

Abstract—We present the design of a markup language that is
based on W3C standards and allows document authoring in a
device independent fashion. We focus on layout and pagination
capabilities enabled by the language and show that pagination
is done in a highly structured manner and layout can be
preserved to a high degree. We indicate constraints which are
taken into account as well as information which cannot be
assumed as available during pagination. We describe a user
feedback loop to optimize pagination results based on user
provided information.

I. INTRODUCTION
A promise of mobile computing is that users can access

remote applications using a great variety of devices with
data processing capabilities including PCs, PDAs and cell
phones.

 While data transport is increasingly disappearing as an
inhibiting factor for mobile access, there is still a lack of
accepted models for user interaction and content
presentation (UICP) which satisfy the needs of efficient
application development and device specific characteristics.
Various approaches are being considered stressing various
constraints.

The mechanisms of the World Wide Web have set the
standard for UICP based on PC browsers. The large number
of existing HTML pages induced efforts for automatic
reauthoring into representations which can be rendered on
handheld devices with varying screen sizes. Such approaches
(e.g. [1]) target transformations based on syntactical
analysis, element specific reductions (e.g. image rescaling)
or content exclusion based on assumptions regarding content
semantics. Experiments have shown that, while generated
content is legible, the aesthetical quality of presentations is
low ([1]).

A second school of thought advocates the development of
distinct UICP models for distinct devices. Providing a
dedicated UICP model for every device ensures maximal
UICP adaptation, at the expense of development cost ([2]).
To alleviate this situation, approaches such as [2], [3]
provide UICP models for a number different device classes.
Still, UICP definition needs to be done several times.

Regarding implementation efficiency, implementing a
UICP model once which can be be reused for every possible
end user device is an ideal approach. To support device
independent authoring various techniques have been
considered:
- abstract user interfaces mapped onto a concrete UI

representation of an employed device ([4], [5], [6])
- content elision and transcoding techniques (e.g.[1], [7])
- presentation structure adaptations such as for dynamic

layouting and pagination (e.g. [7], [8]).

Our approach targets device independent authoring of
documents which are similar to HTML pages. They are
defined according to a novel Renderer Independent Markup
Language (RIML). RIML is comparable to existing
approaches, as it includes techniques of the types mentioned
above. However, it differs from existing approaches for a
number of reasons.

 RIML stresses the separation of content definition (i.e.
what is to be presented) from the description of dynamic
adaptations which can be performed on the content in order
to match varying capabilities of devices.

RIML is based on newest emerging standards. The current
draft of XHTML2.0 ([9]) is used for content such as
paragraphs, tables, images, hyperlinks, etc.. For form based
interaction, XFORMS elements have been included [10].

Special row and column structures are used in RIML to
specify content adaptation. Their semantics is enhanced to
cover pagination and layout directives in case pagination
needs to be done.

RIML eases device independent authoring in several
ways. Authors familiar with XHTML / XFORMS can easily
create content using RIML since it is based on such
languages. Authors familiar with HTML tables or framesets
can easily use row and column constructs for defining
adaptation. To the best of our knowledge, RIML is the first
approach addressing pagination for XForms.

Automated pagination support was a main design goal for
RIML. Other approaches assume selectors that explicitly
define device dependend breaks, in effect, falling back to
device related authoring. In contrast, a RIML author requires
a minimal knowledge of how a desired layout will be
paginated by the RIML adaptation system. In this respect,
RIML is related to approaches [8], [7]. It differs from these
in that it supports generic HTML like (row, column)
constructs for adaptation, respectively applies adaptation to
arbitrarily nested row and column structures.

In this paper, we focus on RIML pagination capabilities.
In Section 2, we present a basic example of pagination. In
Section 3, basic adaptation mechanisms are discussed. In
Section 4, enhancements are presented and in Section 5, row
and column nesting is described for flexible pagination
definition. In Section 6, the author and end user views are
highlighted. We conclude with an outlook on future work.

II. BASIC PAGINATION ELEMENTS

The basic principle for enabling RIML document
pagination is that of a paginating row or column. To
understand its purpose, consider as an example a simple
document representing a list of news items:

Flexible pagination and layouting for device
independent authoring

 Gabriel Dermler Guido Grassel Axel Spriestersbach
 Michael Wasmund Nokia Research Center Thomas Ziegert
 IBM Lab Böblingen, Germany Helsinki, Finland SAP Research
 {gabriel.dermler, mwasmund} guido.grassel@nokia.com {axel.spriestersbach, thomas ziegert}
 @de.ibm.com @sap.com

Art 1: A report on the sales of heavy machinery ... more
Art 2: Latest figures on crop harvest ... more

...

Art N: Shipyard results showing improvement ... more

 Fig. 1. List of news without pagination

The resulting page corresponds to what the author of the

document expects to be shown on a large screen where no
adaptation has to be applied. Two cases can be
distinguished when screen size is not sufficient to achieve
this ideal result.

First, the width of the available screen surface may be
such that the individual lines have to be wrapped around.
However, the overall content can be still displayed on one
page. Line wrapping is typically supported by today’s
browsers, so that no specific support is provided by RIML,
to this end.

In the second case, the available screen surface is assumed
to be too small to display the entire list at once. Pagination is
applied resulting in several pages. Besides that, hyperlinks to
switch between the pages are included (next, prev):

<next>

Art 1: A report on the
sales of heavy machinery
... more
Art 2: Latest figures on
crop harvest ... more

<prev>

...
Art N: Shipyard results
showing improvement
... more

Page 1 Page 2

 Fig. 2. List of news distributed on several pages

Pagination of the shown type is not part of today’s

browser functionality. In RIML, it is enabled by a
paginating column or row. In the example, a paginating
column is included (Fig. 3).1

The document contains as content XHTML elements
denoting news titles and hyperlinks to retrieve the news. The
RIML specification resembles what an XHTML document
would consist of in its body part. To enable pagination,
additional constructs are included:

1. section elements delimit the content which can be
distributed onto different pages, i.e. all the elements
appearing in a section must be shown on the same page.
Sections therefore serve as a semantic hint for pagination. In
the example, every article could be displayed on a different
page.

2. a special section contains the navigation elements to be

1 For simplicity, we omit here the level of frames which are the RIML

container type taking in RIML document sections.

generated for every paginated page (prev, next).
These are displayed only if pagination occurs and include
attributes indicating the type of link to show (<prev>,
<next>) as well as to which sections they are related. In the
example, the scope attribute refers to the news sections
container: navigation links are generated pointing to pages
containing news sections which do not fit on the displayed
page.

 Fig. 3. RIML document with a paginatingColumn

3. containers (here, a column) are associated with the

sections of the document body by means of a “contId”
attribute carried by the section. Column “c1.2” takes in the
news sections, column “c1.1” takes in the section with
navigation elements. Sections are inserted into containers in
specified order, i.e. article 1 content comes before article 2
content, etc.

A container delimits a rectangle area on the screen where
associated sections are presented. Therefore, it assembles
sections whose content is semantically related, but might be
distributed over several pages. Containers have minimum
and preferred values for their width. The author uses the
former to indicate the minimum width which makes sense
for the container content. The latter indicates the width in
the ideal case (i.e. when no adaptation is needed).

4. Layout specifies the nesting of row and column
containers, similar to nested tables in HTML. In the
example, the column “c1” includes columns “c1.1” and
“c1.2”, the former taking in the navigation section, the latter
taking in the news sections. I.e. sections are organized in an

<html>
 <head>
 <riml:layout>
 <riml:column xml:id="c1"
 riml:minWidth=”150px”
 riml:preferredWidth=”300px”>
 <riml:column xml:id="c1.1"/>

<riml:paginatingColumn xml:id=”c1.2”/>
</riml:column>

 </riml:layout>
</head>
<body>
 <section riml:contId=”c1.1” >
 <riml:navigation>

<riml:navigation-links
 riml:scope=”c1.2”

 riml:links=”previous”
riml:linksValue=”relative-order” />

<riml:navigation-links
 riml:scope=”c1.2”

 riml:links=”next”
riml:linksValue=”relative-order” />

 </riml:navigation>
 </section>
 <section riml:contId=”c1.2” >

 Art1: A report on the sales of heavy
 machinery …

 more
 </section>
 . . .

 <section riml:contId=”c1.2” >
 ArtN: Shipyard results showing
 improvement . . .

 more
 </section>
 </body>
</html>

outer column within which the navigation elements are
displayed, below which the news related sections follow.
The width for “c1” is applied to child columns, as they do
lack own width values.

5. The “c1.2” column is specified as a paginating
container, i.e. associated sections can be distributed over
different pages. The actual distribution depends on how
many sections can be displayed on the same page (see
below). In the ideal case (i.e. sufficiently large screen), no
distribution needs to take place.

III. ADAPTATION MECHANISM CONSIDERATIONS

Translation to the markup language supported by a device
concerns two aspects. First, translation of section content
has to be done, for example, to HTML 3.2 or XHTML
Mobile Profile in case of mobile devices or to WML for
legacy mobile phones. How suitable a translation to
VoiceXML can be remains to be seen.

Translation of layout representation is the second aspect
to consider. Layout specification in RIML (via container
width and nesting) has to be mapped onto elements of
targeted markup languages. The width attribute in table
elements is the equivalent to container width. XHTML MP
provides, in a first approximation, tables similar to HTML.
WML is more restrictive as it offers only a single column
containing several rows.

For the example above, translations are straight-forward.
The news section content consists of text and hyperlinks
which have counterparts in HTML, XHTML MP or WML.
The nested column layout is mapped to nested tables in
HTML or XHTML MP. For WML, the outer column is
mapped onto the one available column of WML while the
sections contained in the inner columns are mapped onto
WML rows.

Pagination is more complex. Put simply, the goal of
pagination is to determine how much content fits onto a
screen at once. Pagination also has to establish where within
a RIML document, page boundaries are to be assumed. It is
difficult to find an exact answer to these questions, due to
limited knowledge about the constraints of content
presentation.

 Constraints such as screen size in pixels can be taken into
account. User preferences (via browser settings) for screen
resolution or fonts imply a low predictability of content
appearance on the device screen. Hence, we do not assume
that pagination can exactly derive the surface consumption
implied by RIML documents. To control content appearance
despite these uncertainties, we use two mechanisms.

First, authors specify minimum and preferred pixel widths
for layout containers. Authors can base value selections on
content appearance in their browsers using their browser
settings. They can also use their experience as to which
values lead to good content presentations. The pagination
has to guarantee that a container width value is applied
between the specified minimum and preferred width values.
The closer the selected value to the preferred one, the better.

Given those metric hints, a pagination algorithm has
enough knowledge to paginate without exceeding the screen
surface width. A similar approach cannot be applied with

respect to container height, due to mentioned undetectable
user preferences. The determination of optimal height is
based on two observations.

First, we expect that most browsers support vertical
scrolling. Vertical scrolling was shown to be acceptable
from a usability point of view [13], in contrast to two-
dimensional paning. Vertical scrolling was shown to be
disturbing, if certain limits are exceeded [11]. To avoid the
latter, we enable the user to reduce (resp. increase) the size
limit which is applied during pagination. In support of this,
the adaptation system is to insert corresponding control
hyperlinks. In effect, the user exploits the visible outcome of
pagination to avoid undue vertical scrolling depths.

IV. REPEATING CONTENT DURING PAGINATION

News (DSource Inc.)

Art 1: A report on the sales of heavy machinery ... more
Art 2: Latest figures on crop harvest ... more
...
Art N: Shipyard results showing improvement ... more

Fig. 4. Example page including a title

Pagination should not simply cut the content of a RIML
document into distinct pieces. Reconsider the earlier
example and assume that an identifier of the news
provider is included (Fig. 4). In case of pagination, the
news provider is expected to be repeated on all resulting
pages:

News (DSource Inc.)
<next>

Art 1: A report on the
sales of heavy machinery
... more
Art 2: Latest figures on
crop harvest ... more

News (DSource Inc.)
<prev>
...
Art N: Shipyard results
showing improvement
... more

Page 1 Page 2

Fig. 5. Repeated content on paginated pages

To support this, RIML enhances the semantics of non

paginating containers. For the example, an additional
section (containing the news provider identifier) and a
column placing this section in the layout are included:

Fig. 6. Inclusion of a news provider section

A non-paginating container implies that child elements

are repeated on resulting pages (which include parts of the
container content). In the example, containers “c1.0” (i.e.
the title section) and “c1.1” (i.e. the navigation section)
are to be repeated on all resulting pages. Repetition is also
required with respect to “c1.2” (containing the news
sections). As this container is paginating, repetition
implies a distribution of its content over the resulting
pages to achieve consistency across the paginated pages.

V. LAYOUTING VIA CONTAINER NESTING

RIML permits to nest rows and columns, enabling
authors to create arbitrarily structured layouts similar to
well-known techniques used with HTML.

News (DSource Inc.)

Science
Art1: Chip design.. more
...
ArtN: IT methods .. more

Politics
Art1: Geneva talks.. more
...
ArtN: Oil supply up.. more

Fig. 7. Example with nested column and row structures

For pagination, nesting needs deeper consideration.
Assume that above page has to be displayed on a narrow
screen where just one news container (politics or science)
can be fitted in. To enable pagination between the two
parts, we include a paginating row containing the
containers for politics (“c1.r1.c1”) and science
(“c1.r1.c2”) (see Fig. 8).

A number of implications arise from this. First, the
usage of a row container implies a preferred width value,
which is to be applied to the elements contained (i.e. the
“politics” and “science” parts). This allows for taking into
account desired relative widths for the individual parts.

The pagination effect is twofold. First, as the row
container is of paginating type, its children can be
distributed over different pages (Fig. 9). Such pagination
would, for instance, occur for narrow device screens
which have sufficient height to display a long list of items.
For device screens with limited screen height, a second
pagination scheme is enabled (Fig. 10).

Insertion of navigation links is adaptive. If pagination
occurs only within the row container, links allowing to
switch between the news categories are inserted. In case
pagination is done both within row and column
containers, navigation links for both levels are inserted.
This corresponds to the specification in the document

where one navigation element has a scope set to the row
container, while a second element has a scope set to the
“politics” container.

In consequence, nesting of row and paginating
containers allows a high degree of flexibility in layout
specification, similar to the layout techniques used for
today’s PC browsers. The pagination semantics defined
for the nesting allows performing the implied adaptation
in case of constrained device screens. As shown in Fig. 9
and 10, adaptation is applied only on the necessary level.
Moreover, navigation is enabled according to the applied
pagination scheme.

<html><head>
<riml:layout>
 <riml:column xml:id="c1"
 riml:minWidth=”150px”
 riml:preferredWidth=”600px”>
 <riml:column xml:id=”c1.0” />
 <riml:paginatingRow xml:id=”c1.r1”>
 <riml:column xml:id=”c1.r1.c1”
 riml:preferredWidth=”300px” >
 <riml:column xml:id=”c1.r1.c1.1”/>
 <riml:paginatingColumn
 xml:id=”c1.r1.c1.2” />
 </riml:column>
 <riml:column xml:id=”c1.r1.c2”
 riml:preferredWidth=”300px”>
 <riml:column xml:id=”c1.r1.c2.1”/>
 <riml:paginatingColumn
 xml:id=”c1.r1.c2.2” />
 </riml:column>
 <riml:paginatingRow />
</riml:layout>
</head>
<body>
 <section riml:contId=”c1.0” >
 News (DSource Inc.)
 </section>
 <section riml:contId=”c1.r1.c1.1” >
 <riml:navigation>
 <riml:navigation-links
 riml:scope=”c1.r1”
 riml:links=”previous”
 riml:linksValue=”relative-order”/>
 <riml:navigation-links
 riml:scope=”c1.r1”
 riml:links=”next”
 riml:linksValue=”relative-order”/>
 </riml:navigation>
 <riml:navigation>
 <riml:navigation-links
 riml:scope=”c1.r1.c1.2”
 riml:links=”previous”
 riml:linksValue=”relative-order” />
 <riml:navigation-links
 riml:scope=”c1.r1.c1.2”
 riml:links=”next”
 riml:linksValue=”relative-order”/>
 </riml:navigation>
 </section>
 <section riml:contId=”c1.r1.c1.1” >
 Politics
 </section>
 <section riml:contId=”c1.r1.c1.2” >
 Art1:Geneva talks …
 </section>
 <section riml:contId=”c1.r1.c1.2” >
 ArtN:Oil supplies up …
 </section>
 <!-- science part skipped -->
</body></html>
Fig. 8. RIML document with nested containers

. . .
 <riml:layout>
 . . .
 <riml:column xml:id=”c1.0” />
 . . .
 </riml:layout>
 . . .

 <section riml:contId=”c0.0” >
 News (DSource Inc.)
 </section>

. . .

News (DSource Inc.)
 <nextCateg>

Politics
Art1: Geneva talks.. more
...
ArtN: Oil supply up.. more

News (DSource Inc.)
<prevCateg>
Science
Art1: Chip design.. more
...
ArtN: IT methods.. more

Page 1 Page 2

Fig. 9. Pagination within the row container

News (DSource Inc.)
 <nextCateg>
 <nextArticle>

Politics
Art1: Geneva talks.. more

News (DSource Inc.)
<prevCateg>
<prevArticle>
Politics
ArtN: Oil supply up.. more

Page 1 Page N

Fig. 10. Simultaneous pagination in rows and columns

VI. AUTHORING AND END USER VIEWS

A main design goal for RIML was to simplify authoring
with respect to device knowledge. The presented layout
structuring is largely independent of device
characteristics. Container definitions and nesting is fully
device independent. Width indications are content related,
i.e. device independent. An author specifies the preferred
width as the equivalent he would like to see for a
container when presented on an unconstrained screen. The
minimal value is the one he assumes to make sense for the
container content.

The structuring of content into sections which can be
displayed atomically on the smallest targeted device is the
only aspect where a RIML author has to be aware of
device specifics. More exactly, he has to be aware of the
minimal available screen surface to be supported. The
current RIML specification corresponds to the capabilities
of the pagination we have initially designed and are
implementing.

The adaptation concepts presented here ensure that a
user is presented, as close as possible, with the preferred
layout defined by an author, i.e. RIML has built-in layout
preservation capabilities. If a screen is large enough, the
preferred layout will be displayed. In case, adaptation is
needed, it is constrained to the highest level possible in
the layout specification of the document. Layout below
that level is preserved. If pagination occurs, adaptation is
done in a highly structured manner. Navigation links are
inserted according to the layout nesting structure which is
adapted during pagination.

The adaptation mechanisms ensure that paginated pages
do not violate screen width limits. In contrast, we expect
that RIML adaptation implies vertical scrolling for the end
user. In addition, a user control is assumed allowing a user
to reduce content limits applied during pagination. This
user feedback loop allows coming close to what a user

considers acceptable vertical scrolling, on an individual
basis.

VII. OUTLOOK

We have completed the first specification of RIML and
the design of the adaptation system needed to transform
RIML into HTML, WML and XHTML MP markup. We
are implementing this system including required
pagination algorithms and, in particular, support for
paginating XFORMS. In parallel, RIML extensions are
considered to support additional features. Both current
and future designs of RIML are kept such that other
techniques (e.g. image rescaling) can be included into
RIML. RIML design, although not focusing on inventing
such mechanisms, is kept open to this end.

The work described in this paper is being done within
the EU supported project CONSENSUS (IST-Program /
KA4 / AL: IST-2001-4.3.2)2 with participation of
industrial partners. More information about Consensus
can be retrieved from its Web site [12].

REFERENCES
[1] T. W. Bickmore, B. N. Schilit, “Digestor: Device-independent Access

to WWW” Proc. of the 6th WWW Conf., Santa Clara, CA, USA
1997.

[2] Unwired Planet Inc., Dev Guide V1.0, Redwood Shores, USA, 1997 .
[3] I. Cooper, R. Shufflebotham, “PDA Web Browsers: Implementation

Issues”, Tech. Report, Canterbury Comp. Lab, Univ. of Kent, UK,
1995.

[4] “User Interface Markup Language”, www.uiml.org ,
[5] “Extensible Interface Markup Language”, www.ximl.org .
[6] J. Eisenstein et al. , “Applying Model-Based Techniques to the

Development of UIs for Mobile Computers“, Proc. of the Conf. on
Intelligent User Interfaces, Santa Fe, NM, USA, 2001 .

[7] S. Mandyam, et.al. , “User Interface Adptations”, W3C Workshop on
DI Authoring Techniques, http://www.w3.org/2002/07/DIAT .

[8] H. Keränen, J. Plomp , “Adaptive Runtime Layout of Hierarchical UI
Components”, Proceedings of the NordCHI 2002, Arhus, Denmark.

[9] XHTML2, http://www.w3.org/TR/xhtml2/ .
[10] XFORMS, http://www.w3.org/MarkUp/Forms/ .
[11] J. R. Baker, “The Impact of Paging vs. Scrolling on Reading

Passages”,
http://psychology.wichita.edu/surl/usabilitynews/51/paging_scrolling

[12] Consensus web site, http://www.consensus-online.org .
[13] V. Giller et.al. ,„Usability evaluations of multi-device applications.

example studies”, submitted to the Conf. on Mobile HCI, Sep 2003,

2 This document does not represent the opinion of the European

Community. It is also the responsibility of the authors and not the
responsibility of the EC using any data that might appear therein.

