
Personal Voice Call Assistant: VoiceXML and SIP in a
Distributed Environment

Michael Pucher

FTW
Donau-City Straße 1/3

A – 1220 Vienna
+43/1/5052830-98

pucher@ftw.at

Julia Tertyshnaya
FTW

Donau-City Straße 1/3
A – 1220 Vienna

+43/1/5052830-45

tertyshnaya@ftw.at

Florian Wegscheider
FTW

Donau-City Straße 1/3
A – 1220 Vienna

 +43/1/5052830-45

wegscheider@ftw.at

ABSTRACT
In this paper we introduce the architecture of a distributed service
platform that integrates speech, web technology and voice-over-
IP technologies and describe how a specific service can be built
using these technologies.

The electronic assistant is an advanced voice-based service, that
answers incoming calls and takes messages, consulting the user's
calendar and address book. A novel contribution consists in the
dynamic creation of the dialog (in form of VoiceXML pages)
from calendar and other data residing in the platform’s databases,
providing in this way actualized information to the caller (at call
time).

The described platform provides basic services (like call control)
and allows developers to stack services, alleviating quick service
generation. The assistant illustrates how several fairly basic build-
ing blocks can be combined into a powerful end-user application

Sticking to our assistant as a guiding example, the first part of this
paper gives details on the platform’s goals and architecture. The
second part portrays the dynamic generation of user-friendly and
intuitive VoiceXML pages and grammar from the calendar data-
base, which proved to be an intricate task by itself.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems – distributed applications.

E.1 [Data]: Data Structures – distributed data structures.

General Terms
Design, Experimentation.

Keywords
VoiceXML, SIP, CPL, Parlay, CCXML

1. INTRODUCTION
The implementation of new mobile communication technologies
like UMTS and GPRS will have a strong impact on the Internet.
Today we already access the Internet not only from a PC, but also
via mobile phones, palmtops and other devices. New applications
combining several basic services like telephony, e-mail, web
browsing or instant messaging will emerge and include security
and Quality of Service mechanisms.

We developed such an Internet-based telecom application using
VoiceXML, which applies web development paradigms to voice
dialog development and the Session Initiation Protocol (SIP).
The usage of these two technologies leads to a certain conver-
gence between the Web and the sparsely existing Voice Web.
Using VoiceXML voice interfaces, people can easily access Web
resources, while SIP turns out to be the key technology for both
Internet telephony and the core network of UMTS.

1.1 THE PERSONAL VOICE CALL ASSIS-
TANT
The Personal Voice Call Assistant is an electronic secretary that
can perform actions similar to those of a human assistant. Auto-
matic Speech Recognition allows the user to interact with the
assistant using natural language commands. Textual information
extracted from a calendar is synthesized by a Text to Speech Syn-
thesizer and played to the user.
The owner of an assistant activates it, if he cannot or does not
want to answer calls. From this moment on all calls destined to
the owner will be redirected to his Personal Voice Call Assistant.
Let us consider the following scenario: user B, owner of a Per-
sonal Voice Call Assistant, has to attend a meeting and enables
his assistant during his absence, or configures his assistant to take
calls after the – say – third ring if he does not pick up the phone.
A colleague, user A, then calls him. A gets connected to B’s per-
sonal assistant. The system recognizes the caller by his address.
After establishing the connection, A can talk to B’s Personal
Voice Call Assistant. A can listen to a personalized message, left
for him by B, leave a message for B, access his calendar to find
out what he is currently doing (in a meeting till five o’clock),
listen to the list of the events B has planned for today, or ask
when B has free time.
If the caller (A) is not satisfied with the information the Personal
Voice Call Assistant provides, he can ask the assistant to connect
him with a colleague of B or any other person, defined by B in
advance. For that the existing call between A and the Voice Call
Assistant must be released and a new call between A and a col-
league of B is established (see chapter 4 for more details).
Figure 1 shows all scenarios between two users owning Personal
Voice Call Assistants. The users can either call each other (e.g.
user A@Platform calls user B@Platform) or call their own Voice
Call Assistants (e.g. user A@Platform calls assistant
A@VoiceBox).

Users calling Personal Voice Call Assistants are divided into
owners and non-owners. The distinction is made basing on the
address of the caller. The Personal Voice Call Assistant has dif-
ferent behavioral patterns for the owner and a non-owner.

In general the owner-user can

• leave a notice for a person who will (probably) call while the
owner is absent

• listen to messages left by other users (who called while the
owner was not available)

• access his own calendar and listen to information about all
the events or the next event, the owner has planned for today

• get connected to a person who has an entry in his address
book.

and any user can

• leave a message for the owner

• access the calendar and listen to filtered information about
public or restricted events

• get connected to a colleague of the owner

• hear notices the owner-user left for him

• access other VoiceXML applications (e.g. an interactive
holiday diary).

The existing assistant is a prototype demonstrating the power of
our architecture. It has been implemented with high level API’s
and provides a voice interface to dynamic data. The use of
VoiceXML and other standardized components make it easily
extensible.

1.2 ENABLING TECHNOLOGIES
VoiceXML is an XML-based language, designed for creating
audio dialogs. It specifies functional requirements on implementa-
tions of VoiceXML interpreters and is driven by the W3C. Ver-
sion 2.0 has the status of a last call working draft. Basic concepts
of VoiceXML are dialogs, prompts and grammars. Dialogs are the
basic building blocks that consist of forms, which are to be filled.
Prompts consist of prerecorded audio or synthesized speech.

Grammars determine what a user can say to fill in the fields of a
form.[6]

SIP (Session Initiation Protocol) is a signaling protocol for
Internet conferencing, telephony, presence, event notification and
instant messaging. SIP was developed within the IETF MMUSIC
(Multiparty Multimedia Session Control) working group, with
work proceeding since September 1999 in the IETF SIP working
group.[3]

CPL (Call Processing Language) is a simple XML-based lan-
guage that allows an end-user to create scripts, which control the
behavior of incoming and outgoing calls for the user. CPL pro-
vides functionality such as call redirection and call blocking.
Every CPL script is a tree of statements, which may contain forks
but no loops, since scripts potentially run on mission critical real
time telecom switches. CPL is specified by the IETF.

Parlay provides APIs for accessing telecom services and network
resources, defined in UML, OMG IDL and in future also WSDL
formats. The Parlay APIs are jointly standardized by the Parlay
Consortium, ETSI and 3GPP [1].

2. ARCHITECTURE
2.1 Service Platform
The Service Platform developed within the research project A1 is
based on the Parlay/OSA model and CORBA Components model.
The service platform can serve as a basis for an application ser-
vice provider or a network operator to host applications for ad-
vanced call management, web conferencing, notification in case
of traffic jams, etc.
The platform consists (amongst others) of the following compo-
nents:
A SIP Proxy Server based on SIP version RFC2543 which im-
plements the Parlay Generic Call Control Service. Other applica-
tions can use this service to access the network. The Generic Call
Control Service provides a single point of access to the network,
masking the network’s complexity.
The CPL Application interprets CPL scripts written by the end-
user and stored in a database in the Service Platform, in order to
control the behavior of incoming and outgoing calls for the user.
It registers with the Generic Call Control Service to be able to
gain control of all calls for users who provide a CPL script.
The Call Setup Service is a high level API that can be used to
establish calls via the underlying network. It simplifies the Parlay
Call Control API. Its API is proprietary, however. It, too, uses the
Generic Call Control Service for accessing the network.
Thus, the CPL Application and the Call Setup Service use the
Parlay Generic Call Control Service as an interface to the net-
work.
The Address Book Service allows the creation and use of personal
address books. It is used for call screening, that is to verify if the
caller is known and in consequence to filter the information and
adapt or even completely modify the dialogue. In addition it pro-
vides the VoiceXML grammar used in the page which connects
the caller to a 3rd party (see chapter 4 for more detail).
The Calendar Service performs the connection to an external
calendar and generates natural language prompts, in VoiceXML
compliant format, out of the calendar data. Calendar data is dy-
namic, since calendar events can be changing constantly (every

Figure 1. Possible Usage Scenarios

S IP :A @ P F S IP :B @ P F S IP :B @ V B

C A L L T R A N S F E R
L E A V E A M E S S AG E

A C C E S S T H E C A L E N D A R
G E T C O N N E C T E D T O A C O L L E A G U E

B Y E

M e s s a g e
fro m A

C A L L
L E A V E A N O T IC E

A C C E S S T H E C A L E N D AR
G E T C O N N E C T E D T O S O M E B O D Y

B Y E

S IP :A @ V B

C AL L T R A N S F E R
H E AR N O T IC E S

B Y E

N o tic e
fo r B

C A L L

B Y E
H E A R M E S S A G E S

hour or day). These prompts are played to the caller by the Text
to Speech system of the VoiceXML platform.
The VoiceXML Data Management Service manages users’
VoiceXML files and audio messages which it stores in a database.
This service is part of an effort to centralize the platform data
storage instead of keeping data on several web servers.
We use this service to get a list of messages left for the owner-
user. Out of this list we generate a dynamic VoiceXML prompt
that informs the user who has left messages. After that it is possi-
ble to listen to the messages of a specific caller.
To record messages the <RECORD> tag in VoiceXML is used
and the recordings are posted to the Web Server as binary multi-
part/form-data. The VoiceXML Data Management Service stores
the recorded messages in the database.
All services are currently implemented as Parlay services (using
CORBA on the remote access layer) but could also be realized as
web services using SOAP over HTTP.

2.2 External components
The external components are integrated with the service platform:
A VoiceXML Platform consisting of a TTS (Text to Speech)
server, an ASR (Automatic Speech Recognition) system and a
VoiceXML Browser.
A Web Server and a Java Servlet Container constitute an interface
between the VoiceXML Platform and the Service Platform.
The Calendar allows owner-users to store events. Every event is
characterized by the parameters starting and ending time, title and
location.
The combination of services and external components enables the
Personal Voice Call Assistant.

3. DYNAMIC VOICEXML GENERATION
In general there are two different types of domains for which one
can generate dynamic content. The domain is either open (e.g. the
Web) or closed (e.g. a calendar). The problem of generating dy-
namic VoiceXML dialogues for open domains is that we only
know the structure of the documents, not the contents. (We only
know that it is HTML or XML structured data). The structure of
the content could be defined using the Resource Description
Framework defined by W3C’s Semantic Web Activity group. [2]
If we have a closed domain data structure like a calendar on the
other hand, we know the content structure of the domain. Al-
though the domain is closed it is dynamic, i.e. changes over time,
so that we need dynamic VoiceXML generation to build a voice
interface for it.
Accessing the Calendar
A calendar event is characterized by its starting and ending time,
its title and location, its duration, which can be normal (some
hours, i.e. starts and ends on the same day), long (2 days and
more) or whole day and its visibility, which can be public, re-
stricted or private.
Registered users and the owner-user have separate interfaces for
accessing the calendar, i.e. they are supposed to use different sets
of operations (event request types):
The owner-user can:

- get list of events for the day;
- find out their next event today.

The registered user can:
- get the list of events of the owner-user for the day;
- find out the current event of the owner-user;
- and find out when the owner-user is available.

Both interfaces could be extended if necessary.

Figure 2. System Architecture

h ttp

S IP U s er A g en t A

S IP (s ig n allin g), R T P (d ata)

SIP, R
TP

S IP

V o ic e X M L P la tfo rm

S ervlet C on ta in er

S IP U s er A g en t

6 b . IN V IT E A

7 . aud io c on n ec tion

A d d res s B ook S ervic e

5.
 c

re
at

e
3d

 p
ar

ty
 c

al
l

S IP U s er A g en t C

SI
P,

 R
TP6 a. IN V IT E C

P arlay C all C on tro l

V oic eX M L D ata
M an ag em en t S ervic e

C alen d ar S ervic e

2 . aud io c on n ec tion

C O R B A , P arlay

1 a. IN V IT E B

4a
. e

xi
t

3. forw
ard

1 b . IN V IT E A s s is tan t

3d
 p

ar
ty

 c
al

l

4 b . B Y E

in c o m in g c a ll

S IP P roxy
G en eric C all C on tro l S ervic e

C P L In terp reter C all S etu p S ervic e

S e rv le ts

The dynamic VoiceXML prompt generation process flows as
following: the Calendar Service accepts the user request, connects
to the calendar, authorizes itself as owner-user, using his user
identifier (uid) and password and obtains structured data from the
calendar. At this point the Calendar Parser (one of the modules of
the Calendar Service) is invoked and an extraction process begins:
necessary information, such as starting and ending event time,
event title and event location is extracted from the data obtained

from the calendar earlier. Then the appropriate template is found
and fed with the extracted data, which fills up blank spaces in the
template. Thus, the Calendar Parser is fed with raw calendar data
and is responsible for generation of VoiceXML prompts out of it
Let’s consider the extraction process in more details.
Extraction can be either iterative or non-iterative. Iterative extrac-
tion takes place if the event response contains more than one
event, otherwise extraction is non-iterative. In the iterative extrac-
tion case the extraction cycles are repeated as many times as there
are events in the event response. Non-iterative extraction means
that there’s a single extraction cycle since there’s only one event
in the event response.
In the iterative extraction case the final VoiceXML prompt is
constructed from multiple templates found and filled during every
iteration cycle and appended all together afterwards.
Every iteration cycle consists of three steps:

(1) extracting dynamic bits of information from the event
response;

(2) finding a template, walking through the decision tree
(see Figure 3) guided by the given request type, event
duration, iteration number (first or next) and user access
rights;

(3) replacing the template slots by the calendar event
values, using regular expressions.

Below we provide more details on each of the three steps.

Step 1.
In every iteration cycle the extract() method of the Extractor class
is called. During every cycle dynamic event data such as title,
location, start and end time of the event is obtained in the correct
format. For different request types various extractor
implementations are instantiated. Eeach concrete child class of
the Extractor should decide what kind of information and in

which format to return. The decision depends on the event
duration type.
For example, for normal events we need the short format of start
and end time: just hours and minutes. Since the request always
comes for today we do not need to specify year, month and day.
For long events, however it is necessary to provide the long
format – day, month, year.
Examples:
Normal event: Meeting from 10.00 till 13.00 at office
Long event: Vacation from 16/07/2002 till 4/08/2002
Step 2.
During every iteration cycle the template path is constructed
based on the following criteria: event duration (long, normal,
whole day), user access rights (for non-owners we have to filter
out private events and hide particular information from restricted
events), request type (getFreeSlots, getNextEvent, etc.) and
iteration number (first or next iteration). Every leaf of the XML
tree reached after all the decisions is a template. We need a
substantial amount of the templates to provide natural sounding
prompts for the various use cases.
Here are some examples of templates:
Template path:owner/iterative/getEventsForDay/
first-iteration/normal/
Template: Today you have [title] from [start_time] till [end_time]
[location]
Template path: non-owner/non-iterative/getCurrentEvent/
restricted/normal/

Figure 3. Template tree

root

owner non-owner

iterative non-iterative non-iterativeiterative

GetEventsForToday GetNextEventToday GetEventsForToday getFreeSlots getCurrentEvent

first iteration next iteration first iteration next iteration first iteration next iteration

restricted public restricted public restricted public restricted public restricted public

long normal

whole day

long normal

whole day

longnormal

whole day

normal long

whole day

longnormal

whole day

Template: Now the callee is restricted and will be available at
[end_time]

Step 3.
Content inside square brackets is to be replaced by dynamic
calendar data.
If the prompt creation is iterative the extraction result is appended
to the already constructed prompt. The prompt that is produced
during the iteration cycle is included in a VoiceXML page and
loaded by the VoiceXML browser.
We believe that this extraction method is general enough to be
used in similar contexts, where one has a closed, yet dynamic data
structure and wants to develop a voice interface for it.

4. VOICEXML, SIP AND CCXML
As opposed to VoiceXML, which allows transferring calls from
the voice application to a different terminal and back to the
VoiceXML page, SIP does not support this behavior1. In order to
simulate VoiceXML’s transfer to some address, we have to termi-
nate the call and create a new call to the requested address from
outside the VoiceXML pages. This is currently done by our serv-
lets via the Call Setup Service. We call this a “third party call” as
a third party (the servlet) establishes a connection between two
parties.
On Figure 2 we can see the different steps of this 3rd party call
scenario:
In steps 1 and 2 the user A calls user B. If B is not available and
his Personal Voice Call Assistant is active, the caller gets con-
nected to the assistant (step 1). The SIP Proxy handles the net-
work call and notifies the CPL application about an incoming
call. The call is routed according to a CPL script belonging to B.
The CPL script contains information concerning where to route
calls for B. In our scenario the CPL script redirects all the incom-
ing calls to the VoiceXML platform. More complex scenarios
(e.g. call forwarding on busy, depending on caller, time of day
etc.) are possible and will be generally used. An audio connection
between A’s User Agent and the Voice Platform is established
(step 2); the caller enters a voice dialog with B’s Personal Voice
Call Assistant and can from now on interact with the system.
Let us assume now that A wants to be redirected to a colleague
(user C) of B. All he has to do is say the appropriate command2.
The grammar accepts sentences like “I want to talk to somebody”
or “I want to get connected to a colleague”.
If this command is recognized an intermediate VoiceXML page is
loaded that contains a SIP address and immediately submits the
SIP address to a Servlet. It then loads yet another VoiceXML
page containing an <EXIT> tag (step 4a).
In steps 4b the voice browser sends a SIP “BYE” message to A’s
User Agent, which causes the call between the caller and Voice
Platform to be released.
The Servlet that produced the exit page initiates the 3rd party call
with the desired user in step 5. To do this, it needs an instance of
the Call Setup Service.
In steps 6a-6b the SIP Proxy sends SIP “INVITE” messages to
the colleague of the owner-user and to the caller. If both users

1 At least not until the refer method is supported.
2 Of course the assistant informs the caller of this possibility.

accept the incoming call the audio connection between the parties
is established (step 7).
A disadvantage of using VoiceXML and SIP in separated inter-
preter contexts is that the VoiceXML application must exit when
the new call is initiated. If the new call attempt fails, the applica-
tion cannot re-enter its VoiceXML part. To get back to the voice
dialog the caller would have to repeat the original call.
For asynchronous notification between the VoiceXML and call
control contexts one can use extended call control languages like
CCXML (Call Control eXtensible Markup Language) which
specifies an event handling mechanism [5].

5. CONCLUSION
This paper has shown how VoiceXML and other standardized
technologies can be used to create applications for next genera-
tion telecom networks.
We introduced an extraction method that can be used to build
voice interfaces for closed domain, dynamic data structures.
We also presented an extensible and scalable architecture that
uses high level and standardized interfaces and languages (Parlay,
VoiceXML, CPL). Looking beyond the call assistant we de-
scribed, this architecture allows easy creation of various applica-
tions and deployment of multiple scenarios basing on combina-
tion of the above-mentioned generic elements.
The integration of CCXML or a similar call control language will
permit implementing even more functionality in a standardized,
easy to understand scripting interface.

6. ACKNOWLEDGMENTS
This work was supported within the Austrian competence center
program Kplus.3

7. REFERENCES
[1] Parlay APIs 2.1, The Parlay Group (AT&T, BT, Cisco, IBM

& others), June 2000, http://www.parlay.org

[2] Resource Description Framework, http://www.w3.org/RDF

[3] Schulzrinne/Schooler/Rosenberg/Handley, “SIP: Session
Initiation Protocol”, IETF Draft, ietf-sip-rfc2543bis-02.ps,
November 2000

[4] Sparks R., The SIP Refer Method, Internet-Draft (expires
January 15, 2003), July 2002 http://www.ietf.org/internet-
drafts/draft-ietf-sip-refer-06.txt

[5] W3C: Voice Browser Call Control : CCXML Version 1.0,
Working Draft 11 October 2002,
http://www.w3.org/TR/ccxml

[6] W3C: VoiceXML Version 2.0, Working Draft, 24 April
2002, http://www.w3.org/TR/voicexml20/

[7] Zeiss Joachim, “Cross-domain Service Deployment with
OSA/Parlay and CORBA components”, FTW 2002

[8] Niklfeld Georg, Pucher Michael, Finan Robert, Architecture
for adaptive multimodal dialog systems based on
VoiceXML, Eurospeech 2001, Aalborg, Denmark

3 Parts of the content of this paper are presented at the poster ses-

sion of the www2003 conference in Budapest.

