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Abstract - We envisage that most of the subway train 
services or roadways in the near future will provide 
wireless coverage to commuters. This will drive the need 
for content providers to offer seamless mobile web 
services like streaming video etc. for mobile computers 
and handheld devices. We see a huge potential in 
providing the next generation services based on IPv6 as 
the larger pool of network addresses provides for real 
end-to-end communications. Although this can be 
achieved using Mobile IPv6 (MIPv6), it has several 
features which can be improved upon. Location 
Independent Network Architecture for IPv6 (LIN6) has 
been proposed as an alternative. The advantages include 
lesser packet overheads and the ability to house its 
Mapping Agents across different networks thus avoiding 
a single point of failure when the home network goes 
down. In this paper, we propose a load sharing 
architecture of a server pool providing mobile streaming 
services using LIN6 addressing. We address the issue of 
the latency between the mobile nodes and the Mapping 
Agents. We also show how we can allocate the required 
bandwidth to the end-users with their subscribed level of 
service. Finally, we present a comparative measurement 
study between MIPv6 and LIN6 and showed that LIN6 is 
indeed better in terms of data transfer performance. 
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I. INTRODUCTION 
The proliferation of PDAs, cellular phones and mobile 

notebooks has propelled the demand for more mobile web 
services like online news clip streaming from CNN etc. 
The collapse of the Internet bubble may have slowed the 
amount of investments pouring into this area of 
development, but it cannot halt the growth in the demand 
for such services. On one end, we have the cellular phones 
and PDA manufacturers churning out faster and better 
products with wireless and Bluetooth connections. On the 
other end of the spectrum, we have the rapidly burgeoning 

cellular phone users growing by the day.  It has become a 
necessity for telecommunication companies to convert their 
circuit switch network infrastructure to a packet switch 
network  infrastructure for them to save cost (as data traffic 
outstrips voice traffic) and to leverage on the Internet to 
provide more value added services to their customers. 
However, the take up rate of new cellular phones and 
wireless PDA also depends on the availability of interesting 
content for the end users. Thus, sooner or later, we will see 
the growth of companies providing mobile web services. 

We are concerned with the continuing availability of 
such web services even when we are moving across 
networks. An example is watching a news video clip in the 
subways via a wireless connection or making a call using 
VoIP. For streaming applications and services, it is a must 
that we use a mobile network protocol to allow the 
streaming to continue as we move across different network 
segments. Mobile IPv6 (MIPv6) [2] is a mobile protocol 
designed for macro-mobility in an IPv6 environment. 
However MIPv6 has additional packet overheads, which 
could be extremely costly if the average packet size is 
small.  

LIN6 [1] addresses are similar to the normal IPv6 
addresses and we have Mapping Agents (MA) which are 
synonymous to the Home Agents of MIPv6.  

In this paper, we outline an architecture based on LIN6 
addressing which provides for load sharing amongst 
distributed servers and bandwidth allocation depending on 
the subscribed level of service by the end users. The 
performances of the mobile nodes can also be monitored 
from a central location which will allow the administrator 
to detect any network troubles.  

The rest of the paper is structured as follows. Section II 
provides an introduction of LIN6. Section III describes our 
architecture. Section IV talks about implementation details.   
Section V presents a comparison of the measurements we 
took. Section VI contains the conclusions and Section VII 
describes our future work. 



 2

II. LIN6 
A. MIPv6 and LIN6 

From a protocol design point of view, any mobile 
protocol will need to do address mapping at some point of 
time. MIPv6 does this at the receiving node. Thus the 
sending node has to send the necessary information across 
the network. This is why MIPv6 needs the Home Address 
Extension Header (24 bytes) and Type 2 Routing Header 
(20 bytes). LIN6 does the mapping at both the sending 
node and receiving node. By knowing beforehand the 
format of the original address, it saves the need to send the 
extra information along with the packet. The obvious 
advantage is a smaller packet size. However, in order for 
LIN6 kind of mobile protocol to work, we need a way of 
differentiating the address before we can do the mapping. 
The protocol designers for LIN6 introduce the LIN6 prefix 
and LIN6 Node ID to help differentiate between a LIN6 
address and a normal IPv6 address.  

 
B. LIN6 Address 

A LIN6 address, similar to an IPv6 address, is divided 
into two portions – an upper 64-bit fixed LIN6 prefix and a 
lower 64-bit Node ID. The LIN6 prefix is a fixed non-
routable value of 3ffe:501:1830:1999. The LIN6 Node ID 
conforms to the EUI-64 format [11] and the upper 24 bits 
of the Node ID is represented by a fixed Organizationally 
Unique Identifier (OUI) assigned by IEEE. The OUI value 
is 00:01:4a. A LIN6 locator is made up of an upper 64 bits 
routable network prefix and a lower 64 bits Node ID. 
Mobility is achieved by mapping the LIN6 address to the 
LIN6 locator before the packet leaves the node.  

We used the global bit in the Node ID to differentiate 
between a stationary and a mobile node. A stationary node 
uses its current network prefix as the upper 64 bits and the 
Node ID has its global bit set to 0. An example of a 
stationary node LIN6 address is 
3ffe:501:808:4001:1:4a00::1. An example of a mobile node 
LIN6 address is 3ffe:501:1830:1999:201:4a00::2. Note that 
the upper 24 bits for a stationary Node ID is 00:01:4a and 
that for mobile Node ID is 02:01:4a.  

At the application layer, LIN6 addresses are used for 
communication between applications (see Fig 1). The LIN6 
addresses are mapped onto the LIN6 locators before the 
packet is sent from the node. On the receiving end, the 
LIN6 locators are mapped back into a LIN6 address before 
the packet is received by the application.  

As you can see, we need the LIN6 prefix so that we can 
have a consistent address that applications can use to 
communicate between one another as they move across 
different networks. We also need the OUI value to help us 
differentiate the addresses for the mapping of LIN6 
locators to LIN6 addresses. 

 

III. LIN6 Architecture 
Any mobile node that wants to use LIN6 needs to be 

configured with a LIN6 address first. The user will get his 
unique Node ID from the administrator and he needs to run 
a resolution daemon (lin6resolvd) to register his node with 
a MA. The mobile node will report its current routable 
address together with its Node ID to the MA (see Fig 2).  
Note that in Fig 2, LIN6 Node 2 gets its MA address in the 
same manner as LIN6 Node 1. The DNS is not shown in 
the figure.  

The LIN6 address is configured in the DNS by the 
administrator beforehand. The LIN6 address remains 
consistent even when the nodes move. The LIN6 locator is 
the one that changes.  

The MA is located by first sending a query to the DNS 
for the AAAA record. DNS will reply with a LIN6 address 
which is non-routable. The daemon, lin6resolvd, will try 
with a second query to the DNS for the TXT record of that 
LIN6 address; this is similar to the reverse query. DNS will 
reply with the MA address in the TXT record.  

For MIPv6, there is no need to query twice for the 
Home Agent (HA) because the HA is a router located in 
the Home Network (HN). There can be multiple HAs, but 
all the HAs must be located in the HN. This is not good 
because if the HN goes down when the Mobile Node (MN) 
is in a Foreign Network (FN), there is no way to 
communicate with the MN. To overcome this problem, 
LIN6 protocol introduces the concept of distributed MAs. 
To locate the MA in a reliable and efficient manner, LIN6 
propose to use DNS reverse query.  

Network Prefix Interface ID

LIN6 Prefix
(Non-routable)

LIN6 Node ID

64 bits 64 bits

64 bits 24 bits
OUI

40 bits

IPv6 address

IPv6
address

LIN6
Address

Network Prefix
(routable)

LIN6 Node IDLIN6
Locator

 
Fig 1. LIN6 Addressing Method 

When two LIN6 nodes want to communicate with each 
other, they will check their own Mapping Table (see Fig 3) 
(synonymous with the Binding Cache in MIPv6), if the 
entry cannot be found within the table, the mobile node 
will then query the MA for the record of the opposing node. 
Note that Node 1 and 2 can use different MAs. 
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Fig 2. LIN6 Architecture 
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The LIN6 nodes should be administer by a central 

figure to avoid clashing of Node IDs. This is a major 
drawback as other entities or organizations have to request 
their Node ID from a central authority. However, looking 
from another perspective, there is no need to use the same 
LIN6 prefix or OUI value at all. Organizations can 
implement their very own LIN6-like mobile network 
without any outside interference. 

 

IV. PROPOSED ARCHITECTURE 
A. Load Sharing Server 

We proposed an architecture consisting of a pool of 
servers that are distributed across a wide area. The aim is to 
serve streaming applications. Currently, most content 
servers redirect users’ request to the nearest server with the 
cached contents. However, the servers will not be able to 
maintain the connection for streaming if the user’s network 
address changes when he moves into a new area. A likely 
example is a different network segment for each major 
train station. Assuming that the user is redirected to a 
nearby server using MIPv6, he/she still needs to content 
with the overheads of MIPv6 protocol. Based on the 
respective subscription rates and schemes, the cost for the 
packet overheads can be quite hefty.  

We consider two different scenarios using LIN6. We 
can either use multiple LIN6 addresses or just a single 
address for a pool of servers across a wide area. 

For the first scenario, we can have load sharing 
capabilities by redirecting the user to the nearest server 
when the user logins through a website. However, we will 
not be able to address this mobile web service using the 
same URL for all the servers. The website will be 
responsible for making an intelligent choice of redirecting 
the user to the nearest URL. This is the current service 
model for many websites.  

For the second scenario, the choice of selecting the 
nearest server is made only during address resolution. This 
makes it possible for the user to address a whole server 
pool using a single URL. Thus, we favor the second 
scenario as our solution. Note that this requires 
modifications on the original LIN6 model. We will cover 
the details of the various changes in Section IV.  

In Section II.B, we mentioned that the mobile node 
needs to make two queries to find out the location of the 
MA. We modify this name resolution portion to 
accommodate our load sharing server into the LIN6 
architecture. Instead of returning the MA address in the 
TXT record, the DNS will now reply with the location of 
the load sharing server. The DNS can also provide more 
than one locations for the load sharing server so as to 
prevent a single point of failure.  

We denote each content server as Si, MA as MAi and 
the load sharing server as LS. Each MAi can be housed in 
different or the same boxes as Si. In practice, both the MA 
and the content server S exist in the same box. Note that 
the content server S is a LIN6 node. During setup, the 
daemon for MA (i.e. lin6agentd) will have to be run first. 
Each MAi will register itself with one of the LS by sending 
a heartbeat. The MAs can get the address of the LS servers 
from the DNS using reverse query. After all the MAs have 
registered themselves, LS will have a list of MAs that are 
not associated with any content servers yet. Each Si will 
then run their name resolution daemon (i.e. lin6resolvd), 
this will query the LS for the most appropriate MA. The Si 
will register with the nearest MAi as we use RTT as the 
yardstick. Assuming that the content servers are distributed 
far away from one another, they will register with the MA 
running in the same box. 

 We modified the daemon (lin6resolvd) such that it will 
use the same MAi until the Si is rebooted. Hence, now we 
have a tight coupling between the MAi and Si. Since all the 
Si uses the same LIN6 addresses, we cannot allow any Si to 
re-register itself with another MAi after the initial 
registration as LS selects MA based on the assumption that 
MA is matched to a content server S on a one-to-one 
relationship. After registration, the MA will send periodic 
heartbeat signal to the LS to indicate that it is still alive. If 
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the LS did not receive any heartbeat from a particular MA 
for a certain period, it will mark the MA as inactive.  

Assume that we now have a mobile node MN that 
wishes to use the mobile web service. Before connection, 
the MN must configure its LIN6 address using its Node ID. 
This Node ID is assigned by the administrator and it must 
match the record in the database. Likewise, the MN will 
query the DNS and get the address of the LS. The LS will 
reply the MN with the most appropriate MAi to use. When 
the MN tries to register with the MA, the MA will check 
the database for records. No registration is allowed if the 
Node ID of MN is not in the database (see Fig 4). 
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Fig 4. Load Sharing Architecture using LIN6 

When MA queries the database for records, it also 
retrieves the user’s subscribed level of service. It then uses 
the Linux commands ipchains [6] to tag IPv6 packets 
according to the Node ID and tc [3] (Linux Traffic Control) 
to control the bandwidth of the outgoing stream for the 
packets. 

B. Load Sharing Heuristics 
The LS carries a load index value for each of the server. 

This value is calculated whenever a MN connects to the 
MA. Assume that we have 2 classes of users, normal and 
premium.  

load[i]= normal[i]x wt_normal+premium[i]x wt_premium  
(1) 

where normal[i] and premium[i] indicates the number of 
connections. 

The load index value will help the LS to determine whether 
a server S is capable of satisfying the users subscribed level 
of service before it assigns the user to S.  

The LS will, however, based its decision of choosing 
MA on the smallest round trip time (RTT) from the MAs to 
the MN. Since the MAs are tightly coupled to the servers, 
we can reduce an originally bipartite matching problem to a 
single dimensional one (i.e. instead of finding the MA with 

the shortest distance between point A and B, we only need 
to be concerned with the distance of the MA to point B). 
The MA that gives the smallest RTT is stored against a 
value of the network prefix of MN in the LS memory. This 
will be used to reply for future queries. We associate each 
entry with a timeout value so that this table can adjust to 
the dynamic conditions of the network. 

Table 1: (MA Table) Time will be reset every time a 
heartbeat is received. MA is marked as inactive when timer 
runs out. Entry is not deleted. 

MA Address Load Index Timer 

MA1 addr 100 119 

MA2 addr 80 102 

 

Table 2: This is a cache history of the answers based on our 
heuristics. This helps to cut down the number of queries if 
they are coming from the same network prefix. Entry is 
deleted when timer runs out. 

Network prefix MA addr Timer 

3ffe:501:808:4001 3ffe:501:… 120 

2001:200:0:3000 3ffe:501:… 101 

 

The algorithm for replying a query with the nearest MA is 
as follows: 

1. When the LS received a query, it first looks at the 
network prefix of the query. This can be done by using 
getpeername, a function call in c language.  

2. It uses the Node ID of the user to query for the user’s 
level of service.  

3. LS looks up the network prefix in Table 2 and replies 
with the MA address if the network prefix is found.  

4. LS will increment the Load Index accordingly. It will 
also notify the MA about the Node ID and the level of 
service. MA will use this information and ask Server S 
to tag the packets and set up the necessary bandwidth. 

5. If the LS fails to find a cached answer, it will has to go 
through the heuristic decision procedure. 

Heuristic Decision Procedure 

1. Get network prefix and Node ID of peer-connection. 

2. Get level of service using Node ID. 

3. Look up MA Table (see Table 1). Choose those MA 
who are still alive and Load Index is still sufficient to 
support the level of service we obtained in 2. We 
assign a global threshold value (Thload) which we use 
to compare with the load index so that we can 
distribute the load equally among the servers. 
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4. Request MA to do a RTT to our user’s address. 

5. Reply the user with the MA that has the lowest RTT. 

C. Comparison with Linux Virtual Server 
Our design resembles the Linux Virtual Server (LVS) 

[8] to a certain degree, but it has some comparative 
advantages over LVS.  

LVS uses a virtual IP to represent a pool of servers and 
round robin among them to server incoming requests. The 
director server, the central figure in LVS, forwards the 
incoming request to a prospective server within the pool. 
The director server can be a single point of failure and the 
suggested remedy is to prepare a backup director server to 
check for heartbeats from the main director server via a 
serial cable. The backup director server will attempt to take 
over the role when it does not hear the heartbeats through 
gratuitous ARP.  

Although LVS can be configured to use a server cluster 
over the wide area, it does so via IP tunneling which 
introduces packet overheads (see Fig 5). Furthermore, the 
director server must be alive throughout the whole lifetime 
of a single connection. The LVS cannot leverage on the 
proximity advantage of their servers to the client since all 
packets have to be redirected from the director. Finally, the 
director server is a stateful server. All ongoing connection 
breaks if the director server crashes.  

For our design, once the LS server provides the client 
with a prospective MA server, the client will only need that 
MA to help maintain its connection. Since the MA is only 
responsible for mapping addresses, most of the 
communication happens directly between the client and the 
server as both keeps a copy of the mapping relationship 
within their cache (just like Binding Cache). The client will 
only need to query the MA again if the mapping in the 
cache runs obsolete.  

The only caveat here is that if it happens that the MA 
is down for some reasons, the client will also loose its 
connection to the server S when the client’s Mapping Table 
entry is deleted.  

The LS is also stateless compare to the director server. 
In cases when the LS crashed, concurrent connections will 
not be affected. The disadvantage is that the loss of the 
connection information will affect the decision making 
based on the heuristics, but we synchronize the table of a 
LS server which is rebooted with neighboring LS servers to 
achieve consistency.  

D. Inter-LS servers Communications 
It is evident from the above description that the LS server 
is a single point of failure. To overcome this problem, we 
introduced a few other LS servers to serve as backups. We 
accomplish this by adding more entries to the DNS AAAA 
records. This list of LS servers IPv6 addresses are kept in a 
configuration file which is read by the LS  
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Fig 5. LVS tunneling over wide area. User has tunneling 

overheads and little proximity advantage. 
 

servers during initialization time. The servers may not all 
run at the same time, hence a LS server will first keep a list 
of addresses and attempt to establish connections to the 
neighboring servers. The server will retry this at a regular 
interval until it reaches a maximum number of tries.  

Each LS server will be connected to (n-1) neighboring 
LS servers. Each MA server can register with any LS 
server. Each MA will only be associated with one LS 
server, but the LS server will relay the heartbeat to the 
neighboring LS servers upon receiving it. The MA must 
send a regular heartbeat signal to the LS server. If the LS 
server fails, the MA must search for a new LS server by re-
querying the DNS server. On the other hand, if the LS 
server fails to receive a heartbeat from the MA, it will mark 
the MA entry in the table as inactive. This will prevent the 
LS server from giving the inactive MA as a reply to a query 
from the end users. 

When a LS server receives a request for MA from the 
end users, it will first check its own history table for a reply. 
We match a reply according to the network prefix of the 
user. The reply will remain valid for a certain lifetime 
before we delete it away from the cache. We introduce this 
feature so that we would not waste bandwidth on extra 
RTT messaging. If a reply exists, we will use this cached 
reply. If we cannot find an answer based on the user's 
network prefix, we will have to use our heuristics to get the 
best answer. 

First, we will look into the MA table (see Table 1) in 
the LS server. The MA table contains both active and 
inactive MA entries. We will send a RTT request message 
to all the entries that are still active and have a load index 
below threshold. The MA will then calculate the average of 
four RTT timings to the end user's node and return the 
result to the LS server. The LS server will then record the 
reply with the lowest RTT timings in the history table. This 
answer will be propagated to the rest of the LS servers.  
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We define 8 types of messages which we are using for 
LS servers. Messages 1 to 5 are self explanatory. We use 
message 6 and 7 to relay updates to neighboring LS servers. 
As for message 8, we use it to synchronize LS server. We 
mentioned earlier that the LS server will attempt to connect 
to its neighboring servers during startup. The first message 
it sends will be LSS_SYNC_REQUEST. This will help to 
ensure synchronization of tables for all the LS servers. In 
practice, we would expect to have no more than three LS 
servers. Each table is also limited to a size of 64 (implying 
that LS can hold up to 64 MA records).  

Table 3: Messaging for LS servers 
Server Message Type Value 

LSS_HEARTBEAT 0x01 
LSS_RTT_REQUEST 0x02 

MA to LS 

LSS_RTT_REPLY 0x03 
LSS_MA_REQUEST 0x04 User to LS 
LSS_MA_REPLY 0x05 
LSS_MATBL_UPDATE 0x06 
LSS_ANSTBL_UPDATE 0x07 

Between 
LS 

LSS_SYNC_REQUEST 0x08 
 

V. IMPLEMENTATIONS 
A. Implementations of LIN6 protocol 

The LIN6 protocol has been ported from NetBSD 1.5 
to Linux kernel 2.4.20. LIN6 is modeled after the Netlink 
protocol and the LIN6 socket is a message passing system 
between the kernel and userspace. We used the IPv6 kernel 
stack from the USAGI project [9] and keep the Mapping 
Table for LIN6 in the kernel. We created a pseudo device 
(linsix0) to hook the LIN6 address and be responsible for 
sending Router Solicitation (RS) packets when the MN 
reattaches itself to a network. Under normal circumstances, 
the MN will detect the change of network when it receives 
a new Router Advertisement (RA) packet from the router. 
We also define a signal to be sent from the kernel to all the 
listening LIN6 sockets if a new network prefix is 
advertised. lin6resolvd also keeps tab on the NETLINK 
messages from the kernel (see Fig 6). 

We used NETFILTER hooks for IPv6 to modify the 
incoming and outgoing packets, otherwise known as 
sk_buff data structures in Linux. When the node has 
switched network, the new network prefix will be 
registered in the Mapping Table by sending a message 
from the userspace to the kernel. If the node tries to 
communicate with another LIN6 node, the kernel will send 
a message to the userspace daemon, the daemon will then 
send a message to the registered MA requesting for the 
Mapping Entry of the other LIN6 node. Once it gets the 
reply, it will copy it to the kernel layer and thus the 
outgoing packets can map their LIN6 addresses to real 
network addresses. All the actual address mappings are 
done in the NETFILTER hooks (see Fig 7). We use 

NETFILTER hooks so that we can organize our codes 
better and also this will allow us to create our own access 
list in our extension work. 
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PF_LIN6PF_NETLINK

Routing
Table

LIN6 states
and Mapping

Table

Router
Advertisements

packets

Router
Solicitations

packets

lin6resolvd

linsix0
(pseudo
device)

lin6agentd

kernel

Linux node with LIN6 enabled kernel

Mapping
Agent(MA)

 
Fig 6. LIN6 implementation on Linux 
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Fig 7. Address Mapping in NETFILTER hooks 

 
B. LIN6 userspace daemons 

We need 2 daemons to run the LIN6 protocol. The 
daemon lin6resolvd is required on the mobile nodes and 
lin6agentd is for Mapping Agent. Both are ported over to 
Linux, most of the codes remain similar except for the 
route handling portion.  

We added route handling calls which listens for 
RT_NETLINK messages from the kernels and ioctl calls to 
the kernel to modify routes.  

C. LS server 
LS server is multi-threaded and manages two tables (see Table 1 
and Table 2) and three sets of connections. It keeps a list of its 
neighboring LS servers and connects to them to help synchronize 
the two tables. It also listens on a port for heartbeats and on 
another for queries from users asking for MA addresses. 

 

VI. MEASUREMENTS 

A. Experiment network 
We prepared a small network configuration so that we can 
get the best performance timing for handover (see Fig 8). 
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The packet processing timings are recorded from the 
Athlon 1GHz machine. 
 

3ffe:501:808:400a
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Router
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400 MHz

Node 2
(1:4a00:0:2)
Celeron 660MHz

3ffe:501:808:400b

Node 2
(1:4a00:0:2)
Celeron 660MHz

 
Fig 8. Network configuration 

B. Performance comparison between LIN6 
and MIPv6 

We first compare the packet processing overheads 
between LIN6 and MIPv6 (MIPL Implementation [10]). 
We defined processing overheads as the extra processing 
that is required for the IPv6 packets if MIPv6 or LIN6 is 
used. In the Linux kernel, we measured the CPU clock 
cycles needed to process each code segment between the 
#ifdef and #endif statements for the 2 separate protocols in 
the IP layer. We measured for both ICMP (ping) and TCP 
(ssh) packets. We noticed that the processing overheads for 
LIN6 packets are higher than MIPv6 (see Fig 9). This is 
due to the several memcpy statements called in the process 
of address mapping.  

Next we measured the File Transfer Timings for both 
MIPv6-MIPv6 and LIN6-LIN6 communications for a 
filesize of 53,850,039 bytes. We found that the 
performance for LIN6-LIN6 is almost comparable to that 
for the normal IPv6-IPv6 communications (see Fig 10). 
The data transfer took longer for MIPv6-MIPv6. This 
shows that the data transfer timings of packets are more 
affected by the data size of the packets then the processing 
time. This also proved our earlier claim that it is 
advantageous in using LIN6 over MIPv6. 

C. Handover Timings Comparisons 
Using the same experimental setup, I measured the 

handover timings for both LIN6-LIN6 and MIPv6-MIPv6 
mobility. This is unrealistic as our proposal talks about 
distributed servers in a Wide-Area Network, however these 
measurements should give an indications of the 
performance comparisons between MIPv6 and LIN6.  

The switching between the networks is done by 
disconnecting the notebook PC (Celeron 660 Mhz) and 
reconnecting it to another network. I measured the time 
between the reconnection and the time it takes for the next 
retrieval from the Mapping Table (LIN6) or Binding Cache 
(MIPv6). For an average of 10 tries, I obtained an average 
of 199ms for LIN6 and 534 ms for MIPv6 respectively.  
 

Table 4: Processing Overheads (CPU Clock Cycles) 
Protocols ICMP (ping) TCP (ssh) 
LIN6-LIN6 23163 18774 
MIPv6-MIPv6 20155 5271 

 

 
Fig 9. Packet Processing Overheads Comparison 

 
Table 5: File Transfer Timings (Seconds) for 53,850,039 

bytes 
Protocols Overheads Time (Seconds) 
IPv6-IPv6 0 70.7 
LIN6-LIN6 0 70.8 
MIPv6-MIPv6 44 74.9 

 
Fig 10. File Transfer Timings Comparison 

 
Although the average timings are different, I notice 

that there are fluctuations in the handover timings. 
Sometimes MIPv6 has a better timing than LIN6 and vice 
versa. One possible cause for these irregular timings is the 
Duplicate Address Detection mechanism.  

VII. CONCLUSIONS 
In this paper, we describe a wide-area load sharing 

model for mobile web services using mobile protocols 
based on IPv6. An example is video streaming to handheld 
devices.  
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We prefer LIN6 over MIPv6 as LIN6 has lesser packet 
overheads compare to MIPv6 and it also has the ability to 
place its Mapping Agents across different networks. For 
MIPv6, the Home Agent of the mobile nodes could be far 
away from the nearest service server and this increases the 
hand over timings. Even though the hand over timings can 
be improved by using Hierarchical MIPv6 [4], we are still 
left with the packet overhead issue which we have 
described earlier. In Section III, we show how our model 
allows LIN6 nodes to use the nearest Mapping Agent and 
service server. We also do a comparison between the wide-
area load sharing of Linux Virtual Server with our model 
and described how our architecture can fare better than 
LVS under some circumstances.  

We compare the packet processing overheads and the 
data transfer performance for both MIPv6 packets and 
LIN6 packets. We also compare the handover timings for 
both the protocols. The experiments concluded that LIN6 
has a better data transfer performance than MIPv6. 

VII. FUTURE WORK 
Our model can connect the user to the nearest server, 

but upon connection, he is stuck with this server until he 
reconnects. We realize that the performance can be further 
improved if we have the ability to migrate ongoing 
connections to the service server nearest to the user as he 
moves along. Connection migration is not possible with 
LIN6 or even MIPv6. There are, however other projects 
that explores mobility through connection migration [5] or 
session mobility [7].  

The LIN6 protocol is only compatible with other LIN6 
nodes and does not work with other normal IPv6 nodes 
without a LIN6 kernel patch. We would like to implement 
full mobile compatibility with IPv6 as part of our future 
work. 

The experimental result only indicates the performance 
of LIN6 on a micro-scale. We have to use simulation to 
extract better results for mobility over a wide area. We also 
need to work on the micro-mobility performance of LIN6 
of the Linux implementation. We also plan to add access 
list support to LIN6 on Linux for security enhancement. 
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