

Adaptive Web Server using self-reproducing approach
Hiroaki Fukuda

Graduate school of science and
technology Keio University

3-14-1 Hiyoshi Kohoku
Yokohama Kanagawa Japan

81-45-563-3925

hiroaki@yy.cs.keio.ac.jp

Kazuyoshi Yamamoto
Graduate school of science and

technology Keio University
3-14-1 Hiyoshi Kohoku

Yokohama Kanagawa Japan
81-45-563-3925

yama@yy.cs.keio.ac.jp

Takashi Iijima
Graduate school of science and

technology Keio University
3-14-1 Hiyoshi Kohoku

Yokohama Kanagawa Japan
81-45-563-3925

iijima@ae.keio.ac.jp

ABSTRACT
The Internet becomes common for our life. Especially, we usually
use web to retrieve some information we want and we can also
connect to the Internet using not only some traditional computers
but also some mobile devices. Almost all services in the Internet
consist of communications between some servers and clients.
Since the Internet is wide open and everyone can use it, it is very
difficult to estimate the amount of requests and its access patterns.
In this paper, we introduce the concept of the self-reproducing
and apply to the webservers. In addition, we present the design
and implementation of our adaptive webserver system and prove
its advantages through some experiments.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Reliability

Keywords
Webserver, Load balance, Dynamic, Adaptive

1. INTRODUCTION
The Internet becomes a common way to retrieve some information
or get some software we want and we can connect to it with not
only desktop style computers but also notebook computers, PDA
and handy phones. In addition, the network bandwidth becomes
wider, for example, from the dialup connection to ISDN, xDSL
and wireless connection. We can use it every time and everywhere.
The access number and access pattern from users are not the same.
Basically, we usually access some interesting or famous contents a
lot and we also access the special event sites, for instance,
Olympics or World Cup sites a lot in a short time. Under these
situations, the administrators of these sites have to manage them
without any problems, for example, the delay of transferring
contents or the overload of the servers. Generally, the following
approaches are employed in these problems. First, administrators
adopt mirror servers that have the same contents as the original
server in order to distribute the server load. The second is a proxy
server. It caches some contents and transfers them to the users
instead of the actual server. However, these approaches are not so
effective, because these approaches make the uses configure their
own environments. Today, many approaches have been proposed
to distribute the server load without the user’s operation. In these
approaches, administrators usually prepare a fixed number of
servers based on their experiences and estimates. Therefore, if the

number of client accesses exceeds a predefined limit, the
throughput will become worse and in the worst case, the system
will go down. However, it is difficult to estimate the amount of
client access correctly before starting the system.
Based on these backgrounds, we propose our adaptive webserver
system using self-reproducing approach. It can create its mirror
servers and distribute the load depend on the client accesses
dynamically. Consequently, it is not necessary to prepare some
mirror servers before starting the system.

The structure of the remainder of this paper is as follows. In
section 2, we describe our approach with contrast to other
researches. In section 3, we explain the design and
implementation of this system. In section 4 and 5, we show
experiments, results and an evaluation. In section 5, we describe
some conclusions and future work.

2. APPROACH
The Internet consists of many servers that provide several services
and many clients that use the services. We usually don’t care how
many servers we use and where the servers are deployed when we
connect to the Internet, however, we actually use many servers.
For instance, in the case of sending or receiving e-mail, we use
DNS servers, SMTP servers, and a POP server. The purpose of
these servers is to process client requests speedily and correctly.
The administrators of them prepare some slave servers and
multiplex networks to avoid the overload and a crash of the server.
It is clear that a webserver is a main component of several servers
that consist of the Internet. We use it with a web browser to
retrieve some information. When we send a request to a webserver,
it receives and parses the request and returns the requested content.
A typical webserver has a lot of configurable parameters to adjust
its running policy. An administrator of a webserver configures its
parameter before starting it and when additional functionality is
required, the usual solution involves shutting down the system,
modifying one or more parameters and restarting the system. This
procedure doesn’t allow the server to be used during upgrade. An
Open webserver that can reconfigure its running policies on
demand without shutting down is the study to improve this point
[2][6]. Otherwise, even if we configure the best parameter and the
webserver shows the best performance, a single webserver has its
limit. It cannot process a lot of requests beyond its capability.
Today, there are a lot of studies of how to distribute the server
load and how to improve the performance because of the access
concentration. These studies have little differences between them;
however, they can be divided roughly into two types. As shown in
Fig. 1, the first one prepares several mirror servers that connect to

each other using a wide range network like the Ethernet. It also
prepares the specific hardware to distribute client requests. Clients
send a request to that hardware instead of the real webserver and
it forwards or redirects it to one of the mirror servers [1][4].

The second one that is shown in Fig. 2 uses cache servers that
save some contents [3][5]. In this case, clients send a request to
the cache server instead of the real webserver. After the cache
server receives the request, it forwards the request to the real
webserver and receives the content. Next, it returns the content
and saves it into the caches at the same time. When the other
client sends the same request to the cache server, it returns the
content from its caches without forwarding the request. These
approaches have some problems. In the case of the mirror server
approach, the number of the mirror server is fixed and it is
difficult to estimate the amount of client access correctly before
starting the system in open environment like the Internet. In
addition, it costs a lot to prepare the specific hardware to forward
client requests and change the IP address or MAC address if
necessary. In the case of the cache server approach, clients have to
know the name or IP address of a proxy server to use. Moreover,
clients have to change their configuration whenever they change
their network.
In order to improve these points, we propose the adaptive
webserver system introducing the self-reproducing concept. This
system can create its mirror server dynamically if the load
becomes high. It also deletes its mirror server depending on the
state of the server load. We’ll describe the design and
implementation next.

3. DESIGN AND IMPLEMENTATION
This system consists of RegistServer, AdaptiveWebserver and
ClientProxy without any specific hardware. We’ll show the detail
next

z RegistServer

This is the server that registers
AdaptiveWebServer, which is ex
AdaptiveWebServer registers itself at
starts. When an AdaptiveWebServer c
can get the information of how man
servers are available at that time.

z AdaptiveWebServer
This server has the same functions as a
that is, it can parse HTTP1.0 proto
appropriate contents (HTML, GIF, T
clients. It also watches the access frequ
and creates the copy of the conte
frequently. In addition, it sends the c
other AdaptiveWebServer. When the
receives the copied content, it manages
as its own. However, if the conte
frequently, it deletes the content.
AdaptiveWebServer can create its mirr
and transferring the content.

z ClientProxy
This component works with a client sid
the client host that a user uses a brows
uses this system has to change the b
from the direct connection to the
component. When an AdaptiveWebSer

Client Dispatcher

Request

Dispatch Request
Mirror Server1

Mirror Server2

Mirror Server3
Fig.1 Mirror Server type

Proxy
Cache

Request & Response

Original Server

Request

Response

Client

Client

Client

Client

Fig.2 Cache Server type

CP

http://www
http://www.test2.net/test.html

CP C

CP
http://www.test1.com
http://www.test2.net
transfer
RegistServer
The Internet
.test1.com/foo/bar.html

P
: Client Proxy
Fig.3 Relationship of each component
the information of
plained later. An
this server when it

opies its contents, it
y servers or which

 common webserver,
col and return the
EXT, etc…) to the
ency of each content
nt that is accessed
opied content to the
AdaptiveWebServer
the content the same
nt is accessed less

In this way, an
or server by copying

e, that is, it works on
er of. The user who

rowser configuration
connection via this
ver mentioned above

creates the copy of content and transfers it to other
AdaptiveWebServer, it has to notify the clients about it.
Moreover since this notification has to be transparent for the
users, it creates something like a local DNS(Domain Name
Service), that is, when it receives a request from a client, it
receives the content and the IP address of the mirror server
from the real webserver and registers the group of the
requested URL and the IP address. In this way, this
component can change the mapping of the URL and IP
address dynamically.

By using these components, we can develop our adaptive
webserver system that can distribute the server load on demand.
Next, we show the relationship of these compoments.
 As shown Fig. 3, the user, who uses this system, has to set up a
ClientProxy on the local host, and change the browser
configuration from the direct connection to the connection via the
ClientProxy. This configuration is fixed even if the network that
the user uses is changed, because the ClientProxy is always
deployed on the user’s host. This point is different from a
common cache server approach. On the other hand, an
AdaptiveWebServer has surely the same function of a common
webserver, and it also watches the frequency of each content
When an AdaptiveWebServer finds the content to be accessed
frequently, the server creates a copy of that content and transfers it
to another AdaptiveWebServer. In addition, when the server does
that action, it needs to get the information of other
AdaptiveWebServers. Therefore, it sends a request to the
RegistServer, which is mentioned above, to get the information
and select the suitable AdaptiveWebServer to transfer the content.
Our system can distribute the server load on the fly by the creation
or deletion of its mirror server and we explain the detail of
creation and deletion of mirror server next.

3.1 Creation of mirror server
An AdaptiveWebServer has some information that is shown
below.
1. The access number of each content.
2. The access time of each content
3. The URL list of mirror servers by each content
By using this information, it can find the access number of each
content per unit time. When the access number exceeds the
threshold, an AdaptiveWebServer begins to copy the content,
transfer it and notify the clients. We show this action sequence in
Fig. 4 and the behavior of each component below.

At first, (1) “bar.html” that is managed by Host 1 begins to be
accessed frequently. (2) Host1 decides that it should copy the
content and transfer it, then, Host 1 sends the request for getting
the information of other AdaptiveWebServers to the RegistServer
if the host has never gotten that information yet, or its expire is
over. (3) The RegistServer returns the information with the expire.
(4) The host selects another AdaptiveWebServer from several
servers using that information. The host that receives the content
(Host 2, Host 3)-, saves the content-, and notifies the relative path
from its document root to Host 1. Then, Host 1 creates the URL to
access the copied content using the relative path and adds it to the
content information (5). After that, when a client accesses Host 1
to get the “bar.html”, Host1 returns one of the other URLs that it
has created instead of the real content. Of course, it sometimes
returns the real content even if it has some URLs of the mirror

server. As soon as the client receives the URL, it resends a HTTP
request to the URL (7). Finally, the client receives the requested
content and creates the mapping table of the real URL and the
mirror URL. In this way, a client can create the local DNS
dynamically. Therefore, if the client tries to get the same content
again, it sends the request to a mirror server because it has the
mapping table. This operation is transparent for a user because the
ClientProxy encapsulates it.

http://www.test1.com http://www.test3.org

2
3

192.168.0.1
http://www.test1.com/foo/bar.html

http://172.1
/foo/bar.htm1

4

5

6

7

CP

Fig.4 Creation of mirror server

CP
CP

CP

CP

1

2
3

4

172.16.0.2
bar.html
RegistServer
6.0.2/others
l
CP
 : Client Proxy
http://www.test1.com
http://www.test2.net
10.2.1.8
 192.168.0.1
bar.html
http://www.test1.com/foo/bar.html
http://10.2.1.8/extra/192
.168.0.1/foo/bar.html
http://www.test1.com/
foo/bar.html
: Client Proxy
Fig.5 Deletion of mirror server

3.2 Deletion of mirror server
An AdaptiveWebServer deletes the copied content if it isn’t
accessed frequently. We show the behavior of this deletion below.
 In Fig. 5, Host2 received “bar.html” from Host1 and manages it.
Host2 decides that it should delete the content because of the
access number. Host2 deletes it and notifies this deletion to Host1
(1). When Host1 receives the deletion message, it deletes Host2
from the information of “bar.html”. By this operation, Host1
never sends the message that makes clients redirect to Host2.
However, the client that has already created the mapping table of
Host1 and Host2 still tries to send the request to Host2 (2). In this
case, since Host2 has already deleted the requested content, it
sends the message that makes the client delete the mapping table
to the client instead of the requested content (3). After the client
receives the deleted message, it updates the mapping table and
resends the request to the real server the get the content. In the
same way as the creation of mirror server, this operation is also
transparent for a user because of the ClientProxy.

4. EXPERIMENT
This system requires extra CPU and network overhead when it
creates a mirror server. In order to confirm the overhead and
advantage of this system, we conducted two types of experiments.
In type1, many clients request some contents with small size.
Besides, in type2, clients download some big size objects. The
reason why we conducted two types of experiments is that there
are two kinds of bottlenecks about a webserver. One is CPU and
another is network. We explain the details next.

4.1 Type1-Experiment
This experiment imitates that many clients requests some small
size contents in short time, for example, Olympic website or
World Cup website. In these cases, each content size is small but
it is requested so frequently.
4.1.1 Environment
In order to conduct this experiment, we prepare six computers and
a small content with 100kbytes. We use three computers for
AdaptiveWebServer, one for RegistServer and two for client.
These are connected to each other by 100Mbps Ethernet.
Although we should conduct this experiment using many clients,
we create a tester program instead of them. This program can send
a HTTP request to an AdaptiveWebServer and parse the received
content. It can also parse the message from an
AdaptiveWebServer and create the mapping table inside it. The
procedure of this experiment is as follows.
1. Start the RegistServer
2. Start three AdaptiveWebServers. As a precondition, each

AdaptiveWebServer knows the IP address of the
RegistServer. They register their IP address with the
RegistServer as soon as they start.

3. Send many requests to a specific URL continuously using ten
threads from the tester program in each computer. If the
tester receives the redirect message, it creates the mapping
table and resends the request to the instructed URL. We
measure the transition of the number of accepted request in
each AdaptiveWebServer

4. In order to evaluation this system, we also had the same
experiment using only one AdaptiveWebServer and
measured the transition of the number of accepted request.
Thus, the result of more than one AcriveWebServer
compares the result of one AdaptiveWebServer. These
results are the comparisons of total time of this experiment
and the average response time of clients in each case

4.1.2 Result
We show the transition of the number of accepted requests with
mirror servers in Fig. 6. The server that has the content of this
experiment is the original server (192.168.1.246) and the servers
that can receive the copied content are mirror server1
(192.168.1.242), mirror server2 (192.168.2.235). In this figure,
the original server creates the copy and transfers it to mirror
server1 in one second based on the access number. In the same
way, it transfers the copied content to mirror server2 in around
three second. The original server also begins to redirect clients to
the mirror servers case by case. After this procedure, each server
processes about 25-40 client requests in one second and this
experiment is finished in about for 49 seconds. In order to
compare, it takes about for 71 seconds to process the same
requests using only the original server. What is shown in this
experiment is that the advantage of this procedure has the value
performed even if it has the overhead. Moreover, table 1 shows
the comparison of response time per one client. It is clearly shown
in this table that a client can get its required contents faster using
this system than common webserver. On the other hand, in this
experiment, we can’t measure the overhead of creating mirror
servers. We think the reason is that the content is enough small to
prevent from producing an overhead of CUP and network.

 Without mirror server With mirror server

Response Time (ms) 139 89

4.2 Ty
This expe
size conte
update. W
4.2.1 Envi

Fig.6

0

10

20

30

40

50

60

70

0

N
u
m

b
e
r

o
f
re

q
u
e
st

s

Table 1 Response time of each client
pe2-Experiment
riment imitates that many clients download some large
nts with HTTP, for example, software download or
e explain the detail next
ronment

 Transition of the number of accepted requests

10 20 30 40 50 60 70 80

Time(s)

original server

mirror server1

mirror server2

original server(single
use)

The experiment of type2 is different from type1. We also prepare
seven computers and content with 3.3Mbytes. We use two
computers for AdaptiveWebServer, one for RegistServer and the
rest of them for clients. The computers for AdaptiveWebServer
and RegistServer connect to a Layer2 switch with 10Mbps and the
rest connect with 100Mbps. On client computers, we create 10
threads to execute the tester program we mentioned before;
therefore, each thread can execute one tester program and use
10Mbps. This is the reason why we configure the network
bandwidth. On this environment, we measure the download time
of some cases explained below.
1. Single AdaptiveWebServer and single client.

This case is to know the best time of downloading that
content.

2. Single AdaptiveWebServer and 40 clients.
In this case, we start an AdaptiveWebServer and 40 clients
simultaneously. We can get the download time that if 40
clients begin to download that content from one webserver.

3. Two AdaptiveWebServer and 40 clients
In this case, we start two AdaptiveWebServers but the target
content is in one AdaptiveWebServer. Then, we start 40
clients simultaneously. When clients start access and many
requests accumulate in the queue an AdaptiveWebServer
has, the AdaptiveWebServer start to copy and transfer that
content.

We measure the average time of downloading that content with
copying, transferring and then using mirror server. In addition, we
also measure the average time of downloading while the
AdaptiveWebServer is doing that procedure of creating a mirror
server.
4.2.2 Result
We show the result of this experiment in table2. In case1, it took
about 3.8 (s) to download that content with single client from an
AdaptiveWebServer. This result is reasonable because an
AdaptiveWebServer connects to a Layer2 switch with 10Mbps.

Therefo
2.64 (s
Becaus
(s). On
Adaptiv
case2 f
worse f
mirror
result o

5. EVALUATION
The results of these experiments show that the system we propose
can distribute the server load dynamically without any operation
of administrators. Moreover, the overhead produced by creating a
copy makes the download time worse only 19% even if the size of
content is big. In addition, this disadvantage appears only in
creating procedure, then after that, the download time becomes
better. Besides, the remarkable point is that while the size of the
content clients requests is up to 300kbyte, the main bottleneck of
the server is CUP, however, as the size is over 300kbytes, network
bandwidth becomes the main bottleneck. We found this when
doing type2 experiment. Therefore, in type1, a trigger to create a
mirror server is the access number of the target content but in
target2, a trigger is the length of the request queue an
AdaptiveWebServer has. From these results, this system should be
improved to change the policy, which makes a copy with the size
of contents and network bandwidth.

6. CONCLUSION
In this paper, we propose our adaptive webserver system using
self-reproducing approach in order to distribute the server load
dynamically. In addition, we implement this system and confirm
the usability in the experiment. This system can distribute the load
without any operations of the administrator and its procedure is
also transparent for users. Our system doesn’t cover dynamic
contents like CGI, Servlet, JSP, however, this will perform
enough in the case of processing the large size contents such as
pictures, movies or music. Furthermore, we would now like to
implement the browser that has the function of ClientProxy
because in the present implementation, a user has to start a
ClientProxy and change the configuration of the browser. This
operation is only done once but can be little burden for a user.

7. REFERENCES
[1] V. Cardellini, M. Colajanni, P. Yu.: Dynamic load balancing

on web-serve systems, IEEE Internet Computing, May-June
1999

[2] Junichi Suzuki and Yoshikazu Yamamoto. :OpenWebServer:
an AdaptiveWeb Server Using Software Patterns, IEEE
Communications, Vol. 37, No.4, pages 46-52, April 1999

[3] Barish, G.; Obraczke, K.: World Wide Web caching: trends
and tech-niques , IEEE Communications Magazine ,
Volume: 38 Issue: 5 , May 2000 Page(s): 178 –184

[4] V. Cardellini, M. Colajanni, and P. Yu: DNS

 Download Time(s)

Case1 (single server and single client) 3.8

Case2 (single server and 40 clients) 165.8

Case3 (two server and 40 clients) 73.7

Case3 (while creating mirror server) 197.5
Table 2 Download time in each case
re, if the server can use the whole bandwidth, it will take
). In case2, we believe this result is also reasonable.
e based on the result of case1, it will take 3.8 * 40 = 152
 the other hand, in case3, the average time while the
eWebServer is creating a mirror server is over the result of
or about 31.7 (s). This means that the performance got
or about 19% while the AdaptiveWebServer was creating a
server. However, the average time is below a half of the
f case2 overall.

Dispatching Algolithms withState Estimators for
Scalable Web-Server Clusters, World Wide Web
J.Baltzer Science, Bussum, Netherlands, Vol.2, No. 2,
July 1999

[5] R. Tewari et al., “Beyond Hierarchies: Design
Considerations for Distributed Caching on the
Internet,” Techrep. TR98-04, Univ. of Texas at Austin,
1998.

	INTRODUCTION
	APPROACH
	DESIGN AND IMPLEMENTATION
	Creation of mirror server
	Deletion of mirror server

	EXPERIMENT
	Type1-Experiment
	Type2-Experiment

	EVALUATION
	CONCLUSION
	REFERENCES

