
iXPeer: Implementing layers of abstraction
in P2P Schema Mapping using AutoMed

Zohra Bellahsène
LIRMM

UMR 5506 CNRS
Univ. Montpellier II

France

bella@lirmm.fr

Charalambos Lazanitis
Dept. Computing

Imperial College London
London SW7 2AZ

UK

cl201@doc.ic.ac.uk

Peter Mc. Brien
Dept. Computing

Imperial College London
London SW7 2AZ

UK

pjm@doc.ic.ac.uk

Nikos Rizopoulos
Dept. Computing

Imperial College London
London SW7 2AZ

UK

nr600@doc.ic.ac.uk

ABSTRACT
The task of model based data integration becomes more
complicated when the data sources to be integrated are dis-
tributed, heterogeneous, and high in number. One recent
solution to the issues of distribution and scale is to perform
data integration using peer-to-peer (P2P) networks. Cur-
rent P2P data integration architectures have mostly been
flat, only specifying mappings directly between peers. Some
do form the schemas into hierarchies, but none provide any
abstraction of the schemas. This paper describes a set of
general purpose P2P meta-data and data exchange primi-
tives provided by an extended version of the AutoMed toolkit,
and uses the primitives to implement a new architecture
called iXPeer. iXPeer deals with integration on several lev-
els of abstraction, where the lower levels define precise map-
pings between data source schemas, but the higher levels are
loser associations based on keywords.

Keywords: P2P, data integration, model management,
mapping discovery

1. INTRODUCTION
The database community has developed a number of ap-

proaches and systems to perform data integration in het-
erogeneous and distributed environments. In the feder-
ated database [18] approach, a user application would
use a global schema built from mappings from source
schemas, each source transformed to be represented in a
single common data model (CDM). The global schema
and the mappings are provided by a single software agent.
The mediator approach [19], was intended to be more flex-
ible. Each mediator is a separate agent and mediators are
able to integrate information either directly from data sources
or from other mediators to form a mediated schema. The
AutoMed framework [11, 3] provides an implementation of
the mediator approach that allows bi-directional mappings
to be specified between data sources and the mediator. Whilst
the mediator approach has been successful, the Internet now
makes available many more data sources, stored in a wide
range of data models, some of which are dynamic in the
sense that one or more of their schema, availability, and lo-
cation are subject to relatively frequent changes. The scale,
heterogeneity, and dynamic nature make it impractical to
build global/mediated schemas for user applications that are
a simple hierarchical integration of data sources in a single

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

modelling language. This has lead researchers to investigate
a data model based peer to peer (P2P) [6, 4, 9] approach,
where there are no strict hierarchies of mediators, but in-
stead data exchange occurs directly between peers in the
network. The end result is P2P database management
systems (PDMSs).

Many current approaches to PDMS, such as Piazza [6]
and coDB [4] rely entirely to making mappings directly be-
tween peers, and have no further structuring of the network.
All current PDMSs also work with a single CDM, for exam-
ple, forcing a number of relational peers to translate their
schemas in XML, causing unnecessary complication in the
integration and query exchange process. We argue that us-
ing only direct P2P mappings is too complex. In particular,
in any large scale P2P system, establishing complete map-
pings between all peers that might wish to communicate is
an unfeasible proposition.

The work in this paper develops upon one approach to
model based P2P data integration called XPeer [2] (dif-
ferent from the XPeer found in [17]). In XPeer there is a
logical network organisation based on data semantics, which
guides how the actual query processing and data exchange
occurs between peers. Specifically, a data source peer can
be promoted to one of the following three roles:

1. cluster peer: a mediator for a cluster of data source
peers, which share related schemas (e.g. covering in-
formation about computing students). The mediated
schema is called cluster schema. Each data source
peer schema is defined as a view over the cluster schema
using LAV mapping rules [5]. The cluster peer pro-
vides direct P2P mappings between its data source
peers, which we have already argued that it is not scal-
able. Hence the following two additional levels above
the cluster peer are introduced.

2. domain peer: a domain is a set of clusters sharing the
same category of information (e.g. information about
the students in all departments). The domain peer
provides a simple directory service over cluster peers,
locating which cluster peers support which set of key-
words. These keywords are provided by the cluster
peers when they publish their cluster schema onto their
domain peer.

3. global peer: is an entry point for the system, locating
where the domain peers are. A domain peer register-
ing with the global peer provides a set of keywords
that identify the category of information covered in its

domain.

The motivation behind this structure is that it reduces
the amount of complete mappings that need to specified
between data source peers, thus increasing the scalabitility
of the architecture. In addition, the domain peers and the
global peer are integrated at a higher level of abstraction
(namely using just keywords) than the cluster peers and the
data source peers (which are integrated using standard data
integration mapping rules). As a result, data source peers
can easily enter and exit the P2P network with only their
cluster network being affected, thus making the architecture
more flexible. However, assuming one global peer, one level
of domain peers, and a single domain for each cluster peer,
makes the P2P network liable to failure when a single do-
main peer or the global peer fails. In this paper we seek
to remedy these problems, and implement XPeer into an
extensible architecture iXPeer, readily adaptable to new
applications. Specific contributions of this paper are:

• We describe in Section 3 the AutoMed P2P primitives,
which give a flexible toolkit with which to implement
model based P2P data integration. The toolkit does
not prescribe a fixed approach to how the P2P data
integration is performed, but rather methods that are
of very general purpose, and could be used to imple-
ment a number of P2P architectures. Also, since Au-
toMed handles any structured or semi-structured data
model [10], using AutoMed also makes our P2P sys-
tem similarly flexible. The current implementation of
AutoMed already handles relational, XML, ER, RDF,
and semi-structured text files such as CSV.

• We extend in Section 4 the XPeer architecture into iX-
Peer, which is implemented using the AutoMed P2P
primitives. In particular, we develop the iXPeer sys-
tem so that it has a more flexible hierarchy, with any
number of levels of domain peers, and the ability to
join multiple hierarchies.

The use of the AutoMed P2P primitives also has the
advantage that we may further develop the iXPeer ar-
chitecture in the light of experience gained in trails of
P2P data integration.

Before describing the AutoMed P2P primitives, we give a
new presentation of the AutoMed approach to data integra-
tion, called both as view (BAV) [11], that facilitates the
description of P2P primitives in a concise manner. Com-
parison to related work will be left to Section 5, and our
summary and conclusions are given in Section 6.

2. BAV AND THE AUTOMED TOOLKIT
A BAV meta database may be represented by a tuple:
〈Schemas,Trans,SchemaObjs,AM 〉

where members of Schemas are linked with transforma-
tions which are members of Trans and describe the map-
ping between two schemas. The function SchemaObjs ap-
plied to a schema returns the set of schema objects that
represent the various constructs in the schema. The func-
tion AM applied to a schema will return a (possibly empty)
set of access methods 〈UserName,Password,URL,Driver〉
that describe the data source that the schema wraps.

1. Each member of Trans is a tuple of one of the following
kinds:

• 〈add,construct,SO,S1,S2,Q〉: S2 differs from S1 in
having an additional schema object SO of type
construct, and the extent of SO is defined by query
Q over S1.

• 〈delete, construct, SO, S1, S2, Q〉 is the reverse of
add, and is equivalent to 〈add, construct, SO, S2, S1, Q〉

• 〈extend,construct,SO,S1,S2,Range Q1 Q2〉: S2 dif-
fers from S1 in having an additional schema ob-
ject SO, the extent of contains at least Q1 and at
most Q2

• 〈contract, construct, SO, S1, S2, Range Q1 Q2〉 is the
reverse of extend, equivalent to
〈extend, construct, SO, S2, S1, Range Q1 Q2〉.

• 〈rename, construct, SO1, SO2, S1, S2〉: S2 differs from
S1 in that SO1 in S1 is renamed to SO2 in S2,
and the extent of SO1 equals SO2.

• 〈ident, S1, S2, function〉, the S1 and S2 have the
same set of schema objects, and query processing
may use function to combine the extents of S1 and
S2 together [8].

2. A schema Sx ∈ Schemas for which AccessMethod(Sx)
is non-empty is termed a data source schema.

3. A BAV network is a subset of Schemas which has the
property that the transformations between the schemas
form a connected graph, where there are no transfor-
mations that connect a member of the network to a
non-member of the network.

4. A pathway PWx,y ⊆ Trans between Sx and Sy links
a chain of schemas within a BAV network. Note that it
has the property that every schema appearing in PW

will appear in exactly two transformations, apart from
Sx and Sy that appear in only one transformation.

Example 1. A meta database for two data sources:
Computer Science Department (Sstu) and Univer-
sity’s Registry (Sreg)
Sstu contains the schema of the cs student table in Figure 1
and Sreg the schema of student. At present there are no
transformations in the repository.
Schemas = {Sstu, Sreg}
Trans = {}
SchemaObjs(Sstu) = {〈〈cs student〉〉, 〈〈cs student,name〉〉,

〈〈cs student,term address〉〉, 〈〈cs student,year〉〉,
〈〈cs student,level〉〉}

SchemaObjs(Sreg) = {〈〈student〉〉, 〈〈student,name〉〉,
〈〈student,dept〉〉, 〈〈student,level〉〉,
〈〈student,home address〉〉}

AM(Sstu) = {〈lab, lab, jdbc:oracle:thin://cs.eg.uk/eg1,

oracle.jdbc.driver.OracleDriver〉}
AM(Sreg) = {〈pjm, secret, jdbc:postgresql://reg.eg.uk/eg2,

org.postgresql.Driver〉}
2

Data integration involves establishing a mapping between
data sources. Figure 2 lists a pathway between Sstu and Sreg,
which could be added to the Trans of Example 1 to give
an integrated pair of data sources, where schema Sf can be
considered a global schema over Sstu, Sreg.

Note that from the definitions of transformations PWx,y

is equivalent to PWy,x. We can also write a directed form
of the pathway, starting at either schema.

cs student
name term address year level
Mary 180 Queen’s. . . 5 ug
John 42 Sterling Pl. . . 4 pg
Jane 59 Evelyn Gard. . . 1 pg
Fred 30 Pembridg. . . 3 pg
Paul 82 Old Brompt. . . 1 ug

result
name course mark
Mary DB 77
Mary OS 58
Paul OS 45
Paul OOP 99

student
name dept level home address
Mary Comp ug 235 Princess St. . .
John Comp pg 24 Lawn Market. . .
Jane Comp pg 102 Andrew’s. . .
Fred Comp pg 71 Cornmarket. . .
Paul Comp ug 93 Park Row. . .
Iain Math ug 58 Tower Bridg. . .

Figure 1: Some example tables present in various data sources

PWstu,reg={ 〈extend,Table,〈〈student〉〉,Sstu,Sb,Range [{x} | {x} <− 〈〈cs student〉〉] Any〉,
〈extend,Column,〈〈student,name〉〉,Sb,Sc,Range [{x, y} | {x, y} <− 〈〈cs student, name〉〉] Any〉,
〈extend,Column,〈〈student,dept〉〉,Sc,Sd,Range [{x, ‘Comp’} | {x} <− 〈〈cs student〉〉] Any〉,
〈extend,Column,〈〈student,level〉〉,Sd,Se,Range 〈〈cs student, level〉〉 Any〉,
〈extend,Column,〈〈student,home address〉〉,Se,Sf ,Range Void Any〉
〈contract,Column,〈〈cs student,term address〉〉,Sf ,Sg,Range Void Any〉,
〈contract,Column,〈〈cs student,year〉〉,Sg,Sh,Range Void Any〉,
〈delete,Column,〈〈cs student,level〉〉,Sh,Si,[{x, y} | {x, y} <− 〈〈student, level〉〉; {x, ‘Comp’} <− 〈〈student, dept〉〉]〉,
〈delete,Column,〈〈cs student,dept〉〉,Si,Sj,[{x, y} | {x, y} <− 〈〈student, level〉〉; {x, ‘Comp’} <− 〈〈student, dept〉〉]〉,
〈delete,Column,〈〈cs student,level〉〉,Sj,Sk,[{x, y} | {x, y} <− 〈〈student, level〉〉; {x, ‘Comp’} <− 〈〈student, dept〉〉]〉,
〈delete,Column,〈〈cs student,name〉〉,Sk,Sl,[{x, y} | {x, y} <− 〈〈student, name〉〉; {x, ‘Comp’} <− 〈〈student, dept〉〉]〉,
〈delete,Table,〈〈cs student〉〉,Sl,Sreg,[{x} | {x} <− 〈〈student〉〉; {x, ‘Comp’} <− 〈〈student, dept〉〉]〉}

Figure 2: A pathway linking Sstu and Sreg

The AutoMed repository [3] provides the basic storage
mechanism for schemas and BAV pathways, around which
a number of tools have been developed. Of relevance to the
work in this paper are:

1. match merge(Sx,Sy): takes a pair of schemas Sx,Sy

and builds a BAV pathway between them. First, the
schemas are matched to identify mappings between
their objects and then the pathway is built based on
the identified mappings [15]. One schema, Sz, within
that pathway will contain all the information from Sx

and Sy, and hence may be used as a global schema
for querying the contents of Sx and Sy as a single data
source.

2. reformulate query(Q,Sx,SD
1 ,. . . ,SD

n) [7]: takes a query
Q on Sx, and reformulates it into a query over the data
source schemas SD

1 , . . . , SD
n , where D here denotes a

data source.

For example, the result of match merge(Sstu,Sreg) would be
global schema Sf linked to Sstu with the pathway PWstu,f

seen in Figure 2 and linked to Sreg with the reverse pathway
of PWf,reg, which would extend Sreg with the schema objects
in Sstu. Performing the action:

reformulate query(distinct [{x, y} |
{x, y} <− 〈〈student, dept〉〉],Sf ,Sstu,Sreg)

on Sf results in
distinct [{x, y} | [{x, ‘Comp’} | {x} <− S1 :〈〈cs student〉〉];

{x, y} <− Sreg :〈〈student, dept〉〉]

3. AUTOMED P2P PRIMITIVES
A BAV meta database explained in the previous section is

stored in an AutoMed repository. Each AutoMed repository
has two elements: a modelling language repository called the
MDR and a schema and transformation repository called
the STR [3]. The AutoMed P2P implementation (a Java
API available from http://www.doc.ic.ac.uk/automed/) al-
lows separate AutoMed repositories to communicate with

each other, each repository acting as a peer in a P2P net-
work. The peers may exchange meta-data information about
schemas and pathways, and may also request the execution
of queries on other peers. The architecture is illustrated in
Figure 3. For the purposes of the current work, it is assumed
that all modelling languages definitions used by peers will
be known in advance, and do not need to be distributed on
the P2P network.

Access to each AutoMed repository is made through an
AutoMedPeer unique to that repository. Each AutoMedPeer
has a unique name assigned based on the repository loca-
tion. Potentially, several AutoMedPeers might be available
on any one host, and so access to any AutoMedPeer is made
via a P2PRegistry, of which one must execute on any host
that runs an AutoMedPeer. This P2PRegistry runs on a port
number that is fixed for the P2P network (number 8282 by
default), which means any other peer wishing to communi-
cate with an AutoMedPeer needs only the name and the IP
address of the peer.

The IP address of an AutoMedPeer may be obtained from
the P2PDirectory, that behaves as a meta-data directory ser-
vice for the P2P network, providing the IP address of peers,
together with basic meta data information about the peers.
The P2PDirectory service is very simple, and as we will
demonstrate in this paper can be arranged into a hierarchy
to give a very similar operational structure to the DNS di-
rectory service used on the Internet to lookup IP addresses
based on supplied domain names. We describe the primi-
tives provided by the directory service in the next subsec-
tion, and then describe the meta data exchange and query
exchange primitives in the following subsections.

3.1 The Directory Service
The directory service provides a minimal database (sum-

marised in Figure 4) which stores in peer an instance for each
peer on the P2P network, with its name and IP address,
and in schema an instance for each public schema [12]
that some peer repository chooses to make publicly avail-
able. Public schemas are first proposed by one peer, which

host1
P1

repository

MDR

STR

AutoMedPeer

P2

repository

MDR

STR

AutoMedPeer

P2PRegistry

host2
P3

repository

MDR

STR

AutoMedPeer

P2PRegistry

host3

P2PDirectory
directory

repository

?

exchange pathways and queries

?

exchange
public

schemas

6

?

6exchange public schemas

?

Figure 3: The AutoMed P2P Architecture

will send the details of the schema to the directory, and then
any other peer may integrate its own data sources with the
public schema and inform the directory that it has a path-
way that links the public schema to its data sources. Hence,
the directory stores a subset of the schemas that are present
on all peers under the directory, together with a statement
about which are able to connect that schema via a pathway
to a data source, and hence service queries on that schema.

Instances of the peer entity are created and read by two
AutoMed P2P primitives:

• Px.D.register(): inform the directory D of the name
and IP address of peer Px, creating or updating an in-
stance of peer. When any peer logins to the P2P net-
work, it registers with its local P2PRegistry, and then
the P2PDirectory. Thus the P2PDirectory will record
the IP address of the P2PRegistry and the P2PRegistry
records the local port number of the AutoMedPeer.

• Px.D.lookup(Py): lookup of IP address for another
peer Py from D.

Instances of the schema entity, and its relationship path-
way with peer are created and read by the following primi-
tives:

• Px.D.publish schema(S, SchemaObjs(S), description):
store a copy of S held in Px in the directory D as
an instance of schema, with a description and list of
schema objects within the schema. From a logical per-
spective, this makes no change to the total number of
schemas in the P2P network, but from an operational
perspective, it increases the number of schemas which
may be shared between peers.

• Px.D.get schema(S): retrieve a copy of S from the di-
rectory’s schema, and add S with its schema objects
to Schemasx and SchemaObjsx of Px.

• Px.D.advertise pathway(S): update the directory with
an an association between Px and S to record that Px

stores a pathway from S to one or more data sources
(and hence will be able to return answers to queries
on S).

• Px.D.get peers for schema(S): return the set of peers
P1, . . . , Pn that have performed Py.advertise pathway(S),
y = {1, . . . , n}. This informs Px which peers it may
contact in order to obtain (1) answers to queries on
S and (2) meta data about pathways from S to other
schemas.

• Px.D.get schemas for peer(Py): return the set of pub-
lic schemas S1, . . . , Sn that Py has performed
Py.advertise pathway(Sz), z = {1, . . . , n}.

Example 2. Publishing part of data source
Suppose peer Pcs of a university’s computer science de-

partment holds a data source Scs made up of the cs student
and result tables of Figure 1. It decides to make public only
information about students and not their results. To do this,
it must create a schema, say called Sstu, which it can do by
the pathway below:

PWcs,stu={〈contract,Column,〈〈result,grade〉〉,Scs,Scsa,Range Void Any〉,
〈contract,Column,〈〈result,course〉〉,Scsa,Scsb,Range Void Any〉,
〈contract,Column,〈〈result,name〉〉,Scsb,Scsc,Range Void Any〉,
〈contract,Table,〈〈result〉〉,Scsc,Sstu,Range Void Any〉}

The peer then invokes Pcs.D1.publish schema(Sstu),
causing Sstu to be added into the directory. It then issues
Pcs.D1.advertise pathway(Sstu) to indicate that it can answer
queries on Sstu (since peer Pcs has pathway PWcs,stu relating
that schema to data source Scs). 2

3.2 P2P Meta Data Exchange
The P2P meta data exchange primitives allow peers to

exchange pathways to any associated schemas and between
each other. The two primitives available are:

• Px.Py.get source pathways(S): obtain from Py all path-
ways held at Py from public schema S to any data
sources SD

1 , SD
2 , . . ., along with AM(SD

1), AM(SD
2), . . .

peer

peer name

ip address

schema

schema name

description

schemaobjects

pathway
0:N

0:N

Figure 4: P2P Directory Schema

and store them in Px. This means that Px gains the
knowledge from Py of how to map queries between
S and SD

1 , SD
2 , . . ., and how to access the associated

databases, such that in future it can use these data
sources without any intervention of Py. In particular
Px becomes able to execute queries over SD

1 , SD
2 , . . .

without the aid of Py. Py is at liberty to refuse this
primitive’s request if it does not wish to divulge this
information.

• Px.Py.get pathway(Si, Sj): update the repository of Px

with a copy of the pathway from Si to Sj held at Py.

Example 3. Revealing Data Sources
Peer Preg holding Sreg decides to integrate itself with the al-

ready published schema Sstu on Pcs using the following steps:

• Preg.D.get schema(Sstu): obtain from the directory a
copy of Sstu and put it in the repository of Preg.

• Preg.D.get peers for schema(Sstu): obtain the peers that
implement Sstu, i.e. peer Pcs.

• Preg.Pcs.get source pathways(Pcs, Sstu): obtain a copy from
Pcs of the pathways from Sstu to any data source schemas.
In this case just Scs with its access method is copied
into the repository at Preg.

• Preg.match merge(Sreg, Scs): Preg merges its own data
source Sreg with the data source schema of Pcs and
forms a single BAV network which may then be queried.
This means Preg is able to access the data sources of
Pcs without needing to communicate with Pcs.

2

3.3 P2P Query Processing
The P2P meta data exchange primitives allow a peer to

gather meta data from other peers, and assemble its own in-
tegration of data sources. However, peers may not be willing
to divulge all their meta data information, and also main-
taining a copy of the meta data will cause problems in large
and evolving P2P networks. Hence an alternative interac-
tion between peers is for queries to be sent to remote peers
for evaluation. The AutoMed P2P query exchange primi-
tives allow queries to be distributed over the P2P network
as follows:

1. Px.Py.evaluate query(Q, S): execute query Q on schema
S of peer Py, and return to Px the results.

2. Px.Py.evaluate broker query(Q, S): perform
Px.Py.evaluate query(Q, S)
but in addition, request Py to perform
Py.Pz.evaluate broker query(Q, S)
on each peer Pz that Py knows to implement S (other
than Px and any other peers the broker query has
passed through).

3. Px.D.wrap public schema(S, Py): perform
Px.D.get schema(S)
and treat S as a data source in Px, executing
Px.Py.evaluate query(Q, S).

Example 4. Restricting access to meta-data about
data sources

In Example 3, Pcs accepted the request
Preg.Pcs.get source pathways(Pcs, Sstu)
however in some other case it might not want to release
details of its data sources, hiding the schemas and access
methods from other peers, but still allowing some query pro-
cessing to occur. In this case Preg could:

• Issue a Preg.D1.wrap public schema(Sstu, Pcs), which would
create a copy of Sstu in the repository of Preg, with an
access method pointing at Pcs of the form
〈Pcs, “”, Preg, P2PDirectory〉.
Note that the P2PDirectory is there as the source, since
it will be used to resolve the location of its ‘user’ Pcs

at runtime, allowing peers to be mobile and change IP
addresses.

• Perform Preg.match merge(Sreg,Sstu) to build in the repos-
itory of Preg a pathway PWstu,reg between Sreg and Sstu.

• Performing Q′=Preg.reformulate query(Q,Sx,Sstu) on any
schema Sx in the pathway PWstu,reg will return Q′ to
send to Pcs. This query is sent using
Preg.Pcs.evaluate query(Q’ , Sstu)
When Pcs accepts this request it will use
Q′′= Pcs.reformulate query(Q′,Sstu,Scs)
to obtain query Q′′ to execute on Scs.

2

4. BUILDING IXPEER USING AUTOMED
P2P PRIMITIVES

We now present a revision of the XPeer architecture called
iXPeer built around the AutoMed P2P primitives. As out-
lined in Figure 5, we remove the distinction between domain
peer and global peer, and allow domain peers to form any
hierarchical structure. Also, though not illustrated, the do-
main peers and cluster peers are allowed to participate in
any number of hierarchies.

4.1 Establishing the P2P Network
Using AutoMed, a low level peer in the iXPeer architec-

ture is any data source that is willing to give access to its
information through its access method AM. A cluster peer
is a single AutoMedPeer, that stores a BAV meta database,
i.e. a BAV network of all the schemas in the cluster, to-
gether with their access method details. Hence in Figure 5,
we show the cluster peers C1, C2, . . . comprising of a number
of schemas S1, S2, . . . connected to data sources via access
methods. Each cluster peer has a cluster schema that
makes public to the P2P network and the other peers. For

example, in Figure 5, the cluster schema of cluster peer C1

is SC
7 .

A domain peer is both a P2PDirectory and an AutoMed-
Peer. As a P2PDirectory it allows cluster peers to publish
their cluster schemas. A cluster peer Ci with cluster schema
SC

i that wants to connect to a domain peer Dj needs to per-
form the following steps:

1. Ci.Dj .register()

2. Ci.Dj .publish schema(SC
i , SchemaObjs(SC

i), DescC
i)

3. Ci.Dj .advertise pathway(SC
i)

The domain peer as an AutoMedPeer publishes its P2P di-
rectory schema (Figure 4) in its P2PDirectory and thus its
cluster peers. The P2P directory schema associates the clus-
ter schemas in the domain with their descriptions and it is
necessary for the cluster peers to create their XPeer view
(more on this in Section 4.2). The following steps are exe-
cuted by each domain peer Dj with P2P directory schema
DSD

j :

1. Dj .Dj .register()

2. Dj .Dj .publish schema(DSD
j , SchemaObjs(DSD

j), DescD
j)

3. Dj .Dj .advertise pathway(DSD
j)

For a domain peer to inform other domain peers in the
P2P network about cluster schemas in its domain, it must
advertise a pathway from its P2P directory schema to the
P2P directory schema of a domain peer in a higher level in
the iXPeer architecture. Suppose that Dk is a domain peer
one level above Dj with a public P2P directory schema DSD

k

(i.e. the schema in Figure 4), then the steps that Dj needs
to execute are:

1. Dj .Dk.register()

2. Dj .Dk.wrap public schema(DSD
k , Dk)

3. Dj .match merge(DSD
j , DSD

k)

4. Dj .Dk.advertise pathway(DSD
k)

Note that iXPeer extends the previous XPeer model in al-
lowing domain peers to form arbitrarily nested hierarchies.
For example, in Figure 5, D2 has registered with it both a
cluster peer C3 and another domain peer D1. Also D1 is free
to register with another domain peer D3, thus joining mul-
tiple hierarchies. The actual topology of the P2P network,
e.g. the number of domain peers used as roots, the levels of
domains, etc, depends on the particular application and the
requirements of the PDMS being built and it can always be
adjusted using the AutoMed P2P primitives. iXPeer is free
of single points of failure since any peer in the network can
be associated with more than one other peers. Note that we
are not examining failure recovery in this paper. Depending
on the application and the recovery approach required, data
and meta data can be cached in different peers, cluster peers
can be registered with more than one domain peer, etc.

4.2 Querying and Building Applications over
the P2P Database

Querying semantically related data sources depends on
the ability to map between their schemas. Unfortunately,
in most cases matching between schemas is still largely per-
formed manually or semi-automatically. P2P based related

work (e.g. SomeWhere, Piazza) have assumed that the sources
(peers) are able to declare their mappings with at least an-
other source (peer) of the P2P network. This constraint
imposed on the peers could be raised if the system is able
to automatically discover semantic mappings between the
sources starting from their ontologies or schemas.

In iXPeer, a client wishing to query or develop applica-
tions over the distributed information system is provided
with a mediated schema called an XPeer view over rele-
vant cluster schemas. As argued by [16], the existence of a
unified view over heterogeneous data sources makes easier
the development of applications. In iXPeer view creation
is conducted as follows:

1. A cluster peer poses a meta data query on the P2P
directory schema of the domain peer which the cluster
peer is registered. This query is formed of a set of key-
words Kq = {K1, . . . , KN}, which describe the area of
interest of the cluster peer. The purpose of this query
is the identification of all cluster schemas in the P2P
network that are related with the specific set of key-
words. Suppose that C is a cluster peer registered to a
domain peer Dj with DSD

j as P2P directory schema.
The cluster peer performs the following step:

C.Dj .evaluate query([{p, ip, s, kw} |
{p, ip} <− 〈〈peer,ip address〉〉;
{p, s} <− 〈〈pathway,peer,schema〉〉;
{s, kw} <− 〈〈schema,description〉〉;
{kw} contains {K1, . . . , KN}], DSD

j)

This action is performed on any (or all) domain peers
to which the cluster peer is registered.

2. A domain peer responds to this request by first evalu-
ating the above query on its own repository. If there is
a set of cluster schemas CSs in its domain that satisfy
all the keywords in the query then the domain peer re-
turns this set as the answer to the query. If there are
keywords which are not covered then the domain peer
forwards the query to other domain peers higher in the
XPeer hierarchy by performing the following action:

Dj .Dj .evaluate broker query([{p, ip, s, kw} |
{p, ip} <− 〈〈peer,ip address〉〉;
{p, s} <− 〈〈pathway,peer,schema〉〉;
{s, kw} <− 〈〈schema,description〉〉;
{kw} contains {K1, . . . , KN}], DSD

j)

The same process is followed by the other domain peers
higher in the hierarchy. Ideally, we would want to con-
trol this query propagation, for example stopping once
all keywords are covered, or covered a certain number
of times; the decision depends on the requirements of
the PDMS being built. At present the query distribu-
tion aspects of the AutoMed toolkit are being devel-
oped to support such query distribution rules.

3. The result of these queries is a set of tuples that con-
tain the peer name, peer ip address, public schema and
associated keywords of cluster peers that are related to
the initial set of keywords Kq. The cluster peer that
initiated the query may therefore execute a process
similar to that in Example 4, wrapping peer schemas it
considers (from information in the keywords and pos-
sibly previous experience of using a peer) relevant, and

C1 C2 C3

P1 P2 P3 P4 P5 P6

SC
7 SC

8 SC
9

D1

D2

S1 S2 S3 S3 S4 S5 S6

peer

access
method

pathway

cluster peer

domain peer

domain peer

Figure 5: iXPeer: Revised XPeer architecture using AutoMed P2P primitives

using the match merge primitive to create a mediated
schema called the XPeer view.

Example 5. Creating and using an XPeer view
Consider that the P2P network shown in Figure 5 is used

by a university’s P2P database. Let cluster peer C1 be the
peer in the Computer Science Department of the univer-
sity and C2 the peer in the Maths Department. These two
cluster peers belong to the same sub-domain represented by
domain peer D1. Cluster peer C3 is the peer in the univer-
sity’s Registry. Domain peer D2 is the high-level peer which
represents the university.

The Computer Science Department peer C1 publishes on
D1 its cluster schema Sstu described in Example 2 which
represents information about the computer science depart-
ment’s students. The description of published schema Sstu

contains keywords {computing, student, marks}. The Maths
Department peer C2 publishes a similar cluster schema, SP

math,
on D2 about mathematics students, with a description that
contains keywords {maths, student, marks}. The Registry
peer C3 has cluster schema Sreg, as described in Example 1,
with information about all the students in the university
and publishes it on peer D1. The description of Sreg con-
tains keywords {students, home address}.

Now, the Computer Science Department peer wants to
learn the home addresses of its graduate students to send
them their degrees certificates and congratulate them. First
it needs to create its XPeer view by performing:
C1.D1.evaluate query([{p, ip, s, kw} |

{p, ip} <− 〈〈peer,ip address〉〉;
{p, s} <− 〈〈pathway,peer,schema〉〉;
{s, kw} <− 〈〈schema,description〉〉;
{kw} contains {computing, home address}], DSD

1)
Peer D1 is not able to answer this query based on its own
repository since schemas Sstu and SP

math do not cover these
keywords. Therefore, it will perform
D1.D1.evaluate broker query([{p, ip, s, kw} |

{p, ip} <− 〈〈peer,ip address〉〉;
{p, s} <− 〈〈pathway,peer,schema〉〉;
{s, kw} <− 〈〈schema,description〉〉;
{kw} contains {computing, home address}], DSD

1)
This query would follow pathways that are connected with
other domain peers in the P2P network. When the domain
peer D2 receives the query it will be able to respond to it

since (a) it has a published schema Sreg from C3 which covers
keyword home address and (b) it has a subdomain D1 which
has a published schema Sstu that covers keyword computing.
Therefore D2 is going to respond by sending back the IP
addresses of C3 and C1 and their schemas Sreg and Sstu.

Peer C1 will now perform match merge(Sreg,Sstu) that will
create the global schema Sf of Figure 2. This schema will
be the XPeer view of C1:

cs student
name term address year level

student
name dept level home address

Now C1 just has to execute on Sf the query:
reformulate query([{x, y} | {s, x} <− 〈〈cs student, name〉〉;

{s, w} <− 〈〈cs student, year〉〉;
{s, ‘ug’} <− 〈〈cs student, level〉〉; w > 4;
{s, y} <− 〈〈student, home address〉〉])

that will result in the evaluation of the query
[{x} | {s, x} <− 〈〈cs student, name〉〉;

{s, w} <− 〈〈cs student, year〉〉;
{s, ‘ug’} <− 〈〈cs student, level〉〉; w > 4]

on C1’s local data sources, and performing the action
C1.C3.evaluate query(〈〈student,home address〉〉, Sreg) 2

5. RELATED WORK
There are several P2P file sharing systems such as Gnutella,

Napster, Morpheus, etc, with different degrees of centralisa-
tion. The main difference between the file sharing P2P sys-
tems and P2P database systems is that the P2P database
management systems (PDMSs) are model based, using a
schema based on the model to structure the data they con-
tain, and providing a query language for that model. We
divide these PDMSs into those which are designed to build
upon the semantic web, and those extending the traditional
data mappings.

Edutella [13] is a semantic web oriented project imple-
menting an RDF-based metadata infrastructure for P2P net-
works to enable interoperability between heterogeneous JXTA
applications. The overlay network underlying Edutella is a
hypercube of super-peers to which peers are directly con-
nected. Each super-peer acts as a mediator and it routes
the query to some of its neighbour super-peers according to
a strategy exploiting the hypercube topology for guarantee-

ing a worst-case logarithmic time for reaching the relevant
super-peer. SomeWhere [1] is semantic web oriented P2P
mediation based on propositional logic for defining ontolo-
gies, mappings, and queries.

Turning to review data model mediation systems, in which
category iXPeer falls, the Piazza [6] system focused on a
specification language for describing the semantic mappings
between the peers. More precisely, the main goal was to
enable users to specify mappings between a small set of
peers using peer descriptions instead of a mediated schema.
This language also enables the description of each peer.
PeerDB [14] is a project implementing relational model P2P
database functions, such as automatic schema matching.
Another system named XPeer [17] has an architecture for
XML data integration with two kinds of nodes: peers and
super-peers. All the super-peers having the same parent
form a group. Super-peers are organised to form a tree
where each node owns schema information about its chil-
dren. The super-peer schema is built simply as the union of
those of its children.

There are many differences between our approach and
that of other PDMSs. For example, Piazza does not pro-
vide a mediated schema but mappings between a small set
of peers. A peer is assumed to be connected into a small
set of peers, and by iteration, it can reach many peers. This
solution is prone to degradation of query performance. Like
Piazza, SomeWhere [1] has assumed that each peer is able
to declare mappings between its ontology and the ontologies
of some peers that it knows. In our system, a peer joining
the P2P network need only provide some keywords that will
be used to identify which clusters it should belong to. The
approach closest to ours is [17], but this is limited to forming
strict segregated hierarchies, and super-peers contain all the
schema information of sub-peers.

6. SUMMARY AND CONCLUSIONS
We have presented an extension of the AutoMed toolkit

that permits the exchange of meta-data and queries between
peers on a P2P network, and we have shown how this ex-
tended toolkit may be used to implement a novel architec-
ture called iXPeer. The iXPeer architecture allows an ar-
bitrarily structured hierarchy to be built between domain
peers, and domain peers to join several hierarchies, thus
giving the overall P2P network resilience in the face of fail-
ures at peers. Also, basing iXPeer on AutoMed means that
we built a P2P network capable of handling any structured
or semi-structured data model.

The AutoMed toolkit is very flexible in what it permits
to be built, and hence basing iXPeer around this toolkit
allows us to adapt and improve the iXPeer architecture in
the light of our on going experimental work currently be-
ing conducted. Current work is focusing on query distribu-
tion control, which will be used to control the processing of
searching for keywords matching when processing a keyword
query during XPeer view generation.

7. REFERENCES
[1] P. Adjiman, P. Chatalic, F. Goasdoué, M-C. Rousset,

and L. Simon. Somewhere in the semantic web, 2005.

[2] Z. Bellahsène and M. Roantree. Querying distributed
data in a super-peer based architecture. In Proc.

DEXA 2004, volume 3180 of LNCS, pages 296–305,
2004.

[3] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J.
McBrien, and N. Rizopoulos. AutoMed: A BAV data
integration system for heterogeneous data sources. In
Proc. CAiSE’04, volume 3084 of LNCS, pages 82–97.
Springer, 2004.

[4] E. Franconi, G. Kuper, A. Lopatenko, and
I. Zaihrayeu. The coDB robust peer-to-peer database
system. In Proc. 2nd Workshop on Semantics in

Peer-to-Peer and Grid Computing, 2004.

[5] A. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[6] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov.
Piazza: Data management infrastructure for semantic
web applications. In Proc. WWW’03, 2003.

[7] E. Jasper, A. Poulovassilis, and L. Zamboulis.
Processing IQL queries and migrating data in the
AutoMed toolkit. Technical Report No. 20, AutoMed,
2003.

[8] E. Jasper, N. Tong, P.J. McBrien, and
A. Poulovassilis. View generation and optimisation in
the AutoMed data integration framework. In Proc.

Baltic DB&IS04, volume 672 of Scientific Papers,
pages 13–30. Univ. Latvia, 2004.

[9] A. Kementsietsidis. Data sharing and querying for
peer-to-peer data management systems. In EDBT

PhD Workshop, pages 177–186, 2004.

[10] P.J. McBrien and A. Poulovassilis. A uniform
approach to inter-model transformations. In Proc.

CAiSE’99, volume 1626 of LNCS, pages 333–348.
Springer, 1999.

[11] P.J. McBrien and A. Poulovassilis. Data integration
by bi-directional schema transformation rules. In Proc.

ICDE’03, pages 227–238. IEEE, 2003.

[12] P.J. McBrien and A. Poulovassilis. Defining
peer-to-peer data integration using both as view rules.
In Proc. DBISP2P, at VLDB’03, pages 91–107, 2003.

[13] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek,
A. Naeve, M. Nilsson, M. Palmér, and T. Risch.
Query language for semantic web: EDUTELLA: a
P2P networking infrastructure based on RDF. In
Proc. 11th WWW Conf., 2002.

[14] B.C. Ooi and K-L. Tan Y. Shu. Relational data
sharing in peer-based data management systems.
SIGMOD Record, 32(3):59–64, 2003.

[15] N. Rizopoulos and P.J. McBrien. A general approach
to the generation of conceptual model
transformations. In O. Pastor and J.F. e Cunha,
editors, Proc. CAiSE’05, volume 3520 of LNCS, pages
326–341. Springer, 2005.

[16] 1999 S. Abiteboul. On views and XML. In Proc.

PODS, pages 1–9, 1999.

[17] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti.
XPeer: A self-organizing XML P2P database system.
In Proc. P2P&DB Workshop, pages 456–465, 2004.

[18] A. Sheth and J. Larson. Federated database systems.
ACM Computing Surveys, 22(3):183–236, 1990.

[19] G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 25(3):38–49,
March 1992.

