
Visual Wrapping and Functional Linkage of Existing Web Applications

Kimihito Ito
Meme Media Laboratory, Hokkaido University

N-13 W-8, Sapporo, 060-8628, JAPAN
Email: itok@meme.hokudai.ac.jp

Yuzuru Tanaka
Meme Media Laboratory, Hokkaido University

N-13 W-8, Sapporo, 060-8628, JAPAN
Email: tanaka@meme.hokudai.ac.jp

Abstract- HTML-based interface technologies enable
end-users to easily use various remote Web applications.
However, it is difficult for end-users to compose new
integrated tools of existing Web applications. In this
paper, the authors propose a framework where end-
users can wrap remote Web applications into visual
components called pads, and functionally combine them
together through drag&drop-paste operations. We use,
as the basis, a meme media architecture IntelligentPad
that was developed by our research group. In the
IntelligentPad architecture, each visual component
called a pad has slots as data I/O ports. By pasting a pad
onto another pad users can integrate their functionalities.
Users can visually create wrapper pads for Web
applications that he wants to use by defining HTML
nodes within the Web application to work as slots.
Examples of such a node include input-forms and text
strings on the Web page. Users can directly manipulate
wrapped Web applications on their desktop screen to
define application linkages among them. Since no
programming expertise is required to wrap Web
applications or to functionally combine them together,
end-users can build new integrated tools of wrapped
Web applications. Authors also discuss applications of
this framework to mobile computing.

I. INTRODUCTION
During the last couple of years, the main portion of

information resources in World Wide Web has been shifted
from handmade HTML pages to server-generated HTML
pages, such as those using CGI (Common Gateway
Interface), ASPs (Active Server Pages), JSP (Java Server
Pages) and PHP. A Web application is an application
program that has HTML-based front-end for users to utilize
some services provided by a remote HTTP server. Many
companies and researchers provide Web applications, such
as search engines, financial services, scientific analysis tools,
and various other kinds of database services. Basically,
every Internet user can access these Web applications.

End-users access Web applications through Web
browsers. Thus, to combine two Web applications, users
need to open these two Web pages, to input some data on
the first page, to copy a part of the result, and to paste this
copy into the input-form on the second page. Users need to
repeat this process, if they want to apply the same
processing to other inputs. In UNIX, users can compose
command sequences using pipes and redirections. UNIX
users can perform a job that is not implemented as a single
command. On the other hand, Internet users cannot
combine existing Web applications into a single application.

Revision and approval cycle of Web applications are
becoming shorter and shorter, because their providers need
to increase the quality and competitiveness of their
application. Sometimes they change URLs, and sometimes
they revise the format of front-end HTML pages.

Many researchers have worked on developing robust
wrapping method of Web applications [12][18]. Some

wrapping method has robustness for format changes. From
the view point of computational learning theory, it is
impossible to deal with every kinds of formatting change.
We do not focus on such robustness in this paper.

We assume target users for our framework to be novice
in computer programming but specialists in a domain such
as finance or bioinformatics. In their intellectual activities,
they repeat the process of ‘think’, ‘try’, and ‘see’. When
applied to problem-solving contexts, researchers call such a
repetitive process a plan-do-see loop. Many feel that
computers can be applied to support this process, speeding it
up and driving progress around this cycle. This requires
seamless support of the three phases: think, try, and see.

From this point of view, we propose a new framework
for the visual wrapping and linking of Web applications to
dynamically and visually compose an integrated function.
Users can rapidly wrap any Web application with a wrapper
component only through direct manipulation. Based on the
IntelligentPad [21] architecture, users can combine these
wrapped visual components called pads, by pasting pads on
another pad, to compose a composite pad. This composition
defines application linkages among Web applications to
integrate them into a single composite function. It supports
the users’ seamless repetition of the three phases:
think, try, and see.

In our previous poster presentation [10], we have
presented only an outline of our approach. In this
paper, we describe our method more precisely and
discus the application to mobile computing.

II. RELATED WORKS
Web Service technologies such as SOAP(Simple

Object Access Protocol)[4] enables us to interoperate
services published over the Web. However, they
assume that the API (Application Program Interface)
library to access such a service is a priori provided by
its server side. You need to write a program to
interoperate more than one Web service. Our
technologies, on the other hand, provide only the
client-side direct manipulation operations for users to
re-edit intellectual resources embedded in Web pages,
to define a new combination of them together with
their interoperation.

Open Hypermedia Systems [15] allow links and
annotations to be added to documents outside the author's
control and are designed to be integrated with any number
of applications to provide hypertext functionality to
everything from spreadsheets to graphics editors. Open
Hypermedia Systems use link service [5] to resolve the
source anchor of a link to all the possible destinations by
querying a link database to identify relevant links.
Hyperlinks in Open Hypermedia Systems can be extended
to application linkages among Web applications.

There are a lots of previous research studies on
visual wrapping of Web pages. However, there are a
few research studies that allow end-users to wrap and
to define functional linkage in the same environment.
Bauer and Dengler[3] have introduced a
PBD(Programming by Demonstrations) method in
which even naive users can configure their own Web
based information services satisfying their individual
information needs. They have implemented the
method into InfoBeans [2]. By accessing a InfoBox
with an ordinary Web browser, users can wrap Web
applications. By connecting channels among
InfoBeans on the InfoBox, users can also integrate
them functionally together. However, it seems
difficult for users to reuse a part of composite Web
applications defined by other users. W4F[19], which
is semi-automatic wrapper generator, provides a GUI
support tool to define an extraction. The system
creates a wrapper class written in Java from user's
demonstration. To use this wrapper class, users need
to write program codes. DEbyE[7] provides more
powerful GUI support tool for the wrapping of Web
applications. DEbyE stores the extracted text portions
in XML repository. Users have to use another XML
tool to combine extracted data from Web applications.
LExIKON [8] learns an underlying relation among
objects within a Web page from a user-specified
ordered set of text strings. There is no GUI support
tool for the join of two extracted relations. WebView
[6] allows us to define customized views of Web
contents for mobile computers. However it seems
difficult for end-users to create a new view that
integrates different Web applications.

III. WEB APPLICATION LINKAGE

A. Requirements
The end-users' creation of functional linkage among Web

applications requires the following capabilities:
1. Easy specification of input and output portions of Web

applications to reuse embedded functions in them.
2. Easy definition of functional linkage between Web

applications to compose a new integrated application.

3. Easy decomposition and re-composition of
composite functions in the user-defined integrated
applications.

B. Our Approach
We will propose the use of IntelligentPad [20][21][22]

technologies to achieve these three capabilities.
IntelligentPad architecture allows users to combine media
objects (called pads), such as multimedia documents and
application programs, through their view integration. Each
pad has slots as data I/O ports. Through drag-and-drop and
paste operations, users can connect one pad to a slot of
another pad. This operation simultaneously creates both a
composite view and a functional linkage through a slot
connection.

We summarize our approach for Web application
linkages as follows:
1. Create visual wrapper components of Web applications

by specifying some portions on the Web pages to work
as slots using a mouse.

2. Visually combine wrapped Web applications together
to compose a new integrated application that performs a
composite function.

3. Decompose an integrated application visually to re-
compose another composite application visually.

Fig. 1 shows an outline of our approach to define
functional linkage among Web applications. The user
specifies an input form of the company's name and the text
of the retrieved stock quote to work as slots in current stock
quote service[14]. The user specifies an input form of the
U.S dollar amount and the text of the converted Japanese
yen amount to work as slots in currency conversion
page[25]. The user connects the slot of the current stock
quote in US dollar to the US dollar slot of the currency
conversion service through a drag-and-drop and paste
operations. The two services are combined to compose a
single application. Users can also decompose the
composition through drag-and-drop and paste operations.
Users require no programming expertise to wrap, to
combine Web applications and also to decompose
composite ones.

Fig. 1. An outline of our approach to define functional linkage among Web applications
 (A video demonstration is available at http://ca.meme.hokudai.ac.jp/people/itok/CHIP/movies).

User-defined views and their combination Web application linkage

IV. WEB APPLICATION WRAPPING
Web application has HTML-based front-end for the user.

This front-end is defined in HTML format. Using the API
of a legacy Web browser such as Netscape Navigator or
Internet Explorer, we can access HTML-elements within
Web Applications. Such legacy browsers parse an HTML
document to create a DOM (Document Object Model) [24]
of given URL for the rendering of the document view on
the display. In this process, the browser converts ill-formed
HTML into well-formed HTML in appropriate ways. A
DOM forms a tree structure, in which each node
corresponds to an HTML element. The DOM defines tag-
specific interfaces for many HTML elements.

To create a wrapped visual component of a Web
application, users may just open the Web page they
want to wrap using a WebApplicationWrapperPad,
which is a kind of Web browser. The user can specify
an HTML-node or a text string to work as a slot on
this pad.

Fig. 2 shows an abstract architecture of a
WebApplicationWrapperPad. Its rendering and
parsing functions are implemented by wrapping
Internet Explorer's API [17]. A WebApplication-
WrapperPad has the #url slot and user-defined
HTML-node slots named with HTML-paths as its
connection interface. The view of this pad shows the
HTML-page at the URL address specified by the
value of the #url slot. The value of an HTML-node
slot named with an HTML-path p is the text value of
the HTML-node at p.

A. HTML-Paths
Fig. 3 shows an HTML document with its DOM

tree representation of a Web application. To identify a
user-specified HTML element, we use an HTML-path.

An HTML-path is a concatenation of node
identifiers along a path from the root to the specified
element. Each element identifier consists of a tag
name and an index i, where this node is the ith sibling
that has the same tag name. We define the grammar of
HTML-paths as follows:

HTML-path ::= tagname[i]
 | HTML-path/tagname[i]
The HTML-path expression is the specialization of

XPath expression [23]. For example, the circled

portion in the document in Fig. 3 corresponds to the
circled node whose HTML-path is

HTML[1]/BODY[1]/FORM[1]/INPUT[1]
This is the HTML-path of an input element of this

Web application. To access the detail of an HTML
element, we add the following two extensions to the
path-expression.

 HTML-path/attr[attribute-name]
 HTML-path/text[regular-expression]
The function attr[attribute-name] selects an

attribute value named with the specified name. We
can set and get the value of the attribute. For example,
consider the DOM tree in Fig. 3.

The value pointed by
“HTML[1]/BODY[1]/A[1]/attr[href]”

is the string “http://ca.meme.hokudai.ac.jp”.
The function text[regular-expression] captures

substring of inner text. This regular expression must
contains just one pair of parentheses “(” and “)”'. This
function allows us to extract and to edit the text within

<HTML>
<HEAD><TITLE>Sample HTML</TITLE></HEAD>
<BODY>

A Query Form

<FORM method="GET" action=./sample.cgi>

<INPUT value="Tokyo" name="query">
<INPUT type="submit">

</FORM>
 <HR>Result

 AnchorText

 <DIV>Date=April 12, 2002</DIV>
 </BODY>
</HTML>

Fig. 3. An HTML document and its DOM tree.

Fig. 2. A Web application and its user-defined wrapper.
A Web application The wrapped Web application

an HTML element flexibly.
Let e be an HTML element obtained by HTML-

path p. And let rleft, rcapture and rright be regular
expressions. Then the text pointed by the following
expression: p/text[rleft (rcapture)rright] is a substring s of
the inner text of the element e, where s matches rcapture,
s is followed by a string that matches rleft and string
that matches rright is preceded by s. For example, the
text pointed by
“HTML[1]/BODY[1]/DIV[1]/text[Date=(.*),2002]”
is the text “April 12”.

B. User Interface for Wrapping
To hide HTML-path from users, the system

calculates HTML-path expressions from users'
operations. Users can directly specify any HTML-
node as a slot using his mouse.

There are two ways for users to specify an HTML-
node to work as a slot:

 specify an HTML element to work as a slot,
 specify a text portion to work as a slot.
If a user clicks with the right button on a region that

he wants to use as a slot, a popup menu is shown.
Selecting “HTML as Slot” in the popup menu, the

user can use the HTML-element at this location as a
slot. Let p be the HTML-path of the element.
1. If the element is a textinput element or textarea

element, WebApplicationWrapperPad installs a
slot named p/attr[value].

2. If the element is an anchor element,
WebApplicationWrapperPad installs a slot named
p/attr[href].

3. WebApplicationWrapperPad installs a slot named
p, otherwise.

In Fig. 4, the user selects a text input element to use
this as a text input slot. WebApplicationWrapperPad
installed the slot named
HTML[1]/BODY[1]/FORM[1]/INPUT[1]/attr[value].

Selecting “Text as Slot” in the popup menu, the
user can use the selected string as a slot. Let p be the
HTML-path of the element e that contains the selected
text portion. The WebApplication-WrapperPad
installs a slot named with p/text[l (.*)r], where l and r
are respectably a preceding substring and a following
substring of the selected portion in e. A dialog box
then appears to ask the user to confirm the two text

strings l and r.

C. Wrapping of Single-page Web Applications
A Web application A is called a single-page Web

application, if every result page returned by A
contains an input-form for the next query for A. In
other words, we can define slots for both input and
output on a single page returned by a single-page Web
application. Examples of single-page Web
applications include Google Search Page, Lycos'
Stocks&News, and Yahoo's Currency Exchange.

Using a WebApplicationWrapperPad, we may wrap
a single-page Web application into a pad. Many Web
applications return result pages that have exactly the
same syntactic and semantic structure for different
input queries. If this new page has the same structure
to previous page, we can apply new query using the
same HTML-path.

A value change of a slot in a WebApplication-
WrapperPad causes its view update and possibly the
value changes of the other slots.
1. If the value of the #url slot is changed, then the

WebApplicationWrapperPad downloads the page
at the URL address to updates the DOM
representation.

2. If the user clicks an anchor or submits a form,
then the wrapper pad downloads the target page
to updates the DOM representation.

3. If the value of an HTML-node slot is changed,
then the WebApplicationWrapperPad changes the
value of each node specified by the
corresponding HTML-path.

 If the HTML-node slot is an input element
contained in a form, the wrapper pad
submits the form to the appropriate Web
server to updates the DOM representation.

Fig. 4. User interface for slot definition.

Fig. 5. Visual definition of a wrapped Web application through direct manipulation.

4. Whenever the WebApplicationWrapperPad
updates the DOM representation, it renders a new
view. The values of all the HTML-node slots will
be changed to the values of the corresponding
nodes in the new DOM tree.

In Fig. 5, a user creates a wrapper pad that wraps a
currency conversion Web application. Firstly, the
user may open the target page. Secondly, using his
mouse, he may specify regions that he wants to work
as slots. Then the slots will appear as sunken shaded
regions on this page. The user may keep the
background Web page either visible or invisible.
Thirdly, the user may embed other pads, such as
TextPads, into these slots. Finally, the user may
arbitrarily relocate and resize the embedded pads to
design their layout.

V. FUNCTIONAL LINKAGE AMONG WRAPPED WEB
APPLICATIONS

In this section, we present how to visually create
functional linkage among Web Applications and local
legacy tools. We apply the IntelligentPad architecture
to this problem.

A. IntelligentPadArchitecture
IntelligentPad [21] represents each component as a pad, a

sheet of paper on the screen. A pad can be pasted on
another pad to define both a physical containment
relationship and a functional linkage between them. When
a pad P1 is pasted on another pad P2, the pad P1 becomes a
child of P2, and P2 becomes the parent of P1. No pad may
have more than one parent pad. Pads can be pasted together
to define various multimedia documents and application
tools. Unless otherwise specified, composite pads are
always decomposable and re-editable.

Each pad has both a standard user interface and a
standard connection interface. The user interface of a pad
has a card like view on the screen and a standard set of
operations like `move', `resize', `copy', `paste', and `peel'.
Users can easily replicate any pad, paste a pad onto another,
and peel a pad off a composite pad. Pads are decomposable
persistent objects. You can easily decompose any composite
pad by simply peeling off the primitive or composite pad
from its parent pad. As its connection interface, each pad
provides a list of slots that work as connection jacks of an
AV-system component, and a single connection to a slot of
its parent pad (Fig.6).

To set up data connection between pads, IntelligentPad
uses three standard messages, set, gimme and update. We
show an outline of these three messages in Table 1.

TABLE I
A SUMMARY OF THREE STANDARD MESSAGES.

Message Summary
Set slotname
value

a child sets the specified value to its
parent's slot

Gimme
slotname

a child requests its parent to return
the value of its specified slot

update a parent notifies its children that
some slot value has been changed

Each pad is embedded in one parent at most with its

connection to one of the parent pad slots. Connected
pads form a tree structure. We do not restrict the
maximum depth of the tree.

Each pad has one primary slot. When the value of the
primary slot of a child is changed, the child sends a set
message with the new slot value to its parents. Using this
value, the parent changes its own slot values. Then, the
parent notifies all of its children of its state change by
sending an update message. Each child that has received an
update message sends a gimme message to the parent pad,
changes its own slot values using the return value of this
gimme message, and then sends an update message to each
of its children. Using this mechanism, state changes are
propagated from one pad to all the pads connected to it
through slots(Fig. 7).

B. Functional Linkage among Wrapped Web
Applications through View Integration

A pad that wraps a Web application provides slots
for some of the original's input forms and output text

connection
interface

user
interface

Fig. 6. User interface and slot-connection interface.
If a user pastes P1 on a slot of P2, the primary
slot of P1 is connected to this slot of P2.

Functional linkage among different
Web applications.

Fig. 8.

Three standard messages, ‘set’, ‘gimme’
and ‘update’ between pads.

Fig. 7.

strings. Since wrapped Web applications are pads,
you may combine wrapped Web applications together
through drag&drop and paste operations. Through
data linkage between slots specified by a user, these
wrapped Web applications cooperate with each other
(Fig. 8).

Fig. 9 shows a WebApplicationWrapperPad
showing a Lycos' Web page for a real-time stock
quote browsing service. We have wrapped this page,
defining a slot for the current stock quote. Then we
paste the wrapped currency conversion Web
application with its dollar amount slot specified as its
primary slot on this wrapped Lycos stock quote page.
We connect the conversion pad to the newly defined
current stock quote slot. The right hand side in this
figure shows a composite pad combining these two
wrapped Web applications. For the input of different
company names, we use the input form of the original
Web page. Since this Web application uses the same
page layout for different companies, the same path
expression correctly identifies the current stock quote
information part for each different company. The
current stock quote in US dollar is converted to
Japanese yen by the wrapped currency conversion
Web application.

VI. APPLICATION TO MOBILE COMPUTING
Our framework is suitable not only for desktop

computing but also for mobile computing.
In mobile computing, the surroundings around a

user changes dynamically. Different situations require
different information service. Even if the user could
connect his/her mobile device to the Internet, the user
may not find the necessary service. There may not be
such a service on the Web. Using our framework, the
user may compose a new tool for his/her present
problem by wrapping existing Web applications and
linking them together on his/her mobile device as long
as he or she find a set of appropriate services that can
collaboratively solve the problem.

Suppose that a user has a mobile device with
wireless LAN unit. And suppose the city that he or
she lives in has developed wireless LAN
infrastructure which provides not only internet
connection service but also Web-based localized
information services based on the user’s access point
[11]. From the localized information service, the user
could get the list of restaurants which locate close to
him or her. The user knows a large-scale online
restaurant guide that provides fair evaluation of
restaurant. The user uses this guide so often that he or

Fig.10. An application of our framework to mobile computing.

Localized information
service

PDA

LS

Wrapping

Integration of global
and localized
information services.

LS

GS
Linking

WrappingInternet

GS

Global
information service

W
ireless

 LAN

Local area network

Fig. 9. Dynamic linkage definition between visually wrapped Web applications.

User-specified slot. New integrated tool

Wrapper of currency
conversion (Fig. 6)

Drag&Drop

The US dollar slot is
defined as the primary.

she has wrapped this guide into a pad by defining a
slot for a restaurant name. The only things the user
needs to do are to wrap the Web-based localized
restaurant-information service, and to connect its
restaurant name to the slot in the wrapped restaurant
guide. The result is a new tool that accesses both the
localized information service and the global
information service (Fig. 10). No programming
expertise is required to wrap the localized information
service or to functionally combine these two wrapped
services together.

VII. CONCLUSION
We have proposed a new framework for visually

and dynamically defining functional linkages among
Web applications to compose a single application tool.
This framework is based on the IntelligentPad
architecture. Users can visually and dynamically wrap
Web applications into visual components, and
visually combine them together to define functional
linkages among them. Users can also visually define
functional linkages among wrapped Web applications
and such local tools in pad forms as chart drawing
tools and spreadsheet tools to compose a single
integrated tool. We also have discussed an application
of the framework to mobile computing.

REFERENCES

[1] V. Anupam, J. Freire, B. Kumar, and D. F.
Lieuwen: Automating web navigation with the
webvcr. WWW9 /Computer Networks 33(1-6)
pages 503–517, 2000.

[2] M. Bauer and D. Dengler: InfoBeans -
Configuration of Personalized Information
Services, In Proc. of IUI99, pages 153-156.

[3] M. Bauer, D. Dengler, and G. Paul: Instructible
Agents for Web Mining, In Proc. of IUI2000,
pages 21-28.

[4] M. Birbeck and etc.: Professional XML. Wrox
Press Ltd., 2000.

[5] L. A. Carr, D. D. Roure, W. Hall, and G. Hill:
Implementing an Open Link Service for the
World Wide Web. World Wide Web 1(2), pages
61–71, 1998.

[6] J. Freire, B. Kumar, and D. F. Lieuwen:
Webviews: accessing personalized web content
and services. In Proc. of WWW2001, pages 576–
586, 2001.

[7] P. B. Golgher, A. H. F. Laender, A. S. da Silva,
and B. A. Ribeiro-Neto: An Example-Based
Environment for Wrapper Generation. In Proc. of
ER Workshops 2000, pages 152–164, 2000.

[8] G. Grieser, K. P. Jantke, S. Lange, and B.
Thomas: A Unifying Approach to HTML
Wrapper Representation and Learning. In Proc.
of Discovery Science 2000, pages 50–64, 2000.

[9] K. Ito: CHIP(Collaborating Host-Independent
Pads).
http://ca.meme.hokudai.ac.jp/people/itok/CHIP.

[10] K. Ito and Y. Tanaka: Visual wrapping and
composition of web applications for their
interoperations, Poster Tracks of WWW2002, #64,
2002.

[11] R. Jana, T. Johnson, S. Muthukrishnan, A.
Vitaletti: Location based services in a wireless
WAN using cellular digital packet data (CDPD)
In Proc. of Data Engineering for Wireless and
Mobile Access, 2001

[12] T. Kistler, H. Marais. WebL - A Programming
Language for the Web. WWW7 / Computer
Networks 30(1-7) pages 259-270 1998.

[13] N. Kushmerick: Wrapper induction: Efficiency
and expressiveness. Artificial Intelligence 118(1-
2) pages 15-68 2000.

[14] Lycos,Inc,Stocks&news. http://finance.lycos.com
[15] K. C. Malcolm, S. E. Poltrock, and D. Schuler:

Industrial strength hypermedia: Requirements for
a large engineering enterprise. In Proc. of
Hypertext1991, pages 13–24, 1991.

[16] T. Nelson: Transcopyright, Project Xanadu,
 http://xanadu.com/tco/

[17] Microsoft: MSHTML Reference. MSDN Library.
[18] T.A. Phelps and R. Wilensky: Robust intra-

document locations. WWW9 / Computer
Networks 33(1-6) pages 105-118, 2000.

[19] A. Sahuguet and F. Azavant. Building intelligent
Web applications using lightweight wrappers.
Data & Knowledge Engineering 36(3):283–316,
2001.

[20] Y. Tanaka: From augmentation media to meme
media: IntelligentPad and the world-wide
repository of pads. Information Modelling and
Knowledge Bases 6, pages 91–107, 1995.

[21] Y. Tanaka and T. Imataki: Intelligentpad: A
Hypermedia System Allowing Functional
Compositions of Active Media Objects through
Direct Manipulations. In Proc. of IFIP’89, pages
541–546, 1989.

[22] Y. Tanaka, A. Nagasaki, M. Akaishi, and T.
Noguchi: A Synthetic Media Architecture for an
Object-Oriented Open Platform. In Proc.IFIP
Congress 3, pages 104–110, 1992.

[23] The World Wide Web Consortium: XML path
language(XPath) version 1.0, November 1999.
http://www.w3.org/TR/xpath.

[24] The World Wide Web Consortium: Document
object model (DOM) level 2 HTML specification
version 1.0, http://www.w3.org/TR/2001/

[25] Yahoo Corporation. Currency conversion.
http://quote.yahoo.com/m3?u.

