
A Proactive approach to Semantically Oriented Service
Discovery

Dave Lynch, John Keeney,
Dave Lewis, Declan O’Sullivan

Knowledge and Data Engineering
Group

Trinity College Dublin
+353 1 6081765

ABSTRACT

This paper proposes a proactive approach to web

service discovery which contrasts the passive approach

exhibited by UDDI. The paper describes how a content

based network implementation (Siena) has been

extended to undertake matching based on ontological

reasoning, resulting in a flexible knowledge-based

delivery mechanism. In particular, it describes how this

implementation has been used to support the proactive

and potentially more efficient delivery of advertised web

service profiles to users interested in services of those

types.

Keywords
Content Based Networks, Ontologies, Semantic Web Services,

Publish / Subscribe, Service Discovery.

1. INTRODUCTION
Web Service based computing has evolved immensely in recent

years, supported forcefully by standards bodies, such as OASIS

[18] and the W3C [29], and industrial forces, such as Microsoft,

IBM and Hewlett-Packard, and a plethora of academic research.

Web Services, by definition, are self-contained, self-describing

applications that can be published, located and invoked remotely

and in a dynamic fashion over the Internet [4]. This loosely-

coupled remote-service invocation capability has proven to be a

particularly attractive proposition for e-commerce and business

integration models.

One of the noticeable omissions from the web services

architecture described by the above bodies is a set of standards to

support automatic discovery, automatic composition and

invocation of web services. In their current form WSDL service

descriptions and UDDI searches must be created or conducted

with human intervention. A very desirable scenario is one

whereby software agents can intelligently reason over required

web-service functionality, automatically discover supporting

modules and seamlessly integrate them on-the-fly into desired

applications.

To realise such automation, the fundamental absence of semantic

information to complement the syntactic provisions of WSDL

must be remedied. Indeed, this is the vision of creators of the

Semantic Web [3]. Their goals are to better define web semantics

in machine-terms so that intelligent agents may feasibly reason

over Internet and Web concepts thus enhancing user experiences

of relevant information and interesting functionality.

In working to achieve this goal the Resource Description

Framework or RDF [24] has paved the way for more complex

application-specific semantic annotation standards such as the

Ontology Web Language OWL [19], and an Upper Ontology for

Web Services description OWL-S [10]. OWL-S semantically

annotated descriptions are a major step towards enabling

automatic invocation of services. The rise of OWL capable

reasoners such as Pellet [17], OWLJessKB [15] and RACER [25]

has further accelerated the progress.

While the UDDI approach outlines a method for describing how

web services function there is a fundamental lack of support for

describing the web services’ capabilities in machine-

understandable terms. While work has been done in adding

semantic capability to UDDI [26][27], the focus has been on

modifying the UDDI registry to accommodate OWL-S

descriptions. Any modification of the UDDI in its current form

still inherits poor support for large, loosely integrated wide-area

registries of services.

The Publish/Subscribe (Pub/Sub) model for communication also

lies firmly in the scope of loosely-coupled, large-scale distributed

systems [11]. In the domain of large scale loosely coupled

distributed systems, Pub/Sub has emerged as one of the more

promising communications models. The model consists of three

basic elements; Subscribers, who express interest in particular

information by means of a subscription language, publishers of

information, who publish information of interest and an

intermediary event notification service connecting the two.

The selective pushing of service information towards interested

subscribers using a Pub/Sub model may be viewed as an

interesting alternative to explicit one-shot client-server based

information retrieval such as that supported by the UDDI

standard. It is argued here and henceforth that there is potential to

integrate such a model into a web services discovery application.

Focusing primarily on service discovery, this paper outlines an

approach to web service discover which has the potential to be a

more scalable, truly wide area alternative to UDDI registries using

Content-Based Networking (CBN), an extension of Pub/Sub that

supports the subscription matching of untyped messages based

only on their contents.

It is the opinion of the authors that discovery for web services fits

naturally into the publish/subscribe paradigm. This is particularly

the case for pre-existing service compositions where the

composition is based on choosing between predefined service

types, such as those found in support of the value chain of an

organisation. Here users have designed and tested service

compositions that meet their particular needs but would like to be

actively informed of changes to particular service definitions or

new candidate service profiles that may have advantages over a

particular element of the designed composition. For example,

there is increasing pressure to establish more transient ah-hoc

relationships in organisational value chains whereby dynamic

decisions can be made to, for instance, exchange one partner with

a more competitive alternative. Currently, there are no standards

or implementations that propose to proactively push web service

descriptions towards interested parties, such as autonomous

software agents. This paper introduces a distributed

publish/subscribe based service discovery platform. This design

and implementation is realised by focusing on enhancing the

semantic capability of an existing CBN system, integrating a

semantic web capability matching component and increasing the

expressiveness that implementations subscription language to

cater for semantically enhanced service requirements matching.

Furthermore, since semantic capability, in the form of OWL based

ontological subscription support, has been added to an existing

Pub/Sub based CBN system, it is our intention to exploit the

annotated semantic information in service descriptions to assist in

their content-based routing. We show that semantic information

available from web service descriptions combined with semantics

derived from a semantically-enabled subscription language, can

help optimise the process of subscription matching and

information routing within our proposed publish/subscribe

platform for web service discovery. This can be achieved by

modifying the structure of an existing subscription storage

algorithm [6] preserving optimisations that arise upon reasoning

over semantically enhanced subscriptions presented to our

publish/subscribe system.

2. DESIGN
The design presented here is based upon the Siena CBN [6] due to

source code availability and an abundance of associated technical

reports and papers, and in addition, its focus on expressiveness in

a wide-area distributed environment. Figure 1 illustrates

conceptually the components of the design. These components are

divided explicitly into three facets of concern; subscription,

publication and matching. Within these there are requirements for

a subscription set structure, a communications layer, ontology

integration and ontology alignment.

Figure 1: Conceptual Design Overview

The original implementation of Siena has no notification support

beyond the simple types discussed in [6] (string, integer, bytes,

boolean). Similarly, no support for OWL-S matching, or OWL

programmatic support structure existed. In order to realise the

goals of a semantically aware implementation the following

enhancements were necessary.

• Modification of the Siena subscription matching algorithm.

• Extension of the Siena subscription language.

• Incorporation of OWL and OWL-S matching components.

2.1 Siena Subscriptions and Notifications
A Siena notification is a set of typed attributes. Each attribute is a

triple consisting of a name, type and a value, where the type is

limited to one of string, integer, bytes, boolean, double. A filter is

constructed from a set of constraints which are each applied to the

content of notifications. A constraint is a triple, consisting of the

attribute name, a constraint operator, and a value. Where multiple

constraints exist in a single filter they are evaluated as a

conjunction. A filter covers a notification or event if that event

satisfies each constraint applied to it by the content filter. An

event or notification n is delivered to an interested party X if X

has submitted a subscription filter that covers the notification.

Also, a filter f covers another filter f’ where together the set of

constraints in f are more general than all of the individual

constraints in f’, and so all of the notifications that would be

delivered or forwarded for f’ would also be delivered or

forwarded for f, i.e. f is more general than f’.

Each node in the hierarchical topology may have any number of

incoming connections, other than clients, but only one outgoing

connection to its parent node. Conceptually, the nodes have a

client server relationship. Thus, a hierarchical node need only

propagate information it receives to its parent node in the form of

root subscriptions and publications. The main routing principle

behind Siena is to push notifications as close as possible to parties

that may be interested in that information. Known as downstream

replication, this can be achieved both by subscription forwarding

and advertisement forwarding. Subscription forwarding is the

method used for routing in the Siena hierarchical implementation.

In the current implementation of Siena, notification routers are

arranged in a hierarchy of nodes, where each node maintains a

tree structure that keeps track of subscriptions and so informs the

notification forwarding strategy for that node. In this tree structure

general subscriptions are at the top and more specific covered

subscriptions are arranged as subtrees. The tree of subscriptions is

used to assist in pruning the number of subscriptions forwarded

and therefore maintains scalability. Essentially, root subscriptions

are the only ones sent. As such, subscriptions covered by

previously forwarded subscriptions are pruned and network traffic

is kept to a minimum. In order to ensure consistent notification

across the network, Siena employs publication forwarding to

master nodes, and leaves further notification beyond that of root

subscriptions to the nodes on which the more specific

subscriptions reside.

When the Siena node acting as the server to a notification

producer X receives a subscription filter f from X, the subscription

tree is searched starting at each root subscription. If a subscription

is found that covers the filter f and contains X in its subscriber set

the search terminates. Otherwise, if the filter f already exists in the

subscription tree, X is simply placed in the subscriber set of that

particular filter. Finally, should neither of these apply a new

subscription is inserted under the most specific covering filter,

possibly a leaf node, with X added to its subscriber set. If no

covering filter exists, the subscription is inserted as a root

subscription. All root subscriptions are forwarded to master nodes

right to the top of the Siena node hierarchy, with sub nodes acting

exactly like subscribers.

Upon reception of notifications at a Siena router node (either from

the notification producer or a super-node) the set of clients or

other sub-nodes with subscription filters covering the notification

are sent that notification, such that only a single message is

propagated downstream towards subscribing clients and routers. If

the master server was not the source of the notification then a

copy of this notification is also sent to the master server. In fact,

the relationship between a Siena node and its master is very

similar to that of a subscriber client and the Siena node itself. The

net effect of this is that no matter where a publication, or

subscription, takes place on the network the correct subscriber

subset is notified in a scalable manner.

2.2 Extending the Siena Subscription

Language
One of the primary contributions of the design of this

implementation is to enhance the Siena subscription language.

The main change to the subscription language was the addition of

three new ontological operators: Subsumes, Subsumed by, and

Equivalent. The subsumption relationship describes how an

ontological entity is more general than another ontological entity.

The ╟ operator is used to express subsumption, the ╢

operator is used to express the inverse subsumption, and the ≡

operator is used to express ontological equivalence. For example,

as seen in an example class hierarchy in Figure 2, the ontological

type article subsumes the type research, or research is subsumed

by article since article is less specific than research. Equivalence

refers to the relationship between two ontological types that refer

to the same type of entity yet may be different ontological classes.

On the left hand side of Figure 2, the subsumption operator is

used to express the constraint that this particular subscription is

interested in having the concept publication as an input. An

example of the inverse subsumption operator is also shown where

the subscriber has expressed an interest in the article concept or

concepts that subsume this. There is an implicit and relation

between each of the expressed constraints specified upon the same

input. In the diagram this is illustrated by a broken line box within

the subscription. As a result, this constraint is a complex one

whereby the subscriber is interested in concepts that lie between

publication and article in the class concept hierarchy defined in

blue. Since the concept of a book is on the same level of the

hierarchy as the article concept, an expression of interest in inputs

of type book is implicit. A subscriber may not wish to register

interest in concepts related by subsumption and simply request a

concept equivalent to that in which interest is expressed. The

remainder inputs and outputs utilise the ≡ operator and an implicit

or-relation exists between each of these constraints and the

previous complex constraint. The enhanced constraint triple

consists of and input or output, one of the operators described

above, and the name of an OWL class.

While this example may seem to make the subscription

specification more difficult for simple subscriptions, the

advantages become apparent for more extensive ontologies. In

addition, since the standard subscription language for Siena, and

most content-based networking systems, allow filters to be

defined using base data types, and only as a conjunction of filters

(i.e. filter constraints are combined using the Boolean AND

operator and so the failure of one constraint in a filter results a

match failure for that filter), the specification of flexible

subscriptions using ontological classes would entail the

specification of multiple individual subscriptions to match for

each class type specified as a string comparison, with no inbuilt

consideration for class equivalences.

Depending on the makeup of particular ontologies; e.g. size,

complexity, purpose; a more or less functional reasoner may be

required to obtain a correct class hierarchy. For this reason it is

necessary to carefully tune the specific level of reasoning required

to each specific ontology on an application by application and a

case by case basis. Further information on the comparative

performance of a number of reasoners is available from [22].

Tests have been carried out with a number of reasoners including

OWLJessKB [15], Pellet [6] and the reasoners bundled with Jena

[5], with the reasoners deployed in a pluggable and exchangeable

manner. A more detailed discussion of Siena primitives can be

found in [6].

2.3 Maintaining the Siena Subscription Tree
While remaining at an abstract level it is necessary to discuss

enhancements and modifications to the Siena subscription tree

structure and subscription forwarding architecture at the design

stage. The main consideration behind enabling ontology based

subscriptions in such a manner is the preservation of the covering

relation between filters. In particular, the partial ordering between

subscriptions within the subscription tree structure must be

maintained to allow subscriptions to cover each other as the

number of subscriptions grows, thereby maintaining the inherent

scalability of the Siena CBN. In order to accomplish this we must

define a covering relation between our enhanced subscriptions.

Consider two filtering constraints A and B, such that A is given as

(x op a), and B is given by (x op b), where op is one of ≡

(equivalent to), ╢ (more specific than, or is subsumed by), or ╟

(less specific than, or subsumes). The variable x is the variable for

the service input or output in each notification to be compared to

the ontology classes a or b, given in the filter specification. Table

1 describes when filter constraint A covers filter constraint B, i.e.,

when the set of possible notifications matching filter constraint A

is a superset of the set of notifications matching filter constraint B.

In this design it should be noted that the subsumption and reverse

subsumption relationships between two service input or output

classes do not hold if they are equivalent, i.e. if class a is

equivalent to class b, then a is not more or less general than b.

A number of observations can be drawn from Table 1 that may

not be immediately obvious. Lines 1, 5 and 9 show that a

constraint does not cover itself or an equivalent constraint. This is

to avoid the situation where A covers B and B covers A, which

would lead to circular references and infinite looping in the

Figure 2: Publication Example

optimisation of a node’s subscription tree. It should also be noted

that (x ╢y) is equivalent to (y ╟ x). For any filter f with multiple

filtering constraints combined as a conjunction, f is covered by f’

only if all of the filtering constraints in f are covered by filtering

constraints in f’. The covering relationships for the other Siena

operators are given in [6][9], and remain completely unchanged

by the addition of the three new operators described here.

Table 1: Covering relationships between new Siena ontological

operators

A Covers B iff

x ≡ a x ≡ b never 1

x ╢ a x ≡ b if (a ╟ b) 2

x ╟ a x ≡ b if (a ╢ b) 3

x ≡ a x ╢ b never 4

x ╢ a x ╢ b if (a ╟ b) 5

x ╟ a x ╢ b never 6

x ≡ a x ╟ b never 7

x ╢ a x ╟ b never 8

x ╟ a x ╟ b if (a ╢ b) 9

2.4 OWL-S Matching component
As discussed in Section 2.1, we have extended Siena to enable

ontological matching. This we believe provides a platform of

general utility that can be used in a number of different domains,

and ongoing research in parallel (see section 8) is reaffirming our

belief. However, we also believe that for some kinds of

applications, specialised ontologically based matchers will be

more efficient. In order to explore this, it was decided to replace

the general matcher described in section 2.2 with a matcher

specifically designed for undertaking ontologically based service

matching.

The OWL-S Matching component is based on the OWL-S

Matcher Java implementation developed by Technischen

Universitat of Berlin (OWLSM) [20]. The OWL-S Matcher uses

JESS with the OWLJessKB knowledge based scripting engine for

OWL concept reasoning [15]. The OWL-S Matcher was enhanced

to use SAX for XML parsing for this project.

The process of matching in the OWL-S Matching component can

be broken down into four distinct phases: input matching, output

matching, service category matching and user constraint

matching, each of which scores a numerical ranking, also based

on the subsumption relation. The semantic matcher then

aggregates a ranking in each of these categories and as a result can

produce an accurate match with informative matching statistics.

The OWL-S matcher was used for two major purposes. The

matcher component had a subsumption based reasoning sub-layer

already implemented and therefore this reasoning sub-layer was

used establish subsumption relationships between inputs and

outputs of services and inputs and outputs of subscriptions. As

well as this sub-layer a basic OWL-S service matching component

was already implemented within the matcher. A support package

representing subscriptions was implemented and the basic

subsumption implementation was built upon. The logic for

evaluating the subsumption relationship between simple

constraints, complex constraints and subscriptions was

implemented at each level of granularity. These relationships were

necessary to preserve the partially-ordered nature of the Siena

routing and matching mechanism while extending its capability to

handle more complex data types than those already supported by

the Siena routing mechanism.

3. PROACTIVE SERVICE DISCOVERY
At the most abstract level the exchange that takes place in the

system to enable proactive service discovery takes the following

form:

1. A Subscriber presents its request in terms of desired service

profile to the Siena server.

2. The Siena server registers the service request and the

location of the subscriber.

3. The Siena server is presented with an OWL-S Service by a

publisher.

4. The Siena server parses this service extracting the service

profiles.

5. These profiles are subsequently matched against the

subscription/subscriber set and a notification list generated.

6. Each subscriber is notified of the publication of a new OWL-

S service that matches the service requirements previously

expressed.

Service Profile activity

The subscription mechanism starts with the examination of

ontologies used in the set of service descriptions and

subscriptions. Should an ontology be unfamiliar to the system the

ontology is first integrated into the nodes’ global knowledge base.

The subscription is then examined, if it is a root subscription it is

inserted into the Siena subscriptions data structure and the

subscriptions forwarded to the server node. Otherwise the

subscription is inserted into the tree, the subscriber is mapped and

a record of its location is maintained.

Server Publication activity

Once the service profile has been presented and parsed the

accompanying ontologies are integrated into the knowledge base.

Should matching service requirement subscriptions be found in

the subscription tree, those subscribers set are sent a copy of the

published service profile.

Client Subscription activity

Firstly a client notification hander is initialised. Constraints are

specified using the enhanced subscription language, where the set

of ontologies and mappings used to specify concepts are provided,

and the subscription is sent to a Siena server. Once the service

profiles have been received back in response to the subscription, it

is to the responsibility of the client to handle integration and

invocation of the service.

4. Example Usage
An English expression of the subscription shown in Figure 2

follows:

This subscriber wishes to receive notification of the

publication or modification of any service profile with

at least two inputs and one output. One of these inputs

must, conceptually, be a publication, article or book.

This subscriber wishes to receive confirmation of

reservation by receipt of reservation information or an

equivalent concept and as a result requests that this be

an output of the desired service.

The right hand side of figure 2 shows three sample service profiles

that have been published to the Siena server. The first of these is

covered by the subscription since we have satisfaction for each

constraint placed on the content of the service profile. The second

of these profiles fails on the first constraint, since the concept of

research article is too specific in terms of the class hierarchy

shown. The failure of one constraint results in the failure of the

match as a whole. The third service profile illustrates an

interesting application of the covering semantics used in the Siena

content based routing system. Each constraint has been satisfied

correctly and therefore the subscriber is notified of the existence

of a matching subscription. An important observation is that the

input concept Genre is also required of the published service

profile. The omission of the Genre input parameter may be

interpreted as an expression of not caring what other inputs exist

on the service. It is assumed in this case that the registered

subscriber agent is capable of reasoning over this input

requirement in order to provide enough information to invoke the

service successfully. However, the omission may also express

disinterest in any other inputs or outputs of any time on behalf of

the subscriber, perhaps since the subscribing agent is not capable

of handling them. Since it is infeasible to express disinterest in

every unsupported concept in a large scale system, e.g. by means

of a Boolean NOT operator and since the inclusion of service

inputs and outputs numbers decreases greatly the expressiveness

of the notification in this scenario, from henceforth it is assumed

that an automatic agent is capable of handling parameters it has

not specifically expressed interest in. In this way the covering

semantics of the content based routing scheme are preserved more

effectively.

Figure 3: Example of subscription forwarding

Figure 3 illustrates subscription forwarding in a sample scenario.

At stage 1 subscriber a registers interest in the concept of written

work or less specific. Since this is a root subscription in the

subscriber set for node 1 it is forwarded to node 2 where it

handled in the same way as a subscription from a client. In the

second illustration client b registers interest in the concept of a

publication. This is covered by the previous subscription and

arranged in the subscription tree structure accordingly. Note that

this subscription is not forwarded to the master node. Illustration

3 sees a register a more general subscription and the subsequent

covering sees the removal of the redundant subscription for a.

When the publication takes place to master node 2 the root

subscriptions of 1 are also present in 2 therefore the publication is

forwarded to node 1 where matching takes place as usual and

clients a and b are notified correctly. Only sending root

subscriptions in such a manner keeps network cost low however

the trade off between duplicated matching through nodes and

distributed storage of publications is a subject for careful

evaluation.

5. Evaluation
Figures 4 and 5 illustrate our two evaluation scenarios. Figure 4

shows a single node Siena set-up and figure 5 shows the

distributed model. The effect of publishing to both the centralised

and the hierarchical model should be exactly the same. Each node

was hosted on a Dell D400 notebook with JDK 1.5, an Intel M

1.2Ghz processor and 256MB of RAM with minimum resident

programs.

Figure 4: Single Siena Node Test Scenario

Figure 5: Two Siena Nodes Test Scenario

The average matching time for the most complex subscription

over 10 separate runs was 23ms, with the lowest 10ms (least

complex) and the longest 28ms. This match time includes the

period of traversal through the subscription tree structure and,

possibly multiple, calls to the reasoner for the capability match.

Although a loose comparison, a covering match on a 5

subscription original Siena implementation (text-based) takes on

average 8ms. This comparison can only be considered indicative

of the more complex nature of a capability match and a full, larger

scale study is needed to confirm if or how this matching time

scales linearly. Initial indications, i.e. by inspection, indicate that

capability matching does not hugely increase the amount of

processing required to match across the subscription tree

structure. This can be considered an encouraging result.

The most interesting performance bottleneck occurs when we

consider ontology integration time. Integration of OWL ontology,

and parsing of an OWL-S service seems a very expensive process.

In our sample implementation integration of a standard OWL

ontology, (the aktors ontology) [2], takes on average 1.2 seconds

and requires a 98kb download. On the surface of this

measurement it seems that ontology integration is definitely a

bottleneck when it comes to analysis of matching performance in

this system. When the system is scaled to thousands of interested

subscribers over thousands of services this inefficiency has the

potential to overload servers.

Another interesting observation is the time it takes to parse and

load an OWL-S ontology. On average, our simple book finder

service, devoid of pre-conditions, effects, complex assertions and

conditional executions, takes 12.5s to parse and load into the

knowledge base from a server running on localhost. It is

speculated that one of the reasons why this takes so long is the

insistence of the OWL-S reasoner in loading, parsing and

integrating all ontologies that are imported and referenced by the

service itself. In this case, the aktors ontology was loaded and

parsed despite already being asserted in the knowledge base. A

similar scenario occurs when we consider the OWL-S

specification and the XSD specification. This metric would

indicate that the system as a whole would benefit from a finer

level of OWL parsing and loading granularity.

We plan further work to test and benchmark a number of other

ontology frameworks and ontology reasoners. We expect these

experiments to lead to greatly reduced runtime costs and ontology

loading and parsing times.

In conclusion, the tests confirm the correct function of the OWL-S

enhanced wide area notification service in terms of OWL-S

matching, enhanced Subscription Language and subscription and

publication distribution.

However, performance evaluation conducted was not on a large

enough scale to draw valid statistical conclusions regarding

increases in network load and network cost as well as CPU cost,

however initial tests indicate that parsing and integration of Web-

Services and associated ontologies is a definite issue to be

considered in future implementations. Further evaluation of how

the incorporation of semantic concerns affects loosely coupled

pub/sub knowledge distribution system is ongoing work for the

authors. Preliminary evaluation of the performance of different

ontology reasoners for use in message routing and subscription

matching is given in [13][14][16]. Ongoing research is also

investigating and simulating factors that affect the scalability and

efficiency of the system when deployed in larger scale

environment.

6. Related Work
Although heavily supported by languages such as OWL, OWL-S

and RDF as well as SOAP and XML, research into semantic

service discovery is still maturing and as a result a standard means

of discovery is still a way off. As a result of this non-convergence

research continues in several parallel avenues outlined below.

Although not a semantically enhanced standard, the recently

agreed UDDI specification version 3 [27] presents some

interesting additions. Most notably, in the context of this paper, a

Subscription API has been added. Not explicitly a

publish/subscribe application, at least in the distributed event

notification sense, the movement of the standard towards a

publish/subscribe concept is an interesting one. Since subscribers

must express explicitly the requirements, in terms of the selected

category, such as tModel, it is observed here that the UDDI

subscription API more closely resembles a topic-based

subscription. Aside from the lack of UDDI support for semantic

concepts, more expressive textual content based subscriptions

would offer more expressiveness of subscription language and

hence more accurate notifications in terms of web service

discovery. It could however, also be argued that since automatic

discovery and invocation is not supported by UDDI web services

that expressiveness and accuracy of category may not necessarily

be as important as in a semantically enhanced version.

There is a very active body of research in semantically enhancing

the UDDI registry standard. Since the UDDI standard is plentiful

in features and a mature standard, it seems a logical progression to

attempt to build on this maturity by adding semantic annotation.

In [1] the authors endeavour to provide a structure whereby

semantic information may be annotated onto current UDDI

elements, such as tModel. Similarly [23] endeavours to “import”

the semantic web into a UDDI standard implementation. Each of

these works aims to introduce concept matching to the UDDI

registry by incorporating reasoning and OWL-S support to current

implementations. The active research in this area highlights one of

UDDI’s main weaknesses, lack of service capability support and

emphasises a general consensus amongst the web service

academic community that semantic support for capability

matching of web services is primary the area forward.

In [23] an efficient way to apply the matching methodologies is

also proposed from the design outlined in [11] to extend the

UDDI Registry. This basic extension adds a capability port to the

current UDDI implementation thus making it semantically aware.

An interesting contribution of this paper is an evaluation of

ranked matching and a resulting focus on accelerating

performance by minimising the amount of matching and, therefore

reasoning, that takes place. Any implementation of a semantic

matching engine into the publish subscribe model must take this

observation into consideration and must endeavour to minimise

the frequency of concept matching that takes place.

The work described in [12] by Jaeger et. al. focuses on a finer

grained approach to matching than presented in [21]. By

consideration of the service category and finer-grained user

constraints based on concept properties as well as input and

output matching the work done by Jaeger et. al. proposes a more

accurate approach to semantic matching. The semantic matcher

uses an aggregation of these finer grained steps to produce a more

accurate matching result. A Java prototype has been built and is

hosted by the Technischen Universitat at Berlin [20]. As a freely

available and mature implementation of progress in the semantic

matching area, this matcher was the basis for the enhanced

matcher used in section 5.

The METEOR-S project [28] is a large research effort focusing on

the application of semantics to WSDL, in the form of WSDL-S,

and semantic support to UDDI. Interestingly in the context of this

research, [28] appears to offer significant contribution in the area

of distributed, peer-to-peer infrastructures for semantic

publication and discovery of services. METEOR targets the area

of semantic web-service discovery as an important and apparently

underdeveloped area in the context of current web-services

research. METEOR also makes the observation that for a UDDI

registry in its current form, web-service discovery across multiple

UDDI-registry nodes is inefficient. The research concludes that

adding web service description semantics and annotating the

UDDI nodes themselves may provide avenues for improving the

efficiency of a distributed UDDI registry. This is interesting

considering the content based routing avenue of this research.

Work carried out for the METEOR-S project shows that the

semantic concepts available in OWL can be used to for other

purposes besides explicit matching of service descriptions against

requirements.

7. CONCLUSIONS
The main of aim of this paper was to explore a potential for a

UDDI alternative, to investigate the feasibility of a general

publish/subscribe model for web service discovery, and to explore

the potential usability of semantic content of OWL-S web service

descriptions in enabling efficient content-based routing within this

publish/subscribe model.

In addition we have described how we extended a Content Based

Network (Siena) to support ontologically based matching in

general, leading to a more flexible subscription model and

knowledge based content routing. We argue that this knowledge-

based routing approach is of great utility in several different

domains, but there may be a need to introduce specific matchers

to bring efficiency in particular application domains, such as

semantic web service discovery. We demonstrated this by

replacing the general ontology matcher implemented with a OWL-

S ontology based matcher developed by the Technischen

Universitat of Berlin.

In terms of a an alternative to UDDI we have shown that more

tightly integrated, distributed models for service discovery are

possible, feasible and are currently under development. We

conclude here that active research into overcoming the shortfalls

of UDDI continue both along the publish/subscribe track of

research presented here, and along the METEOR-S track of

research already undertaken and presented.

By developing a service-discovery platform that uses the

publish/subscribe model we have proposed a proactive approach

to service discovery that unites research conducted in he

publish/subscribe and the service discovery domains. We have

shown by proof of concept that the model holds strong in the

presence of OWL-S based capability matching integrated at the

routing-table level of the event notification system. Also, by

introducing semantics to the text based notification and

subscription storage structure of Siena, we have shown that OWL-

S types and associated semantic information can be utilised in

content-based routing system for semantic web services.

8. FUTURE WORK
This proof of concept has opened the door for a larger scale

implementation and statistical evaluation. It is envisaged that this

implementation would not only examine the presented

implementation under wide-area scale, but may include a

combined integration of peer-to-peer routing mechanisms,

semantic clustering of peers, improved matching capabilities and

enhanced subscription languages.

The low level networking performance characteristics [7] were

not of prime importance to this case study use of a semantically

enriched content delivery network. However, a full analysis of

both the proof of concept and any peer-to-peer system in terms of

network cost per subscription and per subscription terms would be

useful in gauging the performance of the enhanced subscription

matching algorithm for each subscription and publication. Such

measures would more clearly demonstrate the general impact of

the capability matcher.

In light of these proposed analyses, we feel that a study of two

major modifications would be beneficial. Firstly, the

incorporation of a peer-to-peer routing model to replace the

current hierarchical model may have interesting implications for

the subscription tree structure and the subsumption relations as

defined previously. Secondly, investigation is warranted into how

the fast-forwarding algorithms for Siena [8] may be used to

further improve overall system performance.

Perhaps more removed from the immediate goals of the project, it

is felt that further work on the reduction of the frequency of XML

parsing, perhaps through assertion sharing, coupled with further

research into knowledge base and ontology alignment would

definitely be of benefit to the research area in the long term.

9. ACKNOWLEDGMENTS
This work was supported partially by Science Foundation Ireland

and Enterprise Ireland through the Centre for Telecommunication

Value Chain Research..

10. REFERENCES
[1] Akiragiu, R., Goodwin, R., Doshi, P., and Roeder, S., “A

method for semantically enhancing the service discovery

capabilities of uddi”. Proceedings of IJCAI-03 Workshop

on Information Integration on the Web (IIWeb-03) August 9

- 10, 2003, Acapulco, Mexico

[2] AKT. The aktors portal ontology,

http://www.aktors.org/ontology/portal

[3] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic

Web”, Scientific American, May 2001

[4] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C., and Orchard, D., “Web services

architecture”. Technical report, W3C, February 2004.

Available online at http://www.w3.org/ws-arch/

[5] Carroll, J., Dickinson, I., Dollin, C., “Jena: Implementing

the Semantic Web Recommendations”, in Proc. of World

Wide Web Conference 2004, 17-22 May 2004, New York,

NY, USA. http://jena.sourceforge.net/

[6] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L., “The

Design and Evaluation of a Wide-Area Event Notification

Service”, ACM Transactions on Computer Systems, Vol.

19, Issue 3, August 2001

[7] Carzaniga, A., Wolf, A.L., "A Benchmark Suite for

Distributed Publish/Subscribe Systems". Technical Report

CU-CS-927-02, Department of Computer Science,

University of Colorado, April, 2002.

[8] Carzaniga, A., Wolf, A. L., “Forwarding in a Content-Based

Network” in proc SIGCOMM’03, August 25-29 2003,

Karlsruhe, Germany, ACM Press

[9] “Covering relationships in Siena”,

http://serl.cs.colorado.edu/~carzanig/siena/forwarding/ssimp

/namespacesiena.html#a1

[10] DAML Technical Committee. “OWL-S : Web Ontology

Language for Web Services”.

http://www.daml.org/services/owl-s/

[11] Eugster, P., Felber, P., Kenmarrec, A.M., and Guerrout, R.,

“The many faces of publish/subscribe”. ACM Computing

Surveys (CSUR), Vol. 35, Issue 2, (June 2003), pp 114 –

131, 2003.

[12] Jaeger, M., Rojec-Goldmann, G., Liebetruth C., Muhl, G.,

and Geihs, K.,. “Ranked matching for service descriptions

using owl-s”. Kummunikation in Verteilten Systemen

(KiVS 2005), Kaiserslautern, Germany, February 2005

[13] Keeney, J., Lewis, D., O’Sullivan, D., Roelens, A., Boran,

A., Richardson, R., “Runtime Semantic Interoperability for

Gathering Ontology-based Network Context”, to appear in

proc 10th IEEE/IFIP Network Operations and Management

Symposium (NOMS 2006), April 3-7, 2006, Vancouver,

Canada.

[14] Keeney, J., Lynch, D., Lewis, D., O’Sullivan, D., “On the

Role of Ontological Semantics in Routing Contextual

Knowledge in Highly Distributed Autonomic Systems”

Technical Report (TCD-CS-2006-15), Department of

Computer Science, Trinity College Dublin. 2006.

[15] Kopena, J., OWLJessKB: A Semantic Web Reasoning Tool.

http://edge.cs.drexel.edu/assemblies/software/

[16] Lynch, D., “A Proactive approach to Semantically Oriented

Service Discovery”, MSc dissertation, Deptartment of

Computer Science, Trinity College Dublin. 2005.

[17] MINDSWAP. Pellet: An OWL Reasoner.

http://www.mindswap.org/pellet

[18] The OASIS Organisation. http://www.oasis.org.

[19] OWL Technical Committeee. Web Ontology Language

(OWL). http://www.w3.org/2004/OWL

[20] OWLSM: The TUB OWL-S Matcher.

http://kbs.cs.tu-berlin.de/ivs/Projekte/owlsmatcher/

[21] Paolucci, M., Kawamura, T., Payne, R., and Sycara, K..

“Semantic matching of web services capabilities”. In proc.

of International Semantic Web Conference (ISWC),

Sardinia, Italy.

[22] “Pellet Performance.

http://www.mindswap.org/2003/pellet/performance.shtml

[23] Srinivasan, N., Paolucci, M., and Sycara, K., “An Efficient

Algorithm for OWL-S based Semantic Search in UDDI”. In

proc. First International Semantic Web Services and Web

Process Composition Workshop (SWSWPC 2004), San

Diego, CA, USA, 2004.

[24] RDF Technical Committee. “The resource description

framework (RDF)”. http://www.w3.org/RDF/

[25] RACER: An Inference Engine for the Semantic Web.

http://www.franz.com/products/racer/.

[26] UDDI Technical Committee. “UDDI API specification

v2.0.4.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-

20020719.pdf

[27] UDDI Technical Committee. “UDDI API specification

v3.0.2”.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-

20020719.pdf

[28] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,

Oundhakar, S., and Miller, J., “METEOR-S WSDI: A

scalable P2P infrastructure of registries for semantic

publication and discovery of web services”. Inf. Tech. and

Management, 6(1):17–39, 2005.

[29] The World Wide Web Consortium.

http://www.w3c.org

