
SEA: A Lightweight and Extensible
Semantic Exchange Architecture

Thomas Franz, Carsten Saathoff, Olaf Görlitz, Christoph Ringelstein, Steffen Staab
ISWeb, University of Koblenz, Germany

http://isweb.uni-koblenz.de

{franz,saathoff,goerlitz,cringel,staab}@uni-koblenz.de

ABSTRACT
With novel centralized information management systems,
users benefit from collective data organization. Centraliza-
tion, however, also imposes privacy and availability con-
straints. With this work we present SEA, a semantic ex-
change architecture for distributed information management
that employs Peer-to-Peer networking, social information
management, and semantic web technologies. SEA addresses
privacy and availability by storing data locally while utiliz-
ing it globally. The benefits of collective information tagging
as offered by prominent centralized services are available
through anonymous tag distribution in the Peer-to-Peer net-
work. More fine grained access control allows to share data
both publicly with all connected peers and privately within
networks of trust. In this paper, we present the initial archi-
tecture and early implementation details of the prototype.

Keywords
online collaboration, folksonomy, web 2.0, p2p, semantic
desktop

1. INTRODUCTION
In this paper, we introduce SEA, a semantic exchange ar-

chitecture that enables autonomy of data management and
freedom of data organization. Popular systems such as De-
licious1 provide freedom of data organization in the form of
tagging. They allow to share information and to exploit the
enriched data basis stemming from the collective organiza-
tion effort. However, they prevent full individual control of
the data as they require to upload personal information onto
a centralized repository that is controlled by some third-
party provider. Theoretically, any provider of centralized
information mangement systems can analyze the behavior
of users and thus potentially violate ones privacy. Further-
more, handing personal data over to a third-party requires
permanent availability of the used services. On the other
hand, local storage guarantees full autonomous control over
ones data, however, lacks potential advantages gained by
collective data management.

Using SEA, data is stored on privately controlled storage
devices (e.g. personal computers) to leverage autonomy of
data management. Consequently, privacy and availability
issues of handing over personal data to a third party are

1http://del.icio.us

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

eliminated. SEA introduces tagging to establish freedom in
data organization as information tagging enables the rep-
resentation of different perspectives onto data. Taggings
are further utilized to easily define access restrictions, e.g.
allowing to state that everything tagged with car should
be public. Similarly as in prominent collective information
management systems, taggings of multiple users are shared
to improve information search, e.g. searching for informa-
tion tagged with car will result in suggestions for related
tags such as vehicle.

Accordingly, SEA combines the advantages of collective
information sharing and local data storage without imposing
the usual drawbacks of each of these models.

In Section 2, we continue with two different application
scenarios that support the demand for functionality as pro-
vided by SEA, and that are referenced throughout this paper
to ease readability and comprehension. In Section 3, the sce-
narios ground the discussion of conventional solutions and a
requirements analysis, while we utilize extracts from these
scenarios in Section 4 to demonstrate the architecture and
applicability of SEA. We present implementational details of
the currently developed prototype of SEA in Section 5 and
contrast it with related work in Section 6. An outlook and
a conclusion of the work presented in this paper are given
in Section 7 and 8.

2. USE CASES

2.1 Scientific Project Collaboration
Some research institutions, A, B, and C, collaborate on

a project called X-Media. In such a scenario, a closed user
group, i.e. researchers from institutions participating in the
project, needs to securely share, organize and access project
related documents. Project members share papers about
related work and collectively write project deliverables that
document the project status.

Organize. In order to individually organize the collectively
managed data, researchers tag the documents they are work-
ing on and want to share. Initially, the project team has
agreed on a few common tags that are used by all project
members, such as wp4 to denote documents related to work-
package four, and deliverable to indicate documents that are
deliverables.

Share. For simplicity, access rights for collaborators are
also based on tags, e.g. researcher Carsten defines every-
thing tagged with X-Media to be accessible for all X-Media



members. Such members, however, are not allowed to change
the access rights of that information and thus Carsten is still
in control of it.

Retrieve. If the project coordinator wants to summarize all
deliverables, he simply searches for all documents tagged
with deliverable. Unlike in hierarchical file management
where the coordinator would have to check all workpack-
age directories, the flexibility of tagging ensures that the
coordinator automatically retrieves all relevant documents.

Track Changes. To track changes on the deliverable Carsten
is working on with Olaf and Thomas, he subscribes to the
corresponding tag D.4.8. If Olaf or Thomas have changed
the document, Carsten will be notified about changes of
documents tagged with D.4.8.

2.2 Sharing Images
As an additional use case, we consider the scenario of

image sharing. Users may want to share some pictures only
with their friends while other pictures should be publicly
available.

Olaf has been on a hiking trip with Christoph and he
wants to share beautiful landscape pictures publicly, while
he wants to share those depicting him and Christoph only
with his friends to ensure privacy.

Multi-Perspective Image Management. While Olaf does
photography as a hobby, he regularly takes pictures and
handles large amounts of pictures. He utilizes tags in order
to organize his pictures towards different perspectives, e.g.
he classifies pictures by the persons depicted on them but
also by the event and the time they have been taken.

The different perspectives he uses for the classification of
images allows Olaf to easily find all pictures where Christoph
is depicted, but also to find all pictures taken at hiking trips
in the alps during last summer.

Usability. The employment of a P2P system decreases Olaf’s
effort of sharing his photographs as the effort of uploading
large numbers of pictures to a central server to share them
is ommited. Furthermore, if Olaf modifies some pictures,
the changes he made are immediately available to others
without needing to upload them.

Olaf organizes his pictures once for both local usage and
global sharing, whether he is online or offline.

Simple Access Management. Olaf can easily share pic-
tures with friends by, for instance, defining that all pictures
tagged with alps, hiking, 2005 are visible to Christoph. To
make pictures publicly available, he tags those as public.

3. REQUIREMENTS
In the following, we check conventional solutions with re-

spect to the previous use cases and derive requirements for
support of such scenarios.

Information Security. Due to confidentiality of most of the
project work, partners need to securely share their project
contributions. The usage of centralized storage services of-
fered by third parties is often prohibited in project contracts
as it imposes additional security risks. A P2P system en-

ables each user to take full control of the shared data, in
particular no third party needs to be involved.

Cost Reduction. Even if one of the project partners would
setup a dedicated document management system to solve
the security constraint, this would result in additional costs
for both setup and system administration. In particular in
non-professional scenarios like the previous image sharing
use case, the setup and maintenance of a dedicated server is
not feasible. Instead, the feasibility of installing a P2P client
has been proven by very large numbers of client installations
of P2P file sharing applications such as Emule2, et cetera.

Desktop Integration. Sharing documents with a central
repository requires additional user effort in the form of ex-
plicit uploads and downloads. In general, additional user
effort does not encourage users to employ the system except
its use is enforced so that not all benefits of collective data
management can be exploited. For instance, while knowl-
edge about related work papers would benefit a project, such
papers are hardly shared if the effort of uploading such pa-
pers is too high. P2P systems can be well integrated into
the user’s desktop enabling users to effortlessly share their
data.

Simplified Change Management. Another drawback of
centralized systems is the redundant storage of the data on
both the central document repository and local computers.
While redundant data storage is generally not a problem of
storage costs or harddisk space anymore, it results in error-
prone and difficult change management. Given Carsten has
worked on some document but not updated the centrally
stored initial version, this change cannot be tracked by his
colleagues. Only when he explicitely uploads the changed
document, his changes become effective. Redundant data
storage also imposes redundant organization, e.g. if shared
data needs to be utilized offline it has to be organized both
locally and on the central sharing platform.

Sophisticated and Easy-to-Use Resource Management.
Hierarchical data organization lacks the ability to represent
the same data in different contexts as indicated by the im-
age sharing use case. More freedom in the organization of
ones data is needed to cope with large amounts of informa-
tion. To minimize user effort, seamless integration of access
control is another requirement. In the previous use cases,
we indicate the simplicity gained by using taggings for orga-
nizing information as well as defining access control as users
only need to learn one paradigm in order to do two different
tasks.

4. ARCHITECTURE
Along the use cases of Section 2 and the previously de-

rived requirements, we present SEA, the Semantic Exchange
Architecture. As illustrated in Figure 1, SEA constitutes a
network of decentralized repositories in which information
is collectively organized using non-hierarchical classification.
A repository runs on a local desktop and provides a portion
of the local information as well as organizational meta data
about such information in the form of taggings. Taggings

2http://www.emule-project.net



Figure 1: Features of SEA

are used to enable local as well as networked access and
exchange of the information distributed over multiple peers.

4.1 Data Organization
Conventional hierarchical data organization is unable to

represent different perspectives onto some data. SEA em-
ploys tagging as a mechanism to allow more flexible data
management and retrieval. Taggings are user defined catch-
words that can be associated with information objects. They
provide a high degree of freedom to organize information
since no predefined relations between tags exist as for in-
stance in taxonomies. An information object can be as-
sociated (tagged) with multiple tags to represent different
perspectives onto the data.

4.2 Data Model
SEA employs ontologies as meta models (micro models3)

for the managed data. We argue that building novel systems
on ontologies from the beginning leverages integration of
knowledge, reasoning and further improvements later on.
Figure 2 illustrates how we combined different ontologies
that are further explained in the following. Interoperability
and extensibility, however, are the main and intial reasons
for using ontologies in SEA.

Tagging Ontology. The Tagging Ontology is based on Rich-
ard Newmans proposal [7] for an ontological micromodel
that represents the tagging of ressources. The class Tag-
ging models the association of an InformationObject from
our information resource ontology to a Tag. Furthermore,

3http://esw.w3.org/topic/MicroModels

validity and the creator of the tagging are modeled as well
as properties used to relate tags.

Information Resource Ontology. This ontology contains
the class InformationObject that is accompanied by sev-
eral common properties for such resources to represent their
physical location, name, and size.

Access Control Ontology. Access control is modeled along
the definition of the following section. An access right rep-
resents the user, access mode tuple consisting of a reference
to the user and the access mode.

4.3 Access Control
Tags are utilized to organize information but also to define

access rights for the shared information. This approach is
easy-to-use by users as only the system of tagging needs to
be learned in order to both flexibly organize information
and maintain access control. The implementation of access
control in SEA is based on querying and modifying given
access data that follows the ontological model illustrated in
Figure 2. The implementation is characterized by a few rules
that we explain in the following.

4.3.1 Access Modes
Access modes (cf. Figure 2), correspond to possible actions

on information objects, such as reading, or modifying.

Rule 1. Access modes are positiv.

Rule 1 determines that access modes state permissions rather
than prohibitions. Prohibitions are implicit since by default,
SEA prohibits any access unless an appropriate (positive)
access right is specified. Initially, we consider one access
mode, mread, which defines read access to an information
object.

4.3.2 Ownership
Access control in SEA is furthermore based on ownership

as defined by the following rules:

Rule 2. Access rights associated to tags by some user do
only apply to information objects owned by that user.

Rule 3. Only access rights defined by the owner of an in-
formation object are effective.

The following example of access right propagation illustrates
the application of rule 2 and 3: Some user X is the owner
of information object o1 and o2. X has tagged o1 with tag1

and associates access rights to tag1. Accordingly, the access
rights associated with tag1 hold for all information objects
owned by X and tagged with tag1. If now another user Y
tags o2 with tag1, the access rights associated with tag1 do
not apply since Y is not the owner of o2. Now if Y tags an
information object o3 he ownes with tag1, then the access
rights defined by user X for tag1 also do not apply to o3.

4.3.3 Access Right Summation
Information objects can be tagged with multiple tags,

which could potentially define different access rights, or ac-
cess rights for different users. As access modes are positive
(rule 1), no conflicting access rights can occur so that check-
ing whether some user can execute a certain operation on
some object means to find an appropriate access right for
that user. Rule 4 expresses this behavior.



Figure 2: Standard Ontologies in SEA

Rule 4. Effective access rights of an information object
are based on the summation of the access rights defined by
each tag associated with the information object.

The following example explains how rule 4 is applied: Given
an information object o that is tagged by its owner with tag1

and tag2. The owner also associated access right (X, mread)
with tag1 stating that user X can read objects tagged with
tag1. Similarly, the owner associated tag2 with (Y, mread).
Applying rule 4 yields to the result that X and Y can read
o. Note that this only applies if rule 3 is valid, i.e. the
user that associated the access rights to tag1 and tag2 is the
owner of o.

4.4 Data Distribution
To explain which information needs to be distributed to

fulfill the control as well as usability requirements, we start
by enumerating the following common retrieval scenarios:

1. Find all information objects tagged with tag k.

2. Get all tags associated with information object o.

3. Get all tags co-occurring with tag k.

In order to ensure privacy of users, only object identifiers
and tags (including their relations) but no ownership and
location information are distributed in the network. Such
information allows to identify the information as illustrated
by the three previous cases. However, it is not possible to re-
trieve an information object as location information is miss-
ing. We address the contradicting demands of privacy and
retrievability by distinguishing between two different cases
that each have different privacy demands and implement
two different options for the retrieval of actual information
objects for each such case.

Publicly Shared Data If a user decides to publicly share
an information object, its location information is dis-
tributed so that the information provider can be di-
rectly contacted.

Protected Data In order to share protected (not publicly
shared) data, SEA uses a different retrieval mechanism
that is based on the consultation of a finite list of peers
for which the corresponding user is known, similar to
a buddy list in instant messaging software. We argue
that this solution is sufficient to find the information
object as the owner of the information is expected to
know those users for which he grants access and vice
versa. If one wants to grant access to users one does
not know, public access can be granted.

4.4.1 Distribution Mechanism
SEA utilizes a distributed hashtable (DHT) approach to

distribute information in the network. In short, DHTs par-
tition the distributed data among a set of peers and keep
information about which peer stores which portion. This
approach guarantees that all such distributed information
can be found and further, that it can be found within logn

hops. As indicated by the name, DHTs are interfaced like
common hashtables and store key-value pairs, where a key
is required to access associated values.

We already argued which information needs to be dis-
tributed and now explain how it is distributed using the
DHTs. Four hashtables are employed to efficiently repre-
sent the needed information. Table tabo contains for each
information object id the set of all tags associated with that
object and thus allows to retrieve all tags associated to an
information object. Another table tabk allows for querying
in the opposite direction, i.e. retrieval of all object ids for
a tag. While the computation of tag correlations would be
possible by using only tabo and tabk, it would require multi-
ple request and thus increase network load. We argue that
memory and space costs are lower than those for network
bandwith and model tag correlations by an additional DHT
tabco that maps each tag k to the set of tags that occur
together with k. As we distribute location information for
those information objects that are public, that information
is contained by the table tabl that maintains for each public
information object a set of locations where it is available.



5. IMPLEMENTATION
In the following we present the implementation of SEA

and its main components, i.e. the data repository, SEA
core, peer manager and the DHT module as depicted in fig-
ure 3. Applications using SEA are not part of the architec-
ture. They use the platform independent REST interface to
request and modify resources. Internally these operations
are propagated to the repository, the peers in the trusted
network or the whole network based on the specific action.

Figure 3: Implementation of SEA

5.1 Data Repository
All metadata available in our system will be stored in a

RDF repository. RDF [5] is the proposed standard for repre-
sentation of metadata by the W3C and forms also the basis
for OWL, the Web Ontology Language [6]. RDF offers great
felixibility, employing a graph based and schema less model,
which ensures easy integration of various kinds of metadata
later on. Since used micromodels are defined by the ontology
representation language OWL, we can also integrate them
easily in the repository.

Data retrieval in SEA is based on the standardized query
language for RDF graphs, SPARQL [9]. For modifications
of RDF graphs, no such standard does exists so that modifi-
cations are implemented through proprietary APIs that are
usually provided by RDF stores. In order to implement the
SEA Core module independent of proprietary RDF APIs, a
wrapper is implemented that provides a concise interface be-
tween SEA Core and any RDF store. The wrapper provides
a SPARQL interface for queries and a generic, triple-based
interface for repository modifications.

5.2 SEA Core
The SEA Core module constitutes application specific func-

tionality. For applications built on SEA, the core module
provides a REST API [3] that offers a number of central
services which it implements by utilizing attached SEA com-
ponents such as the RDF store. Currently we consider the
following operations:

• Requesting resources with a specific tag, tags of a re-
source with a specific identifier and tags that are re-
lated to another tag

• modifying the tags of resources

• authentication of trusted users

Following the REST architectural style, the services are of-
fered via a dedicated URL and requests are sent using HTTP
for communication. XML is employed to represent the re-
sults, which are returned as part of the HTTP response.
This API style offers great flexibility, simple deployment of
HTML and browser based applications and also platform
independence. A number of frameworks can be used to im-
plement the REST Api, e.g. lightweight solutions, such as
TurboGears4 for Python or more complex set-ups using e.g.
Apache Tomcat5.

5.2.1 Requests
If resources with a specific tag are requested, the SEA

Core distributes the request to the local repository, the Peer
Manager, and the DHT implementation. The Peer Manager
then sends the request to all trusted peers and the DHT
implementation also queries the whole network. The core
then aggregates the different results and returns one result
set back to the application.

A request for the tags of a specific resource is just dis-
tributed via the DHT implementation to the whole network.
Since within the DHT’s this information is directly available,
neither the local repository nor the trusted peers have to be
queried additionaly. In case of requesting related tags, again
the query is just propagated to the DHT implementation,
and again the results are returned with just one query.

5.2.2 Modification of Taggings
Tags can currently only be modified locally. In this case

only the local repository has to be updated accordingly and
no propagation to any other peer is involved. However, this
might change in a later version of the framework.

5.2.3 User Authentication
In order to authenticate a trusted peer, we will employ

a signature based approach, using mutual authentication.
The authentication process is handled by the peer manager
and respective request are just forwarded by the SEA Core.
Although such authentication is important in our scenario,
respective implementations are available and can be plugged
in later on. Therefore, we just include a dummy authenti-
cation in the first prototype.

5.3 Peer Manager
The peer manager module is responsible for all operations

involving the communication with other peers, i.e. rende-
vous, authentication and request forwarding. Additionally,
it provides peer information for the DHT implementation.
Communication with the other peers is done via the com-
mon interface exposed by every peer. Results of forwarded
requests are handed back to the SEA Core for further pro-
cessing.

5.4 DHT Implementation
The current prototype of SEA employs the Bamboo6 dis-

tributed hashtable implementation to efficiently store tag-
ging information so that it is available for all peers in the
network. According to Section 4.4 each peer is responsible
for storing a portion of the four hashtables required to allow
a comprehensive evaluation of tag relations.

4http://www.turbogears.org/
5http://tomcat.apache.org/
6http://bamboo-dht.org



5.5 Current Implementation Status
A DHT component has been implemented as well as a

component for tagging files on the file system. The lat-
ter represents one portion of the SEA Core component, is
based on the ontologies mentioned in Section 4.2, and uti-
lizes the Sesame27 RDF repository. Both components have
been connected so that taggings can be distributed and re-
trieved between peers.

Current efforts are concentrating on completing the SEA
Core implementation and the development of the Peer Man-
ager. We refer the reader to the SEA website8 for updated
information.

6. RELATED WORK
A part of the features implemented by SEA have been

coined in [2] as the Networked Semantic Desktop. SEA deals
with issues of the following three main research areas:

Semantic Desktops. The Gnowsis [10] Semantic Desktop
is a system based on an RDF repository for storing meta
data about arbitrary desktop data such as files, emails, or
contacts. A plugin mechanism allows to connect arbitrary
desktop applications as a data provider for Gnowsis.

Aduna’s Metadata Server9 is a server component that
crawls different information sources such as the local file
system and email servers to extract meta data and stores
it in a triple store. Enhanced search tools (Autofocus and
the web-based Spectacle) are based on the server component
and allow to query within the data and visualize the query
results.

While SEA also allows to organize and interlink arbitrary
desktop information, it enhances semantic desktops by de-
centralized information sharing.

P2P Systems. The Bibster system [4] is a P2P client for
sharing bibliographic data that is represented as RDF. Bib-
ster also allows meta data editing and ensures that locally
supplemented meta data benefits participants of the net-
work. Semantic query routing algorithms based on the in-
formation maintained by single peers has also been devel-
oped by contributors to Bibster [11] in order to efficiently
distribute queries within the P2P network.

RDFPeers [1] establishes a distributed RDF repository.
Based on hashed RDF data (subjects, objects, and predi-
cates), queries for RDF content are efficiently routed and
guaranteed to return complete results.

SEA adds access and privacy control to P2P networking
and enables sophisticated collective data organization inde-
pendent of the application domain.

Centralized Sharing and Editing. Confoto10[8] allows to
share fotos similarly as with prominent sites as mentioned
in the introduction. Additionally, Confoto allows to collec-
tively annotate the shared information using domain spe-
cific properties based on predefined domain schemata. As a
centralized system, it is accessible via a web frontend and
provides import functionalities to add arbitrary RDF data

7http://openrdf.org
8http://isweb.uni-koblenz.de/Research/sea
9http://www.aduna.biz

10http://www.confoto.org

to the repository.
With SEA, we address security concerns about centralized

information sharing. SEA provides the same functionality as
in collective information sharing systems while guaranteeing
full control over ones data.

7. OUTLOOK
In the follwing we present some open issues and desir-

able features that we plan to work on after the prototype is
finished. First of all, the performance of the current DHT
approach is likely to degrade with an increasing manage-
ment overhead imposed by a growing number of taggings
stored in the system. Therefore we will research alterna-
tive approaches for distributing information in peer-to-peer
networks, specifically taking our requirements into account.

Our current implementation only considers read access to
resources. The first use case, however, illustrated that also
collaborative work on resources is of great interest. Appar-
ently this creates additional requirements for the framework
which have to be carefully checked to gurantee the consis-
tency between different versions of the same resource. Such
a colleborative work on resources will also require novel and
sophisticated user interfaces so that changes made at other
peers are reflected accordingly.

8. CONCLUSION
In this paper, we started with the identification of require-

ments and shortcomings of today’s prominent information
sharing platforms to present a generic framework (SEA) that
is applicable to various item domains and contains multiple
novel features that are important in the setting of collective,
distributed, information organization. SEA’s open architec-
ture offers easy adoption, extension, and development as it
is based on acknowledged standards that are well supported
by programming libraries and development tools.

9. ACKNOWLEDGMENTS
This work has been supported by the european projects

Knowledge Sharing and Reuse across Media (X-Media), and
Adaptive Services Grid (ASG), both funded by the Informa-
tion Society Technologies (IST) 6th Framework Programme.

10. REFERENCES
[1] M. Cai and M. R. Frank. Rdfpeers: a scalable

distributed rdf repository based on a structured
peer-to-peer network. In WWW, pages 650–657, 2004.

[2] S. Decker and M. R. Frank. The Networked Semantic
Desktop. In WWW Workshop On Application Design,
Development and Implementation Issues in the
Semantic Web, 2004.

[3] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

[4] P. Haase, B. Schnizler, J. Broekstra, M. Ehrig, F. van
Harmelen, M. Menken, P. Mika, M. Plechawski,
P. Pyszlak, R. Siebes, S. Staab, and C. Tempich.
Bibster - a semantics-based bibliographic Peer-to-Peer
system. J. Web Sem., 2(1):99–103, 2004.

[5] F. Manola and E. Miller. Rdf primer. Web, February
2004. http://www.w3.org/TR/rdf-primer/.



[6] D. L. McGuinness and F. van Harmelen. Owl - web
ontology language, 2004.
http://www.w3.org/2004/OWL/.

[7] R. Newman. Tag ontology design.
http://www.holygoat.co.uk/projects/tags/.

[8] B. Nowack. CONFOTO: A Semantic Browsing and
Annotation Service for Conference Photos. In
International Semantic Web Conference, pages
1067–1070, 2005.

[9] E. Prud’hommeaux and A. Seaborne. Sparql query
language for rdf, 2005.
http://www.w3.org/TR/rdf-sparql-query/.

[10] L. Sauermann. The Gnowsis Semantic Desktop For
Information Integration. In WM 2005: Professional
Knowledge Management, pages 39–42, 2005.

[11] C. Tempich, S. Staab, and A. Wranik. Remindin’:
semantic query routing in peer-to-peer networks based
on social metaphors. In WWW, pages 640–649, 2004.


