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Abstract

The ability to stay continually connected, due to the
ubiquitous availability of a wide variety of networks, is
a present day reality. Yet the convenience and trans-
parency of distributed file systems across heterogeneous
networks have a long way to go. In this paper, we ex-
amined the cache replacement algorithm on the client-
side by taking the low-bandwidth connection into con-
sideration. Motivated by the file access patterns in dis-
tributed file systems, we have proposed a novel caching
replacement algorithm that takes both inter- and intra-
file semantics into consideration when making caching re-
placement decisions. Not only does our approach perform
better than conventional algorithms in terms of the hit
rate, but also it reduces the number of cache replace-
ments significantly, which results in a big saving on the
synchronization-related communication overhead, essen-
tial to the effectiveness of mobile file access.

1 Introduction

The dream of staying connected anywhere, anytime isn’t
any more a foreseeable eventuality but has become a
present day reality. A well traveled laptop user may stay
connected via half a dozen different networks throughout
the course of a day, from a cable modem or DSL connec-
tion at home, to a high speed ethernet network at work
or school, to a bluetooth network in the car, to a WiFi
network at the airport or the neighborhood coffee shop.

Along with the freedom of moving, a user expects to
be connected to his/her personal files and data whereever
he/she may be. Each type of network has its own charac-
teristic requirements, services and limitations. To be ef-
fective, the file system should be able to adapt to the vari-
ations of the underlying network available, as exploited in
the Cegor file system [11].

Traditionally, the three basic steps involved in access-
ing data on the road are: (1) retrieve the files from the
server, (2) work on them locally, and (3) write the changes
back to the server. Almost all clients in distributed file

systems have a client-side cache to minimize communi-
cation with the server, improving system performance on
the whole. It can not be assumed that a fast network
connection to a file server always exists, which is a fact
that will not be changed in the foreseeable future. Thus
policies must be designed to have a minimal reliance on
the underlying communication overhead, resulting from
cache misses (fetching) and cache replacement (update
synchronization).

In the most popular distributed file system NFS [3],
where delayed write back is implemented, writes are
flushed back to the server from the cache after some pre-
set time or when a file is closed. The Andrew file system
AFS [5] uses a write back on close policy to reduce write
traffic to the server. When the cache is full and programs
request more data from AFS, the Cache Manager must
flush out cache chunks to make room for the data based
on a LRU type algorithm. So each time when a cache
gets full, data has to be either written back to the server
or dropped, which generates an additional exchange be-
tween the client and server. Therefore, communication
overhead increases with replacements. Caches for distrib-
uted file systems, that operate across heterogeneous, es-
pecially low-bandwidth, networks, must not only provide
a high hit rate, which is the same goal as of conventional
caches that operate over homogeneous networks, but also
perform as few replacements as possible.

With this in mind, in this paper we propose a semantic-
based cache replacement algorithm, which takes both
intra-file and inter-file relationships into consideration.
File access patterns aren’t random, and have been ex-
ploited by several algorithms that utilize the inherent re-
lationship (which we will define shortly) between files to
perform pre-fetching [1, 2] for disconnect operations. Our
approach, from a different angle, does not use this rela-
tionship information to fetch files, rather it concentrates
its efforts on keeping these relationships in the client
cache. An eviction index is defined and calculated based
on these relations. ’Strong’ relations are preserved and
’weak’ ones replaced. Not only does this approach deliver
effective hit rates but also it decreases the communication



overhead in general as compared to other representative
replacement algorithms such as LRU, LFU, and Greedy-
dual size [4] when run against the DFStraces [8] from
CMU.

We argue that our approach outperforms existing
caching algorithms for two reasons. First, it minimizes
the need for replacement and consequently the synchro-
nization overhead. By a comprehensive simulation, we
show that our approach produces the same or better hit
rates than other algorithms, while at the same time the
proposed algorithm results in only half of the number of
replacements. Second, it takes the relationship between
files into consideration while conventional approaches ig-
nore them.

The rest of the paper is organized as follows. The de-
sign of the caching algorithm is presented in Section 2.
Section 3 describes the trace files used in the performance
evaluation. The details of implementation is reported in
Section 4, followed by the performance evaluation in Sec-
tion 5. Related work and concluding remarks are listed
in Section 6 and Section 7 respectively.

2 Design

The basic idea of the proposed approach is motivated by
the observation that file access patterns are not random,
which are affected by the behavior of users and appli-
cation programs. We believe that there is a semantic
relationship between two files in a file access sequence
for most of time. We classify this relationship into two
categories, inter-file relations and intra-file relations. An
inter-file relationship exits between two files A and B, if
B is the next file opened following A being closed. A is
called B’s precursor. An intra-file relationship is said to
exist between two files A and B if they are both open
before they are closed. Our objective is to translate this
relationship information into the notion of eviction index,
based on which caching replacement can be performed.
The relationship may be ‘strong’ or ‘weak’. Our caching
replacement algorithm preserves the ‘strong’ while replac-
ing the ‘weak’.

To define an inter-file relationship, we use the infor-
mation obtained by studying DFStraces[8], which is the
only public available distributed file systems traces, and
our own file activity traces captured by system call inter-
ception, which was collected in 2004 [10]. We found that
something common in both traces, a large portion of the
files examined has a small number of unique precursors
(precursors rather than successors are considered as this
information is easy to obtain and manage). In some cases,
80% of the files have only one unique precursor as can be
seen in Figure 1. Similar results have been observed in
other study [6].

A heuristic parameter, INTERi, is defined to represent

the importance of a file i with respect to the inter-file
relations with it’s precursors. The bigger the importance
the less likely it will be replaced. Therefore it is used as an
eviction index by our caching algorithm. The importance
of the file is determined by the following factors.

Xi - represents the number of times file i is accessed.

Ti - represents the time since the last access to file i.

Tj - represents the time since the last access to file j
where j is a precursor of i.

Yj - represents the number of times file j precedes file i.

INTERi =
Xi

Ti +
∑n

j=1(Tj − Ti)
Yj

Xi

(1)

The importance of file i, as shown in Equation (1) is
directly proportional to its access count and inversely to
the time interval since its last access. The summation
represents the strength of the inter-file relationship i has
with its precursors.

The strength of the inter-file relationship between i and
j depends not only on the recency of access of i or j
represented by Tj − Ti but also on the number of times
j precedes i represented by Yj . Therefore the bigger the
weight Yj

Xi
, the more importance is given to the recency.

Considering the case where file j (a popular precursor to
file i meaning Yj

Xi
is relatively large ) has occurred more

recently than file i, that is the recency Tj − Ti would
be negative, we can easily deduce that the summation
value is reduced and the importance of file i is increased.
This is exactly what we expect to happen, if j has been
accessed recently, i is highly likely to be accessed next
and should stay in the cache. Given this definition of the
inter-file relationship, files with stronger relationships are
given more importance than files with weaker relations.
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Figure 1: The cumulative distribution function of precur-
sor counts of file access.



Next, we give the definition of the intra-file relation-
ship, which exists between two files that open concur-
rently. An intra-file relationship is based on the concept
of the shared time. Consider two files i and j that are both
opened concurrently and i is closed before j is closed, then
we define the shared time of i with respect to j, Si,j , as
the time between i’s close and the later of the two opens
as shown in Equation (2). The shared time of file i is
calculated when file i is closed. The rationale behind this
definition is files that have relatively large shared time
are likely to share time in the future.

Si,j = C(i)−MAX(O(i), O(j)) (2)

where O(i) and C(i) are the open and close times of file
i respectively and C(i) < C(j).

A heuristic parameter, INTRAi, is defined to repre-
sent the unimportance of a file i based on it’s intra-file
relations, shown in Equation (3). This is opposite to the
definition of the importance based on inter-file relations
explained above, in the sense that the bigger the value
the less important is the file. Here rather than depending
on precursors, we define INTRAi based on the files that
shared time.

INTRAi = Ti +
n∑

j=1

(Tj − Ti)
Si,j

Stotal
(3)

Ti - represents the time since the last access to file i.

Tj - represents the time since the last access to file j
where j is open before i is closed.

Si,j - represents the shared time of file i with respect to
file j where i is closed before j.

Stotal - represents the total shared time with all files that
are open before i is closed (

∑n
j=1 Si,j).

The strength of the intra-file relationship between i and
j depends on the recency of access of i and j represented
by Tj − Ti, which is weighted by the relative shared time

Si,j

Stotal
. If file j has been accessed more recently than file

i and Si,j is relatively large, INTRAi is reduced so that
file i is less unimportant. On the other hand, if file j
has been accessed much more before file i and Si,j is rel-
atively large, the unimportance of i increases. This way,
the intra-file relations are preserved in the cache using
INTRAi as an eviction index.

Finally, it is straightforward to combine the inter-file
and intra-file relationships to propose a combined caching
replacement approach, represented as BOTHi, as follows:

BOTHi =
Xi

Ti +
∑n

j=1
(Tj − Ti)

Yj
Xi

+
∑n

j=1
(Tj − Ti)

Si,j
Stotal

(4)

Next, before proceed to evaluate these approaches in one
general context, we present the workload used in our eval-
uation.

Trace Opens Closes Duration(hrs) Files
Mozart1 25890 33953 49.43 709
Mozart2 93575 126756 162.83 1644
Dvorak1 122814 196039 121.75 4302

Ives1 41245 55862 75.70 247
Ives2 26911 36614 48.81 686

Barber1 30876 42155 52.12 725
Barber2 14734 20005 23.99 592

Table 1: Statistics of seven traces from DFSTraces.

3 Workload

Analysis of user behavior and file access patterns from
file system traces help in making design decisions [12].
They also serve as workloads over which to test exper-
imental systems. We used the DFSTraces [8] collected
from Carnegie Mellon University as the workload to test
our cache simulator. During the period from February
’91 to March ’93 the Coda project collected traces of all
system call activity on 33 different machines. Analysis of
seven traces files (two from Mozart, Ives and Barber each
and one from Dvorak) were performed. The machine Bar-
ber was a server with the highest rate of system calls per
second. Ives had the largest number of users, and Mozart
was selected as a typical desktop workstation. Some of
the statistics of the seven traces used are presented in the
Table 1.

As these traces are a decade old it very likely that ac-
cess patterns have since changed. We therefore developed
our own system to collect traces of file access patters of
users in a lab setting. We collected traces from four ma-
chines running Linux over periods ranging from a day to a
week. This project is still a work in progress but we have
already observed significant differences in access patterns
and user behavior comparing with the DFS traces mainly
because of the emergence of the Internet. What interest-
ingly hasn’t changed is the precursor counts of files. We
still see a majority of files have at most one or two very
’popular’ precursors among their individual set of precur-
sors. This is again because file accesses aren’t random.

4 Implementation

A simple client file system cache simulator was written to
operate on the DFStraces as described in Section 3. We
only consider the open and close system calls recorded
in the traces. The cache itself is simulated using a hash
table. We also maintain a list of closed and currently
open files to keep track of changes to access count, last
access time, precursors, and file size. The simulator goes
through the trace looking for the open and close system
calls. On encountering an open, we perform the following
operations: First we check if space is available in the
cache. If it is, an entry corresponding to the file that has



been opened is added to the Open list and Close list, and
the file itself is added to the cache. The entry added into
each list is different but share common information such
as the filename, its size and the time it was opened. Every
entry for closed file also maintains a precursor list and
counts for each precursor in the list. Every new opened
file is added to the end of the Close list. If it already
exists in the Close List it’s entries open time is updated
with the new open time. The basic structure is shown in
Figure 2. If the cache runs out of cache space, files need
to be replaced to accommodate the new file. To prevent
large files from pushing many small files out of the cache
we define a MaxFileSize threshold. Any file bigger than
this threshold value isn’t brought into the cache. We
set this threshold as 30% of the total cache size. After
this check is performed the main replacement policy is
implemented. An eviction index is calculated for each file
in the cache. Depending on the policy the file with the
biggest or smallest index is removed from the cache. If
this doesn’t create enough space to accommodate the new
incoming file the file with the next biggest/smallest index
will be removed. This process repeats until enough space
has been freed to accommodate the new file. Calculation
of the index depends on the cache replacement policy.

To compare our approach with others in the same con-
text, we have implemented seven different caching re-
placement algorithms as follows.

1. Round Robin (RR) - The eviction index is set to a
constant value for all files. It provides a lower bound
on performance. There is no reason to use any policy
which performs worse than this one.

2. Least Recently Used (LRU) - The most frequently
used algorithm in conventional caches. The eviction
index represents the time since the last access to a
file. File with the highest index is replaced.

3. Least Frequently Used (LFU) - This is based on the
access counts of each file. The most popular files stay
in the cache and the least popular files are replaced.

4. Greedy Dual-size (GDS) - This index is calculated
based on the file size. Larger the file the smaller
the index. File with the smallest index is replaced.
We use the inflation value defined in [4] to keep fre-
quently accessed large files in the cache.

5. INTRA - The eviction index is calculated based on
intra-file relations as defined in Equation (3).

6. INTER - The eviction index is calculated based on
inter-file relations as defined in Equation (1).

7. BOTH - The eviction index is calculated taking both
inter-file and intra-file relations into consideration as
defined in Equation (4).

OpenList CloseList
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D

B
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Precursor file list
Concurrent file list

Precursor file list
Concurrent file list

Precursor file list
Concurrent file list

Precursor file list
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Figure 2: Basic data structure used by the replacement
algorithm.
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Figure 3: Hit rate variation over time for all algorithms
for trace file barber1 (cache size=25KB)

Once the index for all the files are calculated, re-
placement is performed based on the eviction index until
enough space is available. The new file is added to the
cache. The performance of the cache is studied by varying
its size.

5 Performance Evaluation

We evaluate our semantic-based approaches (INTRA,
INTER, BOTH) by comparing against four conven-
tional caching algorithms (RR, LRU , LFU and GDS),
in terms of three parameters, the cache hit rate, the byte
hit rate, and the replace attempt. The third parameter
is used as an indicator of communication overhead in a
low-bandwidth distributed environment, because each re-
placement at the client side necessitates a synchronization
with a remote file server in a distributed file system. Due
to space constraints only a small part of the evaluation
is presented here, more details can be found in technical
report version of this paper [10].

The first part of our evaluation compares the per-
formance of all the algorithms using a particular trace
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Figure 5: Replace attempts over time for all algorithms
for trace file barber1 (cache size=25KB)

(barber1) and fixed cache size (25KB), as shown in Fig-
ure 3, Figure 4 and Figure 5. The x-axis of these figures
reports the number of file accesses has been processed,
and the y-axes report the hit rate, the byte hit rate, and
the replacement attempt, respectively. Each parameter
is measured at the time when one thousand requests are
handled. It can be seen that INTER and BOTH exhibit
the highest hit rate and byte hit rates, and also the lowest
number of replace attempts.

In general, in terms of the hit rate, INTRA performs
very badly because of the very low number of intra-file re-
lations existed in the DFS traces, which means file access
is generally sequential in nature at that time. The DFS
traces are a decade old and patterns could have changed
which we hope the new traces we are working on will
reflect. INTER and BOTH have the best hit rates in
almost all cases [10], which validates our belief that file
relations should be taken into consideraten while making
caching replacement decisions.

The byte hit rates are much lower because of a large
number of small files, but we still see that INTER has
the best performance. What is most interesting is the
third parameter we measured, which gives us a measure of
the utilization of the algorithm. Lower replace attempts
indicate lower utilization. INTER and BOTH show the
lowest number of replace attempts in some cases as much
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Figure 7: Byte hit rate of BOTH for different cache sizes

as half of that of LRU and GDS, and at the same time
produces better hit rates.

We feel a good replacement algorithm is one that is
used as infrequently as possible to generate the same
hit rates as conventional algorithms. Minimizing replace-
ment requires the cache to have enough space every time
a new file is encountered.

The next part looks at the performance of BOTH in
terms of the three parameters for different cache sizes.
This is seen in Figure 6, Figure 7, and Figure 8, where the
x-axis represents the changing cache size and the y-axis
represents the corresponding change in the three perfor-
mance metrics. As expected, the hit rate and byte hit
rate increase with the increase of the cache size. Replace
attempts drop with the increase of cache size. Also as
expected, the hit rate and byte hit rate increase with the
increase of the cache size. We also observe that beyond
a point, the increase of cache size doesn’t produce an
equivalent increase in hit rate, as can be seen in Figure 6.
Based on the traces used in our experiments, 100KB is
a reasonable size for the client-side cache using the pro-
posed cache replacement algorithm. This is especially
useful for mobile clients with limited resources. Replace
attempts drop with the increase of the cache size. Theo-
retically if the cache is large enough, communication be-
tween the client and server can be greatly reduced; how-
ever, practically large caches aren’t feasible yet on re-
source constrained devices such as PDAs and cell phones.
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6 Related Work

A large amount of work has been done in the area of
cache replacement algorithms, as survey in [9]. Due to the
space limit, only are the efforts that take file relations into
consideration presented. Kuenning et al. [7] have done
extensive work in the area of studying the file system
behavior in order to perform effective pre-fetching, where
they define file relationships based on the overlap of file
open and close events and hoard such related files. Other
work performed by Amer et al. [1, 2] predicts future file
access based on the most recently occurring successors of
files. The predictors developed are used to determine files
to be pre-fetched. The crucial distinction between these
approaches and our own is that rather than pre-fetching
related files, we preserve these relationships in the cache.
Pre-fetching not only involves a communication overhead
but also requires a timely action.

7 Conclusions

We have presented a semantic-based cache replacement
algorithm and shown that it performs better than con-
ventional caching approaches in terms of the hit rate, the
byte hit rate, and the number of replacements. Compared
to prevalent replacement strategies that ignore file rela-
tions and communication overhead, this approach is more
suitable for distributed file systems that operate across
heterogeneous environments using resource constraint de-
vices, especially with low-bandwidth connections.
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