arbitrary 2-
hop labels. We also present an insertion algorithm that works
on arbitrary 2-hop labels;

• We conduct extensive experiments on updates of various ver-
sions of our 2-hop labeling to verify the effectiveness of our
heuristics and illustrate their performance characteristics.

Organization. The structure of the paper is as follows. Related
work is discussed in Section 2. Section 3 briefly reviews 2-hop
labeling and other preliminaries of this work. Section 4 analyzes
deletions of 2-hop labeling. In Section 5, we present the definition
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Figure 2: An example graph G0 and two possible 2-hop covers

of two updatable 2-hop labeling due to graph connectivities and the
hybrid of 2-hop labeling. The construction and incremental main-
tenance algorithms of the updatable 2-hop labeling are presented
in Section 6. Section 7 presents an experimental study of the up-
datable 2-hop labeling to illustrate its characteristics. We conclude
and present future work in Section 8.

2. RELATED WORK
There has been a host of works on 2-hop label construction with

heuristics derived from SET COVER and its simplifications [7, 8,
20]. In Section 4, we illustrate that such constructions generate
2-hop labels with small sizes but not optimized for update. As a
consequence, previous maintenance algorithms [4, 21] for the 2-
hop labels required isolating the elements of the transitive closure
affected by an update and applying a 2-hop construction algorithm
on the affected elements, which can often be large. In comparison,
our heuristics are based on node-separation property that is opti-
mized for update. Hence, incremental maintenance algorithms can
be simpler than the previous ones.

Incremental maintenance of 2-hop labeling has only been dis-
cussed in [21]. The labeling was constructed with graph partition-
ing. Each partition and its transitive closure fit into main memory
and a heuristics, based on SET COVER, is re-used for the construc-
tion of 2-hop labels for each partition. An objective of [21] is to
scale the construction of 2-hop labels. Since SET COVER is part of
the heuristics proposed, the 2-hop labels generated by this method
have the same problems as the ones discussed above. In compari-
son, we study heuristics that produce update-efficient 2-hop labels.

A number of techniques have been proposed to support reacha-
bility tests on trees, e.g., [26, 29, 12]. While there have been studies
on updates of the index proposed in [29], e.g., [10], there is a lack
of its extension on the support of arbitrary graphs. Recently, [26]
has been extended to support DAGs [25, 22, 6]. However, there is
no discussion on the extension of the update algorithm of [26] to
DAGs. [22, 6] propose very efficient index construction algorithms.
When there are a lot of updates, rebuilding the index in response
to all of the updates may be more efficient than our incremental
maintenance approach

It is worth-mentioning that there has been work in matching pat-
terns in graphs [27, 28, 5]. The queries considered subsume reach-
ability tests. Reachability tests can be considered as a primitive
operation of pattern matchings.

There is another stream of work, e.g., [16], on mining structures
from Web graphs, where Web pages and hyperlinks are nodes and
edges of a Web graph. Research on Internet computing has pro-
posed methods to detect authorities (nodes with a large number of
incident edges) and hubs (nodes with a large number of outgoing
edges) from Web graphs. While authorities and hubs may imply a
reasonable 2-hop labels, it remains open whether there is a direct
relationship between these structures and space-/update-efficient 2-
hop covers. There has also been work on graph clustering, in par-
ticular, clustering/mining evolving graphs [17]. However, there is
a lack of a study on the cluster properties and reachability tests.
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3. BACKGROUND ON 2-HOP LABELING
In this section, we provide some background on 2-hop labeling

and show how reachability test is efficiently supported.
Since the reachability information of the nodes in a strongly con-

nected component in a graph is trivial, we assume that each strongly
connected component in the graph is reduced to a node. This can be
efficiently done by Tarjan algorithm in one scan of the graph. The
reduced graph is a directed acyclic graph (DAG). Our subsequent
discussions always assume the reduced graph.

We denote a directed graph as G(V , E). Each node v in V is
associated with a label L, which are two lists of nodes Lin(v) and
Lout(v). The two lists are called 2-hop labels. The nodes that are
stored in Lin(v) (resp. Lout(v)) are some nodes that can reach
(resp. are reachable from) v. We often refer to the nodes in either
Lin(v) or Lout(v) as center nodes. Given two nodes u and v, v
is reachable from u, denoted as u � v, if and only if Lin(v) ∩
Lout(u) is non-empty. To ensure that the 2-hop labels contain all
reachability information of G, the 2-hop labels must cover all ele-
ments in the transitive closure T (G) of G. The reflexive closure is
implicitly encoded by Lin(v) and Lout(v). The 2-hop labels that
cover all elements in T (G) is called 2-hop cover H(G) of G. Obvi-
ously, there are many correct 2-hop covers of a graph. We may omit
v from Lin(v) and Lout(v), and G from T (G) and H(G) when they
are clear from the context.

Next, we illustrate how 2-hop labeling works with an exam-
ple. Consider the graph G0 in Figure 2 and the nodes v1 and v9.
We show one possible 2-hop labels of v1 and v9 in Figure 2 (a):
Lout(v1) = {v2, v3, v4, v6} and Lin(v9) = {v6, v8}. The labels can
be interpreted as follows: v2, v3, v4 and v6 are reachable from v1;
and v9 is reachable from v6 and v8. Lout(v1) ∩ Lin(v9) = {v6}
means that there is a path from v1 to v9 via the center node v6.

Previous work has mainly focused on minimizing the size of a
2-hop cover, defined as

∑
v∈V |Lin(v)| + |Lout(v)|. In the original

proposal of 2-hop labeling, Cohen et al. [9] proved that finding the
2-hop cover with the minimum size is an NP-hard problem. Various
heuristics have been proposed to determine space-efficient 2-hop
cover iteratively. In particular, we briefly describe [9, 21, 7], which
are essential to our discussion on updates.

In [9, 21, 7], a variable T ′ stores the uncovered elements in T .
Initially, T ′ = T . Elements are iteratively removed from T ′ and
heuristic algorithms terminate when T ′ is empty.

In [9], an undirected bipartite graph Gw(Aw, Dw, Ew) is con-
structed for each node w. u ∈ Aw and v ∈ Dw and (u, v) ∈ Ew if
and only if (u, v) is in T and v is reachable from u via w. Then, the
SET COVER heuristics finds an induced subgraph Gi(Ai, Di, Ei)
of Gw with r = |Ei∩T ′|

|Ai∪Di| maximized. This is exactly the problem
of finding the densest subgraph of Gw. At each iteration of the al-
gorithm, a node w having the largest r is picked as a center node.
Then, we add w to Lout of nodes in Ai and Lin of nodes in Di and
remove (a, w) and (w, d), where a ∈ Ai and d ∈ Di, from T ′.

While |Ei∩T ′|
|Aw∪Dw| returned space-efficient 2-hop cover, the time

and memory requirements for computing Gw are prohibitive. One
of the results in [7] showed that the division in this heuristics has
minor impact on the size of 2-hop cover. Hence, [7] proposed a
simpler heuristics where |Ei ∩ T ′| is maximized, which leads to
more efficient 2-hop construction.

[21] proposed to (recursively) partition a graph into partitions,
where each of the partition fits into main memory. A 2-hop cover
Hi of the intra-partition edges is constructed by using [9]. A sup-
plement cover Ĥ is constructed for the interconnections between
partitions – the skeleton graph. The 2-hop cover proposed in [21]
is the union of Hi’s and Ĥ.
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Figure 3: Illustration of deletion of x

Despite the first effort on incremental maintenance of 2-hop la-
bels by [21], to date, there has not been heuristics that considers
updates of the 2-hop labels when they are constructed. In the next
section, we shall analyze updates of 2-hop labeling and illustrate
how maintenance of 2-hop labels becomes inherently complicated
if special efforts are not spent on the construction of 2-hop labels.

4. ANALYSIS OF UPDATES OF 2-HOP LA-
BELING

In this section, we perform a case analysis on the steps required
to update 2-hop labels after the deletion of a node of a graph. The
aim is to highlight the inefficient steps among them. For 2-hop
labeling, insertions are simpler than deletions (see Section 6.2).
Therefore, in this section, we focus on deletions.

Consider a deletion of a node x ∈ V . The nodes in G can be
partitioned into three disjoint sets with respect to x (see Figure 3):
(1) A(x) = {a | (a, x) ∈ T }; (2) D(x) = {d | (x, d) ∈ T }; and (3)
R(x) = V - A(x) - D(x). We omit x from A(x), D(x) and R(x)
when it is clear from the context. Since the updates of 2-hop labels
of D are symmetric to those of A, we shall discuss the updates of
2-hop labels of nodes in A only, unless otherwise specified. An
element (a, d) in T , where d ∈ Lout(a), belongs to one of these
four disjoint sets: (1) E1 = {(a, d) | a, d ∈ A}; (2) E2 = {(a, d) | a
∈ A, d ∈ R}; (3) E3 = {(a, d) | a ∈ A, d ∈ D}; and (4) E4 = {(a,
x) | a ∈ A}.

Cases 1 and 2. When x is deleted, E1 and E2 are not affected.

Case 3. To illustrate the updates on E3, we describe a procedure
for processing the deletion of x. Consider (a, d) ∈ E3 and d ∈
Lout(a). We need to check if d should still be in Lout(a) after the
deletion of x. We check whether or not some of the children of a
can reach d via some path(s) that do not pass through x. For all
edges in E3, this can be efficiently checked in a topological order
of nodes in A, starting from x. If a can no longer reach d after
the deletion of x, then d would be removed from Lout(a) and we
need to perform some additional check to the descendants of d. We
do this by Procedure check_All_Lin: Consider a descendant
d′ of d where d ∈ Lin(d′), i.e., d′ uses d as a center node. For each
such d′, we perform check_Lin(a, d′) as follows: We need to
check if there are some paths from a to d′ that do not pass through
x. If there is such a path, then d′ should be added into Lin(a) to
maintain the connectivity. Note that (a, d′) may have been removed
from the 2-hop cover due to the removal of d from Lout(a). In the
worst case, we need to consider |A| × |D| check_Lin cases.

Case 4. We consider (a, x) and (x, d) for all a ∈ A and d ∈ D
together. We define two sets: P : {p | x ∈ Lout(p), p ∈ A} and Q:
{q | x ∈ Lin(q), q ∈ D}, where x is the node to be deleted. For
each p ∈ P and q ∈ Q, we need to use check_Lin (in Case 3) to
check if (p, q) is still in T after x is deleted. Hence, Case 4 requires
at most |P |×|Q| check_Lins. In addition, we would remove x
from Lout(p) and Lin(q).
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The bottleneck of deletion of 2-hop labels is Case 3. Case 4
requires |P |×|Q| check_Lins in Case 3. Hence, simplifications
on Case 3 have a significant impact on the overall performance.

5. UPDATABLE 2-HOP LABELING
Based on the analysis in Section 4, we present the definition

of a family of updatable 2-hop labeling (or simply u2-hops) that
are derived from graph connectivities, in particular, cut vertex and
minimum bisection. We present the node-separation property and
merging property that lead to simplified deletions, specifically, for
Case 3 and 4.

The heuristics of u2-hops are derived from the node-separation
property: We say that a set of nodes X separate u and v if and only
if u can reach v and the removal of all nodes in X disconnects u and
v. We define the center nodes of u and v to be {x | x ∈ Lout(u)∩
Lin(v)}. A 2-hop cover satisfies the node-separation property if
and only if for each element (u, v) in T , the center nodes of u and
v separate u and v.

When a 2-hop cover satisfies the node-separation property, the
processing of E3 and E4 can be simplified as follows:
(1) check_All_Lin is no longer required for E3; (2) x can sim-
ply be removed from Lout(a) and Lin(d) for E4. There is no in-
sertion of nodes into the 2-hop labels required. These can be easily
derived from the definition of the node-separation property.

Example 5.1: Consider the example graph G0 shown in Figure 2 (a).
The 2-hop cover, as shown, does not exhibit the node-separation
property because the centers node of v1 and v8 is {v6}, which does
not separate v1 and v8. After the removal of v6, v1 can still reach v8

through v3. Similarly, the center nodes of v1 and v9, and the center
nodes of v3 and v8 do not satisfy the node-separation property.

After the deletion of v6, the 2-hop labels need to be updated
by deleting v6 from Lin and Lout of all nodes. In addition, it is
necessary to insert v3 into Lin(v8) and Lin(v9) to cover the paths
from v1 and v3 to v8 and v9.

In comparison, suppose that v8 is added to Lout(v1) and Lout(v3)
and v3 is added to Lin(v8). The resulting 2-hop cover satisfies the
node-separation property. For example, {v3, v6} separates v1 and
v8. In this case, the deletion of v6 could be processed by simply
removing v6 from Lin and Lout of all nodes.

Next, we discuss the merging property that is used in the con-
struction of u2-hops that satisfies the node-separation property. Con-
sider a possibly overlapping subsets of T (G): T1, T2,..., Tm, where
each Ti represents partial connectivity of a graph G and

⋃
i=1..mTi=T .

Each Ti is covered by the 2-hop labels Hi. Reachability query
can be done by independently querying His. The merging prop-
erty states that if T is covered by H1, H2..., Hm and each Hi

satisfies the node-separation property, then we can merge Hi for
i = 1..m into a single 2-hop Hall and Hall also satisfies the node-
separation property. The merging is defined as follows: Lout(a) =⋃

i=1..m Lout(a) of Hi. We can defined Lin(a) in a similar man-
ner. It is immediate that Hall is still a correct 2-hop cover of T .

The correctness of this property can be easily derived from the
fact that the center nodes of a and b in some His, (a, b) ∈ T , already
separate a and b. Adding more nodes into the 2-hop labels does not
violate the node-separation property.

In the next subsection, we describe two heuristic functions that
satisfy the node-separation property. First, we consider X as a sin-
gleton set – a cut vertex of a subgraph. Second, we consider X as
a bisection cut in G.
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Figure 4: Bipartite graph Gx for each node x ∈ G0

5.1 2-hop Cover with Cut Vertex
We first introduce the definition of a new 2-hop cover, namely

u2-hop-A, that is based on cut vertex. For each node x ∈ V , we
construct a bipartite graph Gx(A,D, Ex), where A and D are A(x)
and D(x) respectively and the edges Ex are {(a, d) | x separates a
and d, a ∈ A, d ∈ D}.

Given a bipartite graph Gx, we are interested in finding A′ ⊆ A
and D′ ⊆ D that x separates. From the definition of Gx, this is
equivalent to finding A′ and D′ in which there is an edge (a, d),
for all a ∈ A′ and d ∈ D′. Note that the induced subgraph of A′

and D′ is a biclique in Gx. Hence, our problem is equivalent to
finding a biclique in Gx.

Consider a biclique Bx(A′, D′). If we add x to Lout(a) and
Lin(d), for all a ∈ A′ and d ∈ D′, to cover Bx, then x covers
|A′| + |D′| + |A′| × |D′| elements of T .

u2-hop-A is constructed by iteratively finding biclique Bx(A′, D′)
and augmenting u2-hop-A to cover Bx’s until T is fully covered.
Similar to other heuristic algorithms, to minimize the index size,
we find the node x whose biclique Bx(A′, D′) maximizes |A′| +
|D′| + |A′| × |D′| in each iteration. That is, we greedily maxi-
mize the number of elements of T that are covered. We remark
that a node v can be chosen as a center node multiple number of
times. This does not cause any problem due to the merging prop-
erty discussed previously. More importantly, this guarantees that
the u2-hop-A construction terminates and covers all elements of T .

It is straightforward that the 2-hop cover constructed by this
heuristics satisfies the node-separation property.

Example 5.2: Figure 4 shows the bipartite graph Gx constructed
from each x ∈ V0. Consider Gv4 in Figure 4. It shows the bi-
partite graph Gv4 . From the graph G0 depicted in Figure 2, v4

separates v3 from v5, v6 and v7. Hence, there is an edge from
v3 to v5, v6 and v7 in Gv4 . Note that it is possible that Gx does
not have any edge, e.g., Gv2 in Figure 4. It is also possible that
one side of the graph is empty, e.g., Gv1 in Figure 4. The biclique
Bv8({v1, v3, v4, v6}, {v9}) covers 4 + 1 + 4 × 1 = 9 elements.
This is the maximum among all possible bicliques in Gx for all x.
Another biclique Bv1({}, {v2, v3, v4, v5, v6, v7, v8}) only covers
7 + 0 + 7 × 0 = 7 elements.

We find that given a bipartite graph G, finding a biclique B in
G that covers the maximum number of elements in the transitive
closure T is intractable. Specifically, we proved the following the-
orem. (Note that it is neither the maximal independent set problem
of a bipartite graph nor the maximum edge biclique problem.)
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Theorem 5.1: [MSEBP] Given a bipartite graph G(A, D, E), find-
ing a biclique B(BX , BY ) that maximizes f (B) = |BX |+ |BY |+
|BX | × |BY | is NP-complete, where BX ⊆ A and BY ⊆ D.

PROOF. (Sketch) Our reduction is established from an NP-complete
problem, namely, the maximum edge bipartite problem (MEBP) [19]:
Given a bipartite graph G(A, D, E), MEBP finds a biclique B(BX , BY )
having g(B) = |BX | × |BY |≥k.

Note that for both problems, we only need to consider maximal
biclique B, otherwise the biclique can be extended and produce
larger value of f (B) and g(B).

Given an instance of MEBP on an input graph G(A, D, E), we
generate |A| × |D| instances of MSEBP. Specifically, for each pair
of nodes a ∈ A and d ∈ D, we generate an instance of MSEBP

Ga,d as follows: We remove (1) a and d; (2) d′ ∈ D where d′ is not
adjacent to a, e.g., there is no edge (a, d′); and (3) a′ ∈ A where a′

is not adjacent to d, e.g., there is no edge (a′, d). The graph induced
by the remaining nodes is an instance of MSEBP.

Consider any maximal biclique B(A′, D′) in G having g(A′, D′)
= |A′| × |D′| = k. In every instance Ga,d, there exists some nodes
in B but not in Ga,d. We refer to the subgraph of B in Ga,d as the
reduced biclique, denoted as Bred(A′

red,D′
red). We show that 1)

in all Ga,d generated, f (Bred) ≤ k − 1 and 2) there are some Ga,d

having f (Bred) = k − 1.
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Figure 5: (a) The input graph for MEBP (b) An instance of
MSEBP generated from v2 and v6 (c) An instance of MSEBP
generated from v1 and v4 (d) An instance of MSEBP generated
from v2 and v5

We first give a proof of 2). Consider an instance Ga,d, where
a ∈ A′ and d ∈ D′. In this instance, there is exactly one node in
A′ and D′, respectively, that is not in Ga,d, e.g., A′

red=A′ \ {a}
and D′

red=D′ \ {d}. Hence, f (Bred) = (|A′| − 1) + (|D′| − 1) +
(|A′|− 1)× (|D′|− 1) = |A′|× |D′|− 1 = k-1. This is illustrated
in Figure 5. Consider the biclique B and the reduced biclique Bred

in Figures 5 (a) and 5 (b). The values of g(B) and f(Bred) are 6
and 5, respectively.

We then prove 1). In any Ga,d, there is at least one node in A′

and D′, respectively, that is not in Ga,d, e.g., |A′
red| ≤ |A′| − 1,

|D′
red| ≤ |D′| − 1. Hence, f (Bred) ≤ (|A′| − 1) + (|D′| − 1) +

(|A′|−1)× (|D′ |−1) ≤ |A′|× |D′|−1 ≤ k-1. This is illustrated
in Figures 5 (c) and 5 (d), where the values of f(Bred) are 3 and 1.

Hence, the answer of MEBP is true if and only if there is at
least one instance of MSEBP that contains a biclique Bred having
f (Bred)≥k − 1.

In response to this, we reuse an approximation algorithm [2] for
MSEBP as the heuristics for u2-hop-A construction (Section 6).

5.2 2-hop Cover with Minimum Bisection
Next, we generalize u2-hop-A to u2-hop-B in this subsection.

Specifically, as opposed to choosing a single-node separation, we
use a node separation which may be a set of nodes. We were
tempted to use min-cuts for construction. However, the construc-
tion algorithm may be guided by numerous small cuts and the re-
sulting 2-hop cover can be large. To reduce the number of cuts,

we opt to use the minimum graph bisection. This leads to relatively
smaller number of iterations and tend to produce smaller 2-hop cov-
ers. While finding the minimum graph bisection is also a classical
NP-hard optimization problem, there has been a number of heuris-
tics for solving this problem [15]. In particular, we used [14] to
determine a small bisection.

Suppose the bisection B, B ⊆E, divides the graph G into G1(V1,
E1) and G2(V2, E2), where |G1| ≈ |G2|. We construct 2-hop la-
bels as follows. We cast B into an undirected bipartite graph. We
determine the minimum vertex cover C of B. Since we are dealing
with bipartite graph, the minimum vertex cover can be computed
in PTIME using the network flow technique. Consider a node c in
C. For each ancestor a of c, we insert c into Lout(a). Similarly, for
each descendant d of c, we add c into Lin(d).

Next, we construct u2-hop-B recursively on G1 and G2, respec-
tively, until the transitive closure is entirely covered. Due to the
merging property, the 2-hop labels obtained can be merged into a
single 2-hop cover.

Discussions. It is immediately true that the previous two heuristics
generate u2-hop covers that satisfy the node-separation property. It
should also be remarked that all center nodes in the 2-hop cover
are selected in a special way such that simple deletions for u2-hop-
A and u2-hop-B become possible: u2-hop-A ensures that a node
w that separates many (uncovered) node pairs are selected earlier
than the others. In contrast, when there are multiple alternative
paths P from u to v, u2-hop-B enforces (at least) one node on each
alternative path in P is included in both Lout(u) and Lin(v). A
deletion becomes simply the maintenance of the node separation
between pairs of nodes.

5.3 Hybrid Updatable 2-hop Cover
The two u2-hops introduced in the previous subsections have

different properties. u2-hop-A requires the construction of a large
number of bipartite graphs as in [9] that may be memory-bound
and computationally intensive. In contrast, u2-hop-B may result
in large 2-hop covers as the bisection can often be relatively large
when the input subgraphs is relatively small. The reason is that the
minimum bisection of a small graph may often be a large subset of
the edges of the graph. Therefore, we propose a hybrid approach
of u2-hops that takes advantages of both u2-hops.

Recall the merging property discussed earlier. We can mix u2-
hop-A with u2-hop-B. The hybrid of these 2-hop covers still satis-
fies the node-separation property.

There are two simple alternatives for combining the u2-hops.
Firstly, we propose to first use u2-hop-B to build 2-hop recursively
until u2-hop-B becomes inefficient in terms of space. Then, we use
u2-hop-A to cover the remaining elements in T . The inefficiency
of u2-hop-B can be estimated as follows: In the worst case, the size
of T is |V |2. Suppose C is the vertex cover of the bisection cut of
G1 and G2. The size of u2-hop-B of a given C, denoted as |u2-
hop-B(C)|, can be estimated as |V1| × |C| + |V2| × |C| + |V1|2 +
|V2|2. Through experimental studies on the size of T and u2-hop-
A of random graphs, we can obtain the average size of u2-hop-A
when compared to T , say |u2-hop-A| ≈ X%× |T |. Hence, we use
u2-hop-B recursively until |u2-hop-B(C)| ≥ X% × |T |.

Secondly, we can use u2-hop-B recursively until the size of the
graph is small enough that the graph together with its transitive clo-
sure and bipartite graphs can be stored in the main memory. Then,
u2-hop-A is used.

Hybrid of updatable and arbitrary 2-hop labeling. Similarly, a
hybrid of updatable and arbitrary 2-hop labeling, not necessarily
updatable, can be easily defined.

One scenario is to apply the u2-hop-A construction algorithm un-
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til the estimated compression ratio of the remaining uncovered el-
ements in T is smaller than certain threshold. Then, the remaining
elements are covered by any 2-hop construction technique.

Since this hybrid 2-hop labeling does not entirely satisfy the
node-separation property, the merging property is not applicable
here. However, we can store/maintain the two 2-hops separately.

As verified by our experiment, this hybrid 2-hop labeling yielded
a better index size when compared to u2-hops. However, the con-
struction of the smallest hybrid of 2-hop is no easier than that of
u2-hops. For example, consider the hybrid of u2-hop-A and [9].

To avoid having numerous “small” center nodes in the resulting
2-hop cover, we ignore u2-hop-A center nodes that connect only
two nodes, where the node-separation property does not offer any
advantage on deletions of E3 and E4. Then, we have the following.

Theorem 5.2: Finding the hybrid of u2-hop-A and [9] with the
minimum size is NP-hard.

Theorem 5.2 can be obtained by using the reduction from 3-SAT

due to Cohen et al. [9]. The graph obtained from a 3-SAT instance
is dense where an empty u2-hop-A is obtained. This graph is not
modified and we need to find its minimum 2-hop cover [9], which
is NP-hard.

6. ALGORITHMS FOR U2-HOP LABELING
We have discussed the definition of a family of u2-hops in the

previous section. In this section, we describe the construction and
maintenance algorithms for these u2-hops.

6.1 Constructions for u2-hop Labeling
Construction of u2-hop-A. The key issue in constructing a rea-
sonable u2-hop-A with a small size is to find a reasonable approxi-
mation for MSEBP for each bipartite graph of each node.

We associate a weight to an element of T . Weight 0 (resp. 1)
means that the associated element in T has been covered (resp. has
not been covered). Initially, all elements of T have not been covered
and thus have a weight of 1. In addition, we also associate a weight
to all nodes and edges in the bipartite graph Gx(A,D, E). The
weight of a node a ∈ A in Gx is the weight of (a, x) in T . Sim-
ilarly, the weight of a node d ∈ D in Gx(A, D, E) is the weight
of (x, d) in T . Whereas, the weight of an edge (a, b) in E is the
weight of (a, b) in T . The weights are updated in each iteration of
the algorithm as T is updated.

Our heuristic function for each bipartite graph is to find a bi-
clique with the maximum sum of weights. This problem can be
solved by a 2-approximation algorithm given in [2], namely (2,2)-
deletion problem. Note that this problem is a more general problem
than MSEBP.

Putting these together, we present a greedy algorithm for u2-hop-
A construction in Figure 6. The algorithm operates as follows. At
Line 01, we construct the bipartite graph Gv for each v ∈ G. T ′

is used to record the uncovered elements in T . Initially, T ′ = T
(Line 02). max stores the center node of Bmax that would cover
T the most. Initially, Bmax is initialized to an empty biclique with
weight 0 (Line 03). As long as T ′ is not fully covered, the iteration
repeats. At each iteration, we compute an approximation of the
biclique with the maximal weight of the bipartite graph for each
node, as discussed above and in Section 5.1. Then, we determine
the biclique Bmax and the center node max with the largest weight
among other bicliques (Lines 05-08). At the end of each iteration,
we select max as a center node to cover connections between the
nodes in Vmax1 and Vmax2 in Bmax (Lines 09-10). We update
T ′ and the weights of all bipartite graphs before the next iteration
(Lines 11 and 12).

Procedure u2-hop-A-construction
Input: a directed graph G: (V , E)
Output: u2-hop-A of G: (Lin, Lout)

01 for each v ∈ V construct bipartite graph Gv

02 T ′ = T
03 Bmax(Vmax1 , Vmax2) = empty biclique; max = null
04 while T ′ is not empty
05 for each v ∈ V
06 construct max weight biclique Bv(V1, V2) of Gv

07 if totalweight(Bv) > totalweight(Bmax)
08 Bmax = Bv ; max = v
09 Lout(a) = {max} ∪ Lout(a),

where a ∈ Vmax1

10 Lin(d) = {max} ∪ Lin(d),
where d ∈ Vmax2

11 update T ′ according to Bmax

12 update the weights of Gv for v ∈ V according to T ′

Figure 6: A greedy algorithm for u2-hop-A construction

GG G

GG G

1

3

4

6

1

3

4

6

1

3

4

6

GG Gv2v1 v3

v6v5v4

v8 v9v7

3

4

5

6

7

8

2

v

v

v

v

v

v

v

5

v

3

1

8

7

6

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

9

1

2

3

4

1

3
v

4 9

7

8

v

4

5

6

7

8

9

1

v v

v

v

v

v

v

v

8

9
v

v

v

v

1 5

v

v

v

v

v

v

v

Figure 7: Updated weights of bipartite graph Gx for each node
x ∈ G0. Dotted edges and no-fill nodes are with weight 0. Solid
edges and filled nodes are with weight 1.

Example 6.1: Consider G0, as shown in Figure 2. The bipartite
graphs Gv constructed in Line 1 is shown in Figure 4. All the
nodes and edges have weight 1. As described in Example 5.2, in the
first iteration, we obtain max = v8, Vmax1={v1, v3, v4, v6} and
Vmax2={v9}. Then, in Line 9 and 10, v8 is added to Lout of v1, v3,
v4 and v6 and Lin of v9. Then, the weights of T ′ is updated. Sub-
sequently, the weights of the bipartite graphs are updated. Figure 7
shows the updated weights after the first iteration. At the next itera-
tion, the biclique having the maximal weight is ({v1, v3, v4},{v7})
with center node v6. Subsequent iterations would choose the fol-
lowing bicliques and their center nodes in this order: ({v3}, {v5})
with center v4, ({v1, v2}, {}) with center v5, ({v1}, {}) with cen-
ter v3, ({v1}, {}) with center v2 and, finally, ({}, {v3}) with center
v1. The resulting 2-hop cover is shown in Figure 2 (b).

Complexity. The initial construction of a bipartite graph is as costly
as computing the transitive closure, O(|V |×(|V | + |E|)). To com-
pute all bipartite graphs, it takes O(|V |2×(|V | + |E|)). The ap-
proximation algorithm that we used takes O(|V +|E|). We adopted
the priority queue implementation to optimize the for-loop (Lines
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Procedure u2-hop-B-construction
Input: a directed graph G: (V , E),

T ′: the uncovered elements of T
Output: u2-hop-B of G: (Lin, Lout)

01 B = min_bisection(G)
02 denote the subgraph separated by B as G1 and G2

03 C = min_vertex_cover(B)
04 for each c in C
05 for v in V
06 if v � c then Lout(v) = Lout(v) ∪ {c}
07 else if c � v then Lin(v) = Lin(v) ∪ {c}
08 update T ′ according to Lines 06-07
09 if T ′ is not empty
10 u2-hop-B-construction(G1, T ′)
11 u2-hop-B-construction(G2, T ′)

Figure 8: A greedy algorithm for u2-hop-B construction

05-08) in u2-hop-A construction [20]. Overall, the dominating
step in the construction is Line 01.

Construction of u2-hop-B. The construction of u2-hop-B also uses
T ′ to keep track of the uncovered elements in T . We assume that
T ′ = T initially. We use [14] to compute the minimum bisection
B of G (Line 01). Then, we use a classical algorithm to determine
the minimum vertex cover C of B (Line 03). Next, we add 2-hop
labels as discussed in Section 5.2 (Lines 04-07). We updated T ′

according to the elements of T covered by C (Line 08). If T is not
entirely covered, the construction procedure is called recursively
with the subgraphs defined by B, G1 and G2 (Lines 09-11).

Complexity. In Lines 01-08, the dominating step is the approxima-
tion algorithm for finding the minimum bisection of a graph [14].
Denote M to be the time complexity for the algorithm. The con-
struction is called at most |V | times in the worst-case. The overall
complexity is O(M×|V |). However, note that M depends on the
size of the input graph, which decreases as the recursion proceeds.

6.2 Incremental Maintenance Algorithms for
u2-hop Labeling

Next, we describe our incremental maintenance algorithms for
u2-hop labeling.

Deletions for u2-hops. The deletion algorithm of u2-hops is pre-
sented in Algorithm delete in Figure 9. The inputs of Algo-
rithm delete are a directed graph G, its u2-hop cover H and a
node to-be-deleted x. The output of the algorithm is the updated
2-hop cover that still satisfies the node-separation property. We re-
move x from Lin(v) and Lout(v) for all v ∈ V (Line 01). This
deals with Case 4 in Section 4. We obtain the ancestors and de-
scendants of x with the help of the input graph G (Line 02). We
sort the ancestors and descendants based on the topological order-
ing (Line 03-04). Next, we gather the edges that belong to Case 3
in E3 (Line 05-06). We perform deletions of edges in Case 3 in
topological order. We sort the edges of E3 by their indexes in A′

and D′ (Line 07). Hence, when we process an edge (a, d) in E3,
the relevant 2-hop labels have been correctly updated. Then, we
scan through the edges in E′

3, the sorted E3 (Line 08). For each
edge (a,d) in E′

3, there are only two possible cases: (i) d belongs to
Lout(a) or (ii) a belongs to Lin(d) (Lines 09 and 12). (i) For the
first case, we check if a can still reach d after the deletion of x. The
checking is done by using the 2-hop cover to test if any child ca of
a can reach d. Specifically, Lout(ca) ∩ Lin(d) 	= {}. If no child
of a can reach d, we remove d from Lout(a) (Lines 10-11). (ii) For

Procedure delete
Input: a directed graph G, an u2-hop cover of G and

x a vertex to-be-deleted
Output: the updated u2-hop cover

01 remove x from Lin and Lout of all nodes

02 compute A: A(x) and D: D(x)
03 A′ := sort A in reverse topological order (“bottom up”)
04 D′ := sort D in topological order (“top down”)
05 E3 := (a, da), da ∈ Lout(a), da ∈ D′ and a ∈ A′

06 E3∪ = (ad, d), ad ∈ Lin(d), ad ∈ A′ and d ∈ D′

07 E′
3 := sort E3(a,d) by i then by j in ascending order

where a = A′[i] and d = D′[j]
08 for each (a, d) in E′

3 in order
09 if d ∈ Lout(a)
10 if ca 	� d for all children ca of a (after deletion)
11 remove d from Lout(a)
12 if a ∈ Lin(d)
13 if a 	� pd for all parent pd of d (after deletion)
14 remove a from Lin(d)

Figure 9: Deletion of u2-hop labeling

the second case, we remove a from Lin(d) if a cannot reach d after
the deletion of x (Lines 13-14). The checking is done by utilizing
the parents of d in a similar manner. We emphasize that the 2-hop
cover can be used for reachability tests in Lines 10 and 13 because
the 2-hop cover has been correctly updated in previous steps.

Example 6.2: Consider a deletion of v6 in the graph G0 presented
in Figure 2. We use the 2-hop cover depicted in Figure 2 (b).
Note that the 2-hop cover satisfies the node-separation property.
The deletion algorithm removes v6 from Lout of v1, v3 and v4

as well as Lin(v7) (Line 01). The set of ancestors and descen-
dants are obtained: A={v1, v3, v4} and D={v7, v8, v9}. The topo-
logically sorted representation is as follows: A′={v4, v3, v1} and
D′={v7, v8, v9}. The set of edges in Case 3, E3 is {(v1, v8),
(v3, v8), (v4, v8)}. The sorted E3, E′

3, is {(v4, v8), (v3, v8), (v1, v8)}.
Note that all of these edges will be processed by Lines 10-11. Next,
we process E′

3 in sequence: 1) process (v4, v8): we check if v4 can
still reach v8 after deleting v6. The only remaining child of v4 is
v5. Since Lout(v5) ∩ Lin(v8) is empty, v5 can not reach v8, thus
we remove v8 from Lout(v4). 2) process (v3, v8): since v8 is a
child of v3, then we keep v8 in Lout(v3) (a node is implied in the
Lin and Lout of the node itself). 3) process (v1, v8): v1 has three
children, v2, v3 and v4. v2 cannot reach v8. But, as we have pro-
cessed in Step 2), v3 can reach v8. Thus, we keep v8 in Lout(v1).

We also remark that Algorithm delete can be extended to han-
dle deletions of arbitrary 2-hop covers, including those proposed
by [21, 7]. This can be implemented with check_All_Lin, as
described in Section 4. Specifically, if d is to be removed from
Lout(a) (Lines 11 and 14), then we check all d′ ∈ D having d ∈
Lin(d′). Thus, if a can still reach d′ after the deletion of x (again,
this checking is done through 2-hop reachability test), then we need
to add d′ to Lout(a) to restore back the reachability information.
These additional operations must be performed consistently to the
edge order in E′

3. As an optimization, if (a,d′) is already covered
by the current 2-hop labels after the removal of d from Lout(a), the
previous steps can be skipped. Similarly, if a is to be removed from
Lin(d) (Line 14), a symmetric processing is needed.

From the discussion above, it is clear that the deletion algorithm
can also be extended to work on the hybrid of u2-hop and non-u2-
hop, e.g., the hybrids of 2-hops described in Section 5.3, and has
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Procedure insert
Input: a directed graph G, an u2-hop cover,

an edge to-be-inserted (x, y)
Output: the updated u2-hop cover
01 case 1: x ∈ V and y 	∈ V
02 Lin(y) := Lin(x) ∪ {x}

03 case 2: x 	∈ V and y ∈ V
04 Lout(x) := Lout(y) ∪ {y}

05 case 3: x, y ∈ V and (x, y) 	∈ E
06 compute A: A(x) and D: D(y)
07 cx:= |{a|x 	∈ Lout(a), a ∈ A} ∪ {d|x 	∈ Lin(d), d ∈ D}|
08 cy := |{a|y 	∈ Lout(a), a ∈ A} ∪ {d|y 	∈ Lin(d), d ∈ D}|
09 if cx < cy then t = x, else t := y
10 for a in A
11 Lout(a) := Lout(a) ∪ {t}
12 for d in D
13 Lin(d) = Lin(d) ∪ {t}

Figure 10: Insertion of u2-hop labeling

been used in our experiment. To extend the algorithm to work on
hybrids of 2-hop that do not satisfy the node-separation property,
the two 2-hop covers are to be updated in parallel.
Complexity. Sorting the nodes or edges in some topological or-
der can be implemented efficiently. The dominating steps in Algo-
rithm delete are Lines 8-14. For each edge in E3, we performed
at most O(|V |) 2-hop lookups, Lines 10 and 13. Hence, the com-
plexity of the deletion is O(|E3|×|V |) 2-hop lookups. However, in
practice, the number of lookups required is much fewer than this.

Insertions for u2-hops. Algorithm insert, as shown in Figure 10,
handles insertions of u2-hops. We aim at an insertion algorithm that
preserves the node-separation property. For simplicity, we assume
that the insertion would not introduce cycles to the graph. Consider
a single-edge insertion (x, y). Suppose x already exists in the graph
and y is new (Line 01). All nodes that can reach x can also reach
y. Hence, we put Lin(x) together with x in Lin(y) (Line 02). Case
2 (Lines 03-04) is symmetric to Case 1.

Case 3 deals with insertions of an edge between two existing
nodes. The insertion can be processed by adding either x or y to i)
Lout of of ancestors of x and 2) Lin of descendants of y. It is easy
to see that this procedure would preserve the node-separation prop-
erty. Among the two choices (x and y), we pick the one that mini-
mizes the increase in the size of the updated 2-hop labels. Based on
these, the algorithm proceeds as follows. A and D are the ances-
tors of x and the descendants of y respectively (Line 06). Next, the
increase of index size with respect to x and y is computed (Lines
07-08). The smaller of the two is chosen (Line 09) and finally Lout

of A and Lin of D are updated accordingly (Lines 10-13).

Complexity. The dominating step is Lines 07-08 and Lines 10-13.
In the worst case, A and D comprise of all nodes in the graph. The
complexity is O(|V |) 2-hop lookup and update.

Insertion of a subgraph. We end this section with a discussion on
the insertion of a subgraph g into an existing graph G. This can be
implemented by using Algorithm insert. First, we build the 2-
hop cover of the induced subgraph of the new nodes in g. Second,
we handle the insertion of crossing edges between the 2-hop covers
of g and G which can be handled by Case 3 of Algorithm insert.

7. EXPERIMENTAL RESULTS
Our experimental evaluation focused on the effects of graph size

(|G|) and edge to vertex ratio (|E|/|V |), as a measure of graph den-
sity, on the index size and update performance of various versions

of 2-hop labeling and the effectiveness of the proposed updatable
2-hop labeling.

We used the 2-hop labeling of [21] (denoted as SC-II) and [7]
(denoted as SC-I) as well as their respective deletion algorithm im-
plemented by [4]. u2-hop-A, u2-hop-B and the hybrid of the two are
denoted as UH-A, UH-B and UH-B-A, respectively. We tried UH-B-
A on a large number of random graphs and selected a constant X
for switching between UH-B and UH-A. The hybrid of u2-hop-A
and SC is H-A-SC. For H-A-SC, we switched from UH-A to SC-I

when UH-A did not offer more than 10% compression. All these
labelings have been implemented in C++. The experiments were
run on a system with a 3.4GHz Pentium processor with 3G bytes
of RAM running Windows XP operating system.

We use both synthetic directed acyclic graphs randomly gener-
ated by [13] as well as real-world graphs obtained from [3].

2-hop labeling construction. The first experiment studied the char-
acteristics of the 2-hop labeling. We set the edge to vertex ratio of
the graphs to be 2 and varied the size of the synthetic graphs. The
size of the 2-hop covers of the graphs are reported in Figure 11 (a).
It shows that UH-B and UH-B-A were consistently larger than SC-
II, SC-I and H-A-SC. The reason is that the latter three uses SET

COVER for index construction, which is optimized for index size.
UH-B produced 2-hop covers with the largest size. As expected,
UH-B-A returned 2-hop covers that were smaller than UH-B but
larger than UH-A. UH-A and UH-B-A sometimes produced smaller
indexes than SC-II, SC-I and H-A-SC. This depends on the struc-
ture of the graph, most notably the number of cut vertices. UH-A

is small for these particular random data graphs. As verified by
Table 2 and 4, UH-A is often larger than SC-II, SC-I and H-A-SC.

The runtime of the 2-hop label constructions are reported in Fig-
ure 11 (b). Our construction algorithms were not as scalable as SC-
II and SC-I. The construction increased more rapidly when com-
pared to SC-II and SC-I. This is due to the computation of the ini-
tial bipartite graphs for UH-A and H-A-SC. UH-B and UH-B-A were
comparable to SC-II and SC-I since they did not require building a
large number of bipartite graphs.

Next, we set |V | = 1000 and varied the density of the graphs.
We observed that UH-A, UH-B and UH-B-A were more sensitive to
graph density than the others. The reason for UH-A is that there
were few cut vertices in a dense graph; for UH-B and UH-B-A, we
noted that the bisections were large. H-A-SC remained efficient
because, when only few cut vertex were found, it switched to SC-I.

In the next experiment, we studied the impact of the threshold for
switching from UH-B to UH-A in index construction. We set |V | as
a constant: |V | = 8000. We present X as the number of nodes for
switching. When X = 0 (resp. 8000) , the index is UH-B (resp.
UH-A). The result is reported in Figure 12 (a). It shows that the
index size decreased gradually as we increased X. Figure 12 (b)
shows the construction time for UH-B-A as we varied X. As X
increased, we computed more (and possibly large) bipartite graphs
and the time increased rapidly.

Deletion performance. The next experiment verified the efficiency
of Algorithm delete. The deletion algorithm for H-A-SC is the ex-
tended version of Algorithm delete as described previously. We
generated three graphs G1, G2 and G3 where |V | was set to 4000
and their edge to vertex ratios were roughly 3, 4 and 6, respec-
tively. The statistics of the 2-hop covers constructed by different
techniques is presented in Table 2. In order to observe the perfor-
mance difference, we generated a long deletion sequence consist-
ing of 100 random deletions and applied this workload to the three
graphs. The total deletion times are reported in Table 1. The result
shows that UH-B, UH-B-A, UH-A and H-A-SC outperformed SC-II

and SC-I. For the large graph G3, deletions on these 2-hop covers
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Figure 12: (a) and (b) Index performances by varying X; (c) Change in index size

Table 1: Total deletion time in seconds
Graph SC-II SC-I UH-B UH-B-A UH-A H-A-SC

G1 71 51 37 35 28 33
G2 367 197 104 101 94 109
G3 8522 6703 406 404 380 146

Table 2: Initial Index size
Graph SC-II SC-I UH-B UH-B-A UH-A H-A-SC

G1 52K 45K 111K 101K 69K 73K
G2 92K 78K 404K 393K 359K 338K
G3 208K 136K 1754K 1755K 1640K 457K

could be more than one order of magnitude faster as no (partial)
2-hop construction is needed. We noted that H-A-SC is the most
efficient for G3, although the extended algorithm performed more
computation. The reason is that the sizes of UH-A, UH-B and UH-
B-A are larger than that of H-A-SC. Even though H-A-SC required
more steps for deletions, it operated on a small index.

A counter-intuitive fact about deletions is that previous deletion
algorithms did not always reduce the size of the index. We re-
ported the change of index size due to the deletion workload in
Figure 12 (c). Note that UH-A, UH-B, UH-B-A and H-A-SC always
return a smaller 2-hop cover after deletions. In comparison, since
2-hop construction was called in the deletions of SC-I and SC-II, the
index size may increase after deletions. The decrease in H-A-SC is
smaller than UH-A, UH-B and UH-B-A since only part of H-A-SC

satisfied the node-separation property.

Insertion performance. The next experiment verified the insertion
performance of UH-A, UH-B, UH-B-A and H-A-SC. Insertion of SC-
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Figure 13: Insertion performance varying crossing edges

Table 3: Real graphs used in the experiment

Graph |V | |E| |TC|
SMAGRI 1022 4892 73479
SCIMET 2188 6527 93637
YEAST 2361 6646 489039

II was briefly discussed in [21] and that of SC-I was not discussed
in [7]. Thus, in this experiment, we skipped SC-II and SC-I. We
used G2 for this experiment. The newly inserted graph has 1000
nodes and 4000 edges. Then, we ranged the number of crossing
edges, that connect the new graph to G2, from 5 to 100. The inser-
tion times is roughly 4 seconds among all workload and all 2-hop
labeling. This is because these 2-hop labels used the same insertion
algorithm. We then studied the impact of the number of crossing
edges in the insertion workload. We presented the results in Fig-
ure 13. Since the number of nodes in the new graph is fixed, we
reported the index size of the new graph and the index size due to
the crossing edges separately. Figure 13 shows that the index size
increased gradually with the number of crossing edges.

Experiment with real-world graphs. We have tested the deletion
performance on three real-world graphs. The sizes of the graphs
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Table 4: Initial index size
Graph SC-II SC-I UH-A H-A-SC

SMAGRI 7868 6450 45800 20166
SCIMET 13752 11696 41939 30849
YEAST 33452 16208 195934 115475

Table 5: Total deletion time in seconds
Graph SC-II SC-I UH-A H-A-SC

SMAGRI 58 37 13 13
SCIMET 32 23 16 19
YEAST 785 69 54 41

and their indexes are described in Table 3 and Table 4, respectively.
As before, we have randomly chosen 100 nodes and sequentially

delete these nodes from the graph. The total time taken to per-
form this workload is presented in Table 5. The result shows the
effectiveness of UH-A and H-A-SC. Both UH-A and H-A-SC were
consistently faster than SC-II and SC-I. The index sizes of SC-II

and SC-I were larger after deletion. For UH-A and H-A-SC, the up-
dated index size was smaller. H-A-SC required more operations but
operated on a smaller index.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed two heuristics based on cut ver-

tex and minimum bisection for 2-hop label construction. The 2-hop
covers constructed by such heuristics exhibit the node-separation
property that lead to a simple incremental maintenance algorithm.
We analyze deletions of existing 2-hop labeling and proposed a
simple deletion algorithm for handling such deletions. We have
presented incremental maintenance algorithms for our 2-hop la-
beling. Extensive experiments have been conducted to show the
characteristics of various versions of 2-hop labeling. The results
showed that the incremental maintenance algorithms are efficient
and the hybrid of our and existing 2-hop can achieve both good
update performance and small index size.

u2-hop-A construction is computationally intensive, for a similar
reason presented in [9]. We have submitted a follow-up work on
scalable u2-hops for publications.
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