
 1

Load Sharing for Mobile Streaming Services using LIN6

Hui Tiong Khoo
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, Japan 630-0101
jonath-k@is.aist-nara.ac.jp

Masahiro Ishiyama

Communication Platform Laboratory, R&D Center,
Toshiba Corporation

masahiro@isl.rdc.toshiba.co.jp

Mitsunobu Kunishi
Keio University, Japan
kunishi@tokoro-lab.org

Hideki Sunahara
Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, Japan 630-0101
suna@wide.ad.jp

Abstract - We envisage that most of the subway train
services or roadways in the near future will provide
wireless coverage to commuters. This will drive the need
for content providers to offer seamless mobile web
services like streaming video etc. for mobile computers
and handheld devices. We see a huge potential in
providing the next generation services based on IPv6 as
the larger pool of network addresses provides for real
end-to-end communications. Although this can be
achieved using Mobile IPv6 (MIPv6), it has several
features which can be improved upon. Location
Independent Network Architecture for IPv6 (LIN6) has
been proposed as an alternative. The advantages include
lesser packet overheads and the ability to house its
Mapping Agents across different networks thus avoiding
a single point of failure when the home network goes
down. In this paper, we propose a load sharing
architecture of a server pool providing mobile streaming
services using LIN6 addressing. We address the issue of
the latency between the mobile nodes and the Mapping
Agents. We also show how we can allocate the required
bandwidth to the end-users with their subscribed level of
service. Finally, we present a comparative measurement
study between MIPv6 and LIN6 and showed that LIN6 is
indeed better in terms of data transfer performance.

Keywords
Mobile Streaming Services, Load Sharing

I. INTRODUCTION
The proliferation of PDAs, cellular phones and mobile

notebooks has propelled the demand for more mobile web
services like online news clip streaming from CNN etc.
The collapse of the Internet bubble may have slowed the
amount of investments pouring into this area of
development, but it cannot halt the growth in the demand
for such services. On one end, we have the cellular phones
and PDA manufacturers churning out faster and better
products with wireless and Bluetooth connections. On the
other end of the spectrum, we have the rapidly burgeoning

cellular phone users growing by the day. It has become a
necessity for telecommunication companies to convert their
circuit switch network infrastructure to a packet switch
network infrastructure for them to save cost (as data traffic
outstrips voice traffic) and to leverage on the Internet to
provide more value added services to their customers.
However, the take up rate of new cellular phones and
wireless PDA also depends on the availability of interesting
content for the end users. Thus, sooner or later, we will see
the growth of companies providing mobile web services.

We are concerned with the continuing availability of
such web services even when we are moving across
networks. An example is watching a news video clip in the
subways via a wireless connection or making a call using
VoIP. For streaming applications and services, it is a must
that we use a mobile network protocol to allow the
streaming to continue as we move across different network
segments. Mobile IPv6 (MIPv6) [2] is a mobile protocol
designed for macro-mobility in an IPv6 environment.
However MIPv6 has additional packet overheads, which
could be extremely costly if the average packet size is
small.

LIN6 [1] addresses are similar to the normal IPv6
addresses and we have Mapping Agents (MA) which are
synonymous to the Home Agents of MIPv6.

In this paper, we outline an architecture based on LIN6
addressing which provides for load sharing amongst
distributed servers and bandwidth allocation depending on
the subscribed level of service by the end users. The
performances of the mobile nodes can also be monitored
from a central location which will allow the administrator
to detect any network troubles.

The rest of the paper is structured as follows. Section II
provides an introduction of LIN6. Section III describes our
architecture. Section IV talks about implementation details.
Section V presents a comparison of the measurements we
took. Section VI contains the conclusions and Section VII
describes our future work.

 2

II. LIN6
A. MIPv6 and LIN6

From a protocol design point of view, any mobile
protocol will need to do address mapping at some point of
time. MIPv6 does this at the receiving node. Thus the
sending node has to send the necessary information across
the network. This is why MIPv6 needs the Home Address
Extension Header (24 bytes) and Type 2 Routing Header
(20 bytes). LIN6 does the mapping at both the sending
node and receiving node. By knowing beforehand the
format of the original address, it saves the need to send the
extra information along with the packet. The obvious
advantage is a smaller packet size. However, in order for
LIN6 kind of mobile protocol to work, we need a way of
differentiating the address before we can do the mapping.
The protocol designers for LIN6 introduce the LIN6 prefix
and LIN6 Node ID to help differentiate between a LIN6
address and a normal IPv6 address.

B. LIN6 Address

A LIN6 address, similar to an IPv6 address, is divided
into two portions – an upper 64-bit fixed LIN6 prefix and a
lower 64-bit Node ID. The LIN6 prefix is a fixed non-
routable value of 3ffe:501:1830:1999. The LIN6 Node ID
conforms to the EUI-64 format [11] and the upper 24 bits
of the Node ID is represented by a fixed Organizationally
Unique Identifier (OUI) assigned by IEEE. The OUI value
is 00:01:4a. A LIN6 locator is made up of an upper 64 bits
routable network prefix and a lower 64 bits Node ID.
Mobility is achieved by mapping the LIN6 address to the
LIN6 locator before the packet leaves the node.

We used the global bit in the Node ID to differentiate
between a stationary and a mobile node. A stationary node
uses its current network prefix as the upper 64 bits and the
Node ID has its global bit set to 0. An example of a
stationary node LIN6 address is
3ffe:501:808:4001:1:4a00::1. An example of a mobile node
LIN6 address is 3ffe:501:1830:1999:201:4a00::2. Note that
the upper 24 bits for a stationary Node ID is 00:01:4a and
that for mobile Node ID is 02:01:4a.

At the application layer, LIN6 addresses are used for
communication between applications (see Fig 1). The LIN6
addresses are mapped onto the LIN6 locators before the
packet is sent from the node. On the receiving end, the
LIN6 locators are mapped back into a LIN6 address before
the packet is received by the application.

As you can see, we need the LIN6 prefix so that we can
have a consistent address that applications can use to
communicate between one another as they move across
different networks. We also need the OUI value to help us
differentiate the addresses for the mapping of LIN6
locators to LIN6 addresses.

III. LIN6 Architecture
Any mobile node that wants to use LIN6 needs to be

configured with a LIN6 address first. The user will get his
unique Node ID from the administrator and he needs to run
a resolution daemon (lin6resolvd) to register his node with
a MA. The mobile node will report its current routable
address together with its Node ID to the MA (see Fig 2).
Note that in Fig 2, LIN6 Node 2 gets its MA address in the
same manner as LIN6 Node 1. The DNS is not shown in
the figure.

The LIN6 address is configured in the DNS by the
administrator beforehand. The LIN6 address remains
consistent even when the nodes move. The LIN6 locator is
the one that changes.

The MA is located by first sending a query to the DNS
for the AAAA record. DNS will reply with a LIN6 address
which is non-routable. The daemon, lin6resolvd, will try
with a second query to the DNS for the TXT record of that
LIN6 address; this is similar to the reverse query. DNS will
reply with the MA address in the TXT record.

For MIPv6, there is no need to query twice for the
Home Agent (HA) because the HA is a router located in
the Home Network (HN). There can be multiple HAs, but
all the HAs must be located in the HN. This is not good
because if the HN goes down when the Mobile Node (MN)
is in a Foreign Network (FN), there is no way to
communicate with the MN. To overcome this problem,
LIN6 protocol introduces the concept of distributed MAs.
To locate the MA in a reliable and efficient manner, LIN6
propose to use DNS reverse query.

Network Prefix Interface ID

LIN6 Prefix
(Non-routable)

LIN6 Node ID

64 bits 64 bits

64 bits 24 bits
OUI

40 bits

IPv6 address

IPv6
address

LIN6
Address

Network Prefix
(routable)

LIN6 Node IDLIN6
Locator

Fig 1. LIN6 Addressing Method

When two LIN6 nodes want to communicate with each
other, they will check their own Mapping Table (see Fig 3)
(synonymous with the Binding Cache in MIPv6), if the
entry cannot be found within the table, the mobile node
will then query the MA for the record of the opposing node.
Note that Node 1 and 2 can use different MAs.

 3

Mapping
Agent
(MA)

DNS

linux1
(lin6resolvd)
1:4a00::1

linux2
(lin6resolvd)
1::4a00::2

MA addr

1.Registers 1.
Re
gi
st
er
s

(
2
b
)

(
2
a
)

(
2
d
)

(
2
c
)

3.Get MT record of

linux2

2a. Where is linux2 ?
2b. linux2 is at 3ffe:501:1830:1999:201:4a00::2 (LIN6 address)
2c. Give me TXT record for the LIN6 address
2d. Reply with MA addr

LIN6 Node 1 LIN6 Node 2

4. Sends packet to linux2

Fig 2. LIN6 Architecture

3ffe:501:1830:1999 201:4a00::1

64 bits 64 bits

LIN6 Address

201:4a00::1
Mapping Table

(kernel cache or
in Mapping Agent)

Extract Node ID

3ffe:501:808:4001

Query

Reply

+

Current Prefix

3ffe:501:808:4001

201:4a00::1
Global IPv6

address
Fig 3. LIN6 Address Mapping

The LIN6 nodes should be administer by a central

figure to avoid clashing of Node IDs. This is a major
drawback as other entities or organizations have to request
their Node ID from a central authority. However, looking
from another perspective, there is no need to use the same
LIN6 prefix or OUI value at all. Organizations can
implement their very own LIN6-like mobile network
without any outside interference.

IV. PROPOSED ARCHITECTURE
A. Load Sharing Server

We proposed an architecture consisting of a pool of
servers that are distributed across a wide area. The aim is to
serve streaming applications. Currently, most content
servers redirect users’ request to the nearest server with the
cached contents. However, the servers will not be able to
maintain the connection for streaming if the user’s network
address changes when he moves into a new area. A likely
example is a different network segment for each major
train station. Assuming that the user is redirected to a
nearby server using MIPv6, he/she still needs to content
with the overheads of MIPv6 protocol. Based on the
respective subscription rates and schemes, the cost for the
packet overheads can be quite hefty.

We consider two different scenarios using LIN6. We
can either use multiple LIN6 addresses or just a single
address for a pool of servers across a wide area.

For the first scenario, we can have load sharing
capabilities by redirecting the user to the nearest server
when the user logins through a website. However, we will
not be able to address this mobile web service using the
same URL for all the servers. The website will be
responsible for making an intelligent choice of redirecting
the user to the nearest URL. This is the current service
model for many websites.

For the second scenario, the choice of selecting the
nearest server is made only during address resolution. This
makes it possible for the user to address a whole server
pool using a single URL. Thus, we favor the second
scenario as our solution. Note that this requires
modifications on the original LIN6 model. We will cover
the details of the various changes in Section IV.

In Section II.B, we mentioned that the mobile node
needs to make two queries to find out the location of the
MA. We modify this name resolution portion to
accommodate our load sharing server into the LIN6
architecture. Instead of returning the MA address in the
TXT record, the DNS will now reply with the location of
the load sharing server. The DNS can also provide more
than one locations for the load sharing server so as to
prevent a single point of failure.

We denote each content server as Si, MA as MAi and
the load sharing server as LS. Each MAi can be housed in
different or the same boxes as Si. In practice, both the MA
and the content server S exist in the same box. Note that
the content server S is a LIN6 node. During setup, the
daemon for MA (i.e. lin6agentd) will have to be run first.
Each MAi will register itself with one of the LS by sending
a heartbeat. The MAs can get the address of the LS servers
from the DNS using reverse query. After all the MAs have
registered themselves, LS will have a list of MAs that are
not associated with any content servers yet. Each Si will
then run their name resolution daemon (i.e. lin6resolvd),
this will query the LS for the most appropriate MA. The Si
will register with the nearest MAi as we use RTT as the
yardstick. Assuming that the content servers are distributed
far away from one another, they will register with the MA
running in the same box.

 We modified the daemon (lin6resolvd) such that it will
use the same MAi until the Si is rebooted. Hence, now we
have a tight coupling between the MAi and Si. Since all the
Si uses the same LIN6 addresses, we cannot allow any Si to
re-register itself with another MAi after the initial
registration as LS selects MA based on the assumption that
MA is matched to a content server S on a one-to-one
relationship. After registration, the MA will send periodic
heartbeat signal to the LS to indicate that it is still alive. If

 4

the LS did not receive any heartbeat from a particular MA
for a certain period, it will mark the MA as inactive.

Assume that we now have a mobile node MN that
wishes to use the mobile web service. Before connection,
the MN must configure its LIN6 address using its Node ID.
This Node ID is assigned by the administrator and it must
match the record in the database. Likewise, the MN will
query the DNS and get the address of the LS. The LS will
reply the MN with the most appropriate MAi to use. When
the MN tries to register with the MA, the MA will check
the database for records. No registration is allowed if the
Node ID of MN is not in the database (see Fig 4).

S1

MA1

LS2

End
User

(1:4a00:0:1)

SnS2

User
Database

MA2 MAn

heartbeat

heartbeat he
ar
tb
ea
t

. . .

. . .
.
.
.

.

.

.

.

.

.

1.
 G
iv
e
me

MA

3
.
no
de
 i
d
1:
4a
00
::
1

i
s
pr
em
iu
m
us
er

2
.
Re
pl
y

ne
ar
es
t
MA

a
dd
r

LS1
synchronize

MN

Fig 4. Load Sharing Architecture using LIN6

When MA queries the database for records, it also
retrieves the user’s subscribed level of service. It then uses
the Linux commands ipchains [6] to tag IPv6 packets
according to the Node ID and tc [3] (Linux Traffic Control)
to control the bandwidth of the outgoing stream for the
packets.

B. Load Sharing Heuristics
The LS carries a load index value for each of the server.

This value is calculated whenever a MN connects to the
MA. Assume that we have 2 classes of users, normal and
premium.

load[i]= normal[i]x wt_normal+premium[i]x wt_premium
(1)

where normal[i] and premium[i] indicates the number of
connections.

The load index value will help the LS to determine whether
a server S is capable of satisfying the users subscribed level
of service before it assigns the user to S.

The LS will, however, based its decision of choosing
MA on the smallest round trip time (RTT) from the MAs to
the MN. Since the MAs are tightly coupled to the servers,
we can reduce an originally bipartite matching problem to a
single dimensional one (i.e. instead of finding the MA with

the shortest distance between point A and B, we only need
to be concerned with the distance of the MA to point B).
The MA that gives the smallest RTT is stored against a
value of the network prefix of MN in the LS memory. This
will be used to reply for future queries. We associate each
entry with a timeout value so that this table can adjust to
the dynamic conditions of the network.

Table 1: (MA Table) Time will be reset every time a
heartbeat is received. MA is marked as inactive when timer
runs out. Entry is not deleted.

MA Address Load Index Timer

MA1 addr 100 119

MA2 addr 80 102

Table 2: This is a cache history of the answers based on our
heuristics. This helps to cut down the number of queries if
they are coming from the same network prefix. Entry is
deleted when timer runs out.

Network prefix MA addr Timer

3ffe:501:808:4001 3ffe:501:… 120

2001:200:0:3000 3ffe:501:… 101

The algorithm for replying a query with the nearest MA is
as follows:

1. When the LS received a query, it first looks at the
network prefix of the query. This can be done by using
getpeername, a function call in c language.

2. It uses the Node ID of the user to query for the user’s
level of service.

3. LS looks up the network prefix in Table 2 and replies
with the MA address if the network prefix is found.

4. LS will increment the Load Index accordingly. It will
also notify the MA about the Node ID and the level of
service. MA will use this information and ask Server S
to tag the packets and set up the necessary bandwidth.

5. If the LS fails to find a cached answer, it will has to go
through the heuristic decision procedure.

Heuristic Decision Procedure

1. Get network prefix and Node ID of peer-connection.

2. Get level of service using Node ID.

3. Look up MA Table (see Table 1). Choose those MA
who are still alive and Load Index is still sufficient to
support the level of service we obtained in 2. We
assign a global threshold value (Thload) which we use
to compare with the load index so that we can
distribute the load equally among the servers.

 5

4. Request MA to do a RTT to our user’s address.

5. Reply the user with the MA that has the lowest RTT.

C. Comparison with Linux Virtual Server
Our design resembles the Linux Virtual Server (LVS)

[8] to a certain degree, but it has some comparative
advantages over LVS.

LVS uses a virtual IP to represent a pool of servers and
round robin among them to server incoming requests. The
director server, the central figure in LVS, forwards the
incoming request to a prospective server within the pool.
The director server can be a single point of failure and the
suggested remedy is to prepare a backup director server to
check for heartbeats from the main director server via a
serial cable. The backup director server will attempt to take
over the role when it does not hear the heartbeats through
gratuitous ARP.

Although LVS can be configured to use a server cluster
over the wide area, it does so via IP tunneling which
introduces packet overheads (see Fig 5). Furthermore, the
director server must be alive throughout the whole lifetime
of a single connection. The LVS cannot leverage on the
proximity advantage of their servers to the client since all
packets have to be redirected from the director. Finally, the
director server is a stateful server. All ongoing connection
breaks if the director server crashes.

For our design, once the LS server provides the client
with a prospective MA server, the client will only need that
MA to help maintain its connection. Since the MA is only
responsible for mapping addresses, most of the
communication happens directly between the client and the
server as both keeps a copy of the mapping relationship
within their cache (just like Binding Cache). The client will
only need to query the MA again if the mapping in the
cache runs obsolete.

The only caveat here is that if it happens that the MA
is down for some reasons, the client will also loose its
connection to the server S when the client’s Mapping Table
entry is deleted.

The LS is also stateless compare to the director server.
In cases when the LS crashed, concurrent connections will
not be affected. The disadvantage is that the loss of the
connection information will affect the decision making
based on the heuristics, but we synchronize the table of a
LS server which is rebooted with neighboring LS servers to
achieve consistency.

D. Inter-LS servers Communications
It is evident from the above description that the LS server
is a single point of failure. To overcome this problem, we
introduced a few other LS servers to serve as backups. We
accomplish this by adding more entries to the DNS AAAA
records. This list of LS servers IPv6 addresses are kept in a
configuration file which is read by the LS

Server A

Internet
network 1

Server B

network 2

Server C

network 3

LVS

service
address

User

1. Visit LVS

2.
 I
P
Tu
nn
el
 t
o
Se
rv
er
 C

3. C replies to
User

Fig 5. LVS tunneling over wide area. User has tunneling

overheads and little proximity advantage.

servers during initialization time. The servers may not all
run at the same time, hence a LS server will first keep a list
of addresses and attempt to establish connections to the
neighboring servers. The server will retry this at a regular
interval until it reaches a maximum number of tries.

Each LS server will be connected to (n-1) neighboring
LS servers. Each MA server can register with any LS
server. Each MA will only be associated with one LS
server, but the LS server will relay the heartbeat to the
neighboring LS servers upon receiving it. The MA must
send a regular heartbeat signal to the LS server. If the LS
server fails, the MA must search for a new LS server by re-
querying the DNS server. On the other hand, if the LS
server fails to receive a heartbeat from the MA, it will mark
the MA entry in the table as inactive. This will prevent the
LS server from giving the inactive MA as a reply to a query
from the end users.

When a LS server receives a request for MA from the
end users, it will first check its own history table for a reply.
We match a reply according to the network prefix of the
user. The reply will remain valid for a certain lifetime
before we delete it away from the cache. We introduce this
feature so that we would not waste bandwidth on extra
RTT messaging. If a reply exists, we will use this cached
reply. If we cannot find an answer based on the user's
network prefix, we will have to use our heuristics to get the
best answer.

First, we will look into the MA table (see Table 1) in
the LS server. The MA table contains both active and
inactive MA entries. We will send a RTT request message
to all the entries that are still active and have a load index
below threshold. The MA will then calculate the average of
four RTT timings to the end user's node and return the
result to the LS server. The LS server will then record the
reply with the lowest RTT timings in the history table. This
answer will be propagated to the rest of the LS servers.

 6

We define 8 types of messages which we are using for
LS servers. Messages 1 to 5 are self explanatory. We use
message 6 and 7 to relay updates to neighboring LS servers.
As for message 8, we use it to synchronize LS server. We
mentioned earlier that the LS server will attempt to connect
to its neighboring servers during startup. The first message
it sends will be LSS_SYNC_REQUEST. This will help to
ensure synchronization of tables for all the LS servers. In
practice, we would expect to have no more than three LS
servers. Each table is also limited to a size of 64 (implying
that LS can hold up to 64 MA records).

Table 3: Messaging for LS servers
Server Message Type Value

LSS_HEARTBEAT 0x01
LSS_RTT_REQUEST 0x02

MA to LS

LSS_RTT_REPLY 0x03
LSS_MA_REQUEST 0x04 User to LS
LSS_MA_REPLY 0x05
LSS_MATBL_UPDATE 0x06
LSS_ANSTBL_UPDATE 0x07

Between
LS

LSS_SYNC_REQUEST 0x08

V. IMPLEMENTATIONS
A. Implementations of LIN6 protocol

The LIN6 protocol has been ported from NetBSD 1.5
to Linux kernel 2.4.20. LIN6 is modeled after the Netlink
protocol and the LIN6 socket is a message passing system
between the kernel and userspace. We used the IPv6 kernel
stack from the USAGI project [9] and keep the Mapping
Table for LIN6 in the kernel. We created a pseudo device
(linsix0) to hook the LIN6 address and be responsible for
sending Router Solicitation (RS) packets when the MN
reattaches itself to a network. Under normal circumstances,
the MN will detect the change of network when it receives
a new Router Advertisement (RA) packet from the router.
We also define a signal to be sent from the kernel to all the
listening LIN6 sockets if a new network prefix is
advertised. lin6resolvd also keeps tab on the NETLINK
messages from the kernel (see Fig 6).

We used NETFILTER hooks for IPv6 to modify the
incoming and outgoing packets, otherwise known as
sk_buff data structures in Linux. When the node has
switched network, the new network prefix will be
registered in the Mapping Table by sending a message
from the userspace to the kernel. If the node tries to
communicate with another LIN6 node, the kernel will send
a message to the userspace daemon, the daemon will then
send a message to the registered MA requesting for the
Mapping Entry of the other LIN6 node. Once it gets the
reply, it will copy it to the kernel layer and thus the
outgoing packets can map their LIN6 addresses to real
network addresses. All the actual address mappings are
done in the NETFILTER hooks (see Fig 7). We use

NETFILTER hooks so that we can organize our codes
better and also this will allow us to create our own access
list in our extension work.

userspace

PF_LIN6PF_NETLINK

Routing
Table

LIN6 states
and Mapping

Table

Router
Advertisements

packets

Router
Solicitations

packets

lin6resolvd

linsix0
(pseudo
device)

lin6agentd

kernel

Linux node with LIN6 enabled kernel

Mapping
Agent(MA)

Fig 6. LIN6 implementation on Linux

netfilter
hooks

application
layer

both src and dst are LIN6 addresses

mapping from LIN6 addresses to LIN6 locators

link
layer

kernelspace

user space

both src and dst are LIN6 addresses

sending receiving

both src and dst are LIN6 locators both src and dst are LIN6 locators

mapping from LIN6 locators to LIN6 addresses

Fig 7. Address Mapping in NETFILTER hooks

B. LIN6 userspace daemons

We need 2 daemons to run the LIN6 protocol. The
daemon lin6resolvd is required on the mobile nodes and
lin6agentd is for Mapping Agent. Both are ported over to
Linux, most of the codes remain similar except for the
route handling portion.

We added route handling calls which listens for
RT_NETLINK messages from the kernels and ioctl calls to
the kernel to modify routes.

C. LS server
LS server is multi-threaded and manages two tables (see Table 1
and Table 2) and three sets of connections. It keeps a list of its
neighboring LS servers and connects to them to help synchronize
the two tables. It also listens on a port for heartbeats and on
another for queries from users asking for MA addresses.

VI. MEASUREMENTS

A. Experiment network
We prepared a small network configuration so that we can
get the best performance timing for handover (see Fig 8).

 7

The packet processing timings are recorded from the
Athlon 1GHz machine.

3ffe:501:808:400a

Node 1
(1:4a00:0:1)
Athlon 1GHz

Router
Pentium II
400 MHz

Node 2
(1:4a00:0:2)
Celeron 660MHz

3ffe:501:808:400b

Node 2
(1:4a00:0:2)
Celeron 660MHz

Fig 8. Network configuration

B. Performance comparison between LIN6
and MIPv6

We first compare the packet processing overheads
between LIN6 and MIPv6 (MIPL Implementation [10]).
We defined processing overheads as the extra processing
that is required for the IPv6 packets if MIPv6 or LIN6 is
used. In the Linux kernel, we measured the CPU clock
cycles needed to process each code segment between the
#ifdef and #endif statements for the 2 separate protocols in
the IP layer. We measured for both ICMP (ping) and TCP
(ssh) packets. We noticed that the processing overheads for
LIN6 packets are higher than MIPv6 (see Fig 9). This is
due to the several memcpy statements called in the process
of address mapping.

Next we measured the File Transfer Timings for both
MIPv6-MIPv6 and LIN6-LIN6 communications for a
filesize of 53,850,039 bytes. We found that the
performance for LIN6-LIN6 is almost comparable to that
for the normal IPv6-IPv6 communications (see Fig 10).
The data transfer took longer for MIPv6-MIPv6. This
shows that the data transfer timings of packets are more
affected by the data size of the packets then the processing
time. This also proved our earlier claim that it is
advantageous in using LIN6 over MIPv6.

C. Handover Timings Comparisons
Using the same experimental setup, I measured the

handover timings for both LIN6-LIN6 and MIPv6-MIPv6
mobility. This is unrealistic as our proposal talks about
distributed servers in a Wide-Area Network, however these
measurements should give an indications of the
performance comparisons between MIPv6 and LIN6.

The switching between the networks is done by
disconnecting the notebook PC (Celeron 660 Mhz) and
reconnecting it to another network. I measured the time
between the reconnection and the time it takes for the next
retrieval from the Mapping Table (LIN6) or Binding Cache
(MIPv6). For an average of 10 tries, I obtained an average
of 199ms for LIN6 and 534 ms for MIPv6 respectively.

Table 4: Processing Overheads (CPU Clock Cycles)
Protocols ICMP (ping) TCP (ssh)
LIN6-LIN6 23163 18774
MIPv6-MIPv6 20155 5271

Fig 9. Packet Processing Overheads Comparison

Table 5: File Transfer Timings (Seconds) for 53,850,039

bytes
Protocols Overheads Time (Seconds)
IPv6-IPv6 0 70.7
LIN6-LIN6 0 70.8
MIPv6-MIPv6 44 74.9

Fig 10. File Transfer Timings Comparison

Although the average timings are different, I notice

that there are fluctuations in the handover timings.
Sometimes MIPv6 has a better timing than LIN6 and vice
versa. One possible cause for these irregular timings is the
Duplicate Address Detection mechanism.

VII. CONCLUSIONS
In this paper, we describe a wide-area load sharing

model for mobile web services using mobile protocols
based on IPv6. An example is video streaming to handheld
devices.

 8

We prefer LIN6 over MIPv6 as LIN6 has lesser packet
overheads compare to MIPv6 and it also has the ability to
place its Mapping Agents across different networks. For
MIPv6, the Home Agent of the mobile nodes could be far
away from the nearest service server and this increases the
hand over timings. Even though the hand over timings can
be improved by using Hierarchical MIPv6 [4], we are still
left with the packet overhead issue which we have
described earlier. In Section III, we show how our model
allows LIN6 nodes to use the nearest Mapping Agent and
service server. We also do a comparison between the wide-
area load sharing of Linux Virtual Server with our model
and described how our architecture can fare better than
LVS under some circumstances.

We compare the packet processing overheads and the
data transfer performance for both MIPv6 packets and
LIN6 packets. We also compare the handover timings for
both the protocols. The experiments concluded that LIN6
has a better data transfer performance than MIPv6.

VII. FUTURE WORK
Our model can connect the user to the nearest server,

but upon connection, he is stuck with this server until he
reconnects. We realize that the performance can be further
improved if we have the ability to migrate ongoing
connections to the service server nearest to the user as he
moves along. Connection migration is not possible with
LIN6 or even MIPv6. There are, however other projects
that explores mobility through connection migration [5] or
session mobility [7].

The LIN6 protocol is only compatible with other LIN6
nodes and does not work with other normal IPv6 nodes
without a LIN6 kernel patch. We would like to implement
full mobile compatibility with IPv6 as part of our future
work.

The experimental result only indicates the performance
of LIN6 on a micro-scale. We have to use simulation to
extract better results for mobility over a wide area. We also
need to work on the micro-mobility performance of LIN6
of the Linux implementation. We also plan to add access
list support to LIN6 on Linux for security enhancement.

ACKNOWLEDGEMENTS
Our thanks to the USAGI team for their work on IPv6 for
Linux. We would also like to show our appreciation to Dr.
Kazutoshi Fujikawa who took time to review this paper.

REFERENCES
[1] M. Ishiyama, M. Kunishi, K. Uehara, H. Esaki, F.

Teraoka, LINA: A New Approach to Mobility Support
in Wide Area Networks, IEICE Transactions on
Communications, Vol. E84-B, No.8, Aug 2001

[2] D. Johnson, C. Perkins, “Mobility Support in IPv6”,
http://www.ietf.org/internet-drafts/draft-ietf-mobileip-
ipv6-19.txt

[3] A. Kuznetsov, Linux Traffic Control resources,
http://www.sparre.dk/pub/linux/tc/

[4] H. Soliman, C. Castelluccia, K. El-Malki, L.Bellier,
“Hierarchical Mobile IPv6 mobility management
(HMIPv6)”, http://www.ietf.org/internet-drafts/draft-
ietf-mobileip-hmipv6-07.txt

[5] A. Snoeren, H. Balakrishnan and M.F.Kaashoek “The
Migrate Approach to Internet Mobility”, Proc. Of the
Oxygen Student Workshop, July 2001,
http://nms.lcs.mit.edu/~snoeren/papers/migrate-
sow.html

[6] R. Russell, Linux IP Firewalling Chains,
http://www.netfilter.org/ipchains/

[7] J. Salz, A. Snoeren, “TESLA, The Transparent
Extensible Session-Layer Architecture for End-to-End
Network Services”,
http://nms.lcs.mit.edu/tesla/

[8] Linux Virtual Server Project,
http://www.linuxvirtualserver.org/

[9] The USAGI Project,
http://www.linux-ipv6.org

[10] MIPL Mobile IPv6 for Linux
http://www.mipl.mediapoli.com/

[11] Guidelines for 64-bit Global Identifier (EUI-64)
Registration
Authority,http://standards.ieee.org/regauth/oui/tutorials
/ EUI64.htm

