
 Adaptive Proxy Caching for Web Servers in Soft Real-Time Applications*

 Albert M. K. Cheng Zhubin Zhang
Real-Time Systems Laboratory

Department of Computer Science
University of Houston

Houston, TX 77204-3010, USA
(cheng, zbzhang)@cs.uh.edu

* This work is supported in part by a grant from the Institute for Space Systems Operations. A 4-page preliminary version of this
work has appeared as a work-in-progress paper in IEEE RTSS 2002.

Abstract

An adaptive cache proxy is developed to improve the
performance of web access in soft real-time
applications. It consists of client proxies and
cooperative proxy servers with a server-side pushing
schema. The large amount of heterogeneous data will
be stored in the proxy servers and delivered to clients
through computer networks to reduce the response
time and network traffic. The adaptive proxy pre-
fetches and replaces heterogeneous data dynamically
in consideration of networks cost, data size, data
change rate, etc. The simulation results show that the
modified LUV algorithm has better performance in
terms of hit rate, byte hit rate, and delay saving rate.
With the cooperative proxy caching, it is shown that
the performance of the proxy caching system is more
predictable even if the proxies need to deal with a
variety of data. The modified adaptive TTL algorithm
has better performance in terms of the combination of
temporal coherency and system overheads.

Keywords: adaptive proxy caching, web servers,
soft real-time systems, mobile networking, temporal
coherency.

1 Introduction

The World Wide Web (the “Web”) has become a
widely accepted channel for distributing a large variety
of data and services in recently years. Although the
Internet backbone capacity increases up to 60% per

year, the scale of Web usage still far exceeds the
capacity of the Internet infrastructure and leads to the
relatively poor performance and low reliability of Web
service. Therefore, it is challenging to deliver real-time
data such as stock quotes, storm warning, and
audio/video broadcasting to customers in a timely
manner through the Web.

Researchers have been working on how to improve
Web performance by means of proxy caching since the
early 90’s. Proxy caching is applied to store popular
objects at the locations close to the customers, and has
been proved to be an effective way to reduce the
response time and network traffic, and to improve the
robustness and scalability of the Web system. The
following related work has been done to investigate
different approaches to maximize the benefits of proxy
caching.

1.1 Caching Architectures
The proxy servers can be organized to improve the
performance of the caching proxy. A caching
architecture can help caching proxies communicate and
coordinate more efficiently to achieve a better
performance. Caching architectures can be classified
into hierarchical caching architecture, distributed
caching architecture, hybrid caching architecture, and
clustered caching architecture.

In hierarchical caching architecture [7], caching proxies
exist in several network levels, such as bottom,
institutional, regional, and national level. A
hierarchical caching architecture has shorter connection
times than distributed caching. Cache servers are added

to key access points to set up a hierarchy. This
requires significant coordination among the
participating caching servers. The extra delay may be
introduced at every hierarchy level. High-level caches
may become the bottleneck with long queuing delays.
Copies of same documents at intermediate cache levels
may introduce redundancy though it helps reduce
latency.

In distributed caching architecture, there are no other
intermediate cache levels other than the institutional
caches, which serve each other and share the
documents. Distributed caching systems have shorter
transmission times than hierarchical caching systems
[5]. It also allows better sharing and error tolerance.
However, a large-scale caching system may have
problems such as high connection times, higher
bandwidth usage, and difficulties in system
administration.

In hybrid caching, a certain number of caches
cooperate at different levels of a caching hierarchy
using distributed caching. The distribution at every
network level can balance the workload of caching
servers at different levels and reduce the overall
retrieval latency. A cooperative proxy caching system
[10] limits the cooperation among neighbor caches to
avoid fetching documents from distant or slower
caches, which could have been retrieved directly from
Web servers at a lower cost.

Cluster-based Caching uses multicast groups for
sharing cache objects, which is formed for a set of
pages that are often accessed together. When a client
wants to access one of these web pages, it can multicast
the request to that group. Dynamic Web Caching [11]
uses the “association rules” to find correlation that will
be accessed based on another page that has been
accessed. This approach can enhance the resource
sharing among the group members and can increase hit
rate. However, It introduces network traffic due to
multicast query, especially when the group becomes
large. In addition, distances among group members
may not be close.

This paper will provide an approach using a distributed
caching architecture with a default proxy server to
achieve better scalability, efficiency and availability.
This protocol avoids caching redundancy by saving
URLs (or IP address and document path) uniquely
among collaborative proxies by a hash function. Proxy
servers cooperate with each other to make the most use
of resources, as shown in Figure 1. The caching system

consists of a client proxies, proxy servers, and web
servers. Every mobile device works as a client and has
its own Web browser and client proxy. The client
proxy only maintains a part of cached objects because
of the limited storage space of mobile devices. The
other large amount of data will be saved in proxy
servers. The proxy servers share cache objects among
the group members. When the request of an object is
sent to default proxy server from a client, the requested
object will be checked with the cache objects in the
default proxy server or group proxy servers through the
hash table. If the requested object is found in the proxy
group, the object is fetched from the proxy group and
sent back to the client; if the object is not in the proxy
group, the object is fetched from Web servers and sent
back to the client. It can also reduce the connection
overhead if the clients have persistent connections with
the default proxy server.

Proxy groups can be clustered based on certain
association rules as the cluster caching architecture has.
The group can be formed according to the least
delivery latencies among the proxy servers or based on
the similar client access patterns. Also, the caching
proxies can cooperate with other caches at the same
level or at a higher level to form a larger scale system
with more extensive resource sharing like hybrid
caching.

The number of proxy servers should be controlled in a
group to avoid the need to maintain a large hash table,
and the delivery latencies among the cache proxy
members should be limited. A large hash table may
increase implementation overhead. If the distance
between two member proxies is too far and the delivery
latency is high, the proxy server may fetch the
requested objects directly from web server.

Proxy
Server

Proxy
Server
(Default) Proxy

Server

clients

Proxy
Server

servers

Figure 1: Proxy servers of soft real-time systems

 Similarly, client proxies are organized into a client
proxy group to share resource among the group
members, as shown in Figure 2. There is a hash table to
save the content information of its own proxy and other
participating proxies. The limited storage spaces of
clients are put together to increase the total cache size,
which potentially leads to higher hit rate. First, the
requested objects by the client browser are look up in
its own client proxy or in the other group client proxies
though the hash table. Second, the request will be sent
to its default proxy servers.

A proxy server consists of the main parts such as a hash
table of caching objects, pre-fetching management, and
placement/replacement management, as shown in
Figure 2.3. A hash table will be saved on the proxy
servers to manage all the cache space in a server group.
The requests of clients will be sent to default proxy
servers. The hash table provides the exact caching

location of a requested object. Each proxy keeps a
summary of the locations of cached objects at
participating servers.

Prefetching management predict the possible requests
of clients based on the previous user access pattern,
and get the possibly requested objects for clients
between requests. Prefetching management also
coordinate with cache coherency algorithm to fetch
real-time data to keep data coherency and reduce
latency.

1.2 Cache Replacement
A placement/replacement policy has a significant effect
on the performance of proxy caching. In uniform
caching environment, the size and the cost of each
requested object are identical. A
placement/replacement policy has significant effect on
the performance of proxy caching. The previous works
are divided into three categories:
a. Traditional replacement used such as Least Recently
Used (LRU) and Least Frequently Used (LFU);
b. Key-based replacement such as LRU-MIN [7], LRU-
Threshold [7], Lowest Latency First [9].
c. Cost-based replacement policy such as Lowest
Relative Value [6], Least Unified Value (LUV) [3],
Sized-Adjusted LRU [8], Hybrid [9], etc.

A new replacement policy is proposed and simulated to
handle the heterogeneity of data types, to improve the
hit rate and the byte hit rate, and to reduce the response
time. The historic record, cost efficiency, and
popularity of caching objects are reflected with
adjustable weights in the current replacement policy
based on Least Unified Value (LUV) [3]. In comparison
with other replacement algorithms, LUV exhibits better
performance in terms of hit rate, byte hit rate, and delay
savings ratio in our trace simulation.

1.3 Prefetching and Data Coherency
Proxy servers can anticipate future objects and prefetch
these objects into local cache to improve the hit rate
and reduce the access latency. This approach predicts
which cached objects a user might reference next and
takes advantage of the idle time between user requests
by either pushing cache objects to the user or pulling
the documents from Web server [2].

Although the prefetching can increase hit rate and
reduce delivery latency, the extra network traffic and
the bandwidth wasting are introduced when the
prefetched objects are idle. Every cache proxy must
update its objects so that it can give users the objects or

Client 1

Proxy Servers
C(t)

Text,
Image,
CM
data

Push
with
Adat
Data

D
ata source

Request and
pre-fetching
Management

Caching
and Hash
table

Replaceme
nt
manageme
nt

Client
N

Figure 2: Configuration of proxy servers
in soft real-time systems

Client
U(t)

Server
s S(t)

data that are as current as possible. Time To Live
(TTL) is used to decide if the data are invalid. As to
real-time cache data, cache coherency becomes more
important because the data are useful only if they are
valid. Also, it is more challenging to maintain the
coherency of real-time data whose change can be
periodic or sporadic.

The adaptive TTL adjusts a cached object’s TTL based
on observations of its life-time. For example, if a
cached file has not been modified for a long time, it
tends to stay unchanged. Thus, the TTL attribute to a
document is assigned to be a percentage of the
document’s life span, which is the current time minus
the last modified time of the document. Studies [4] have
shown that adaptive TTL can keep the probability of
stale documents within reasonable bounds (5%). One
the other hand, users cannot control the degree of
staleness they are willing to tolerate. Users have to wait
for expiration checks to occur even though they can
tolerate the staleness of the requested objects.

In this paper, prefetching policy and adaptive TTL are
applied to satisfy the requirements of Continuous
Media (CM) and data coherency based on the available
resources such as bandwidth and storage capacity. This
policy can support the coherency of real-time data and
different data types such as text, image, audio and
video. Also, this policy can provide the function to let
user specify the degree of staleness and the coherency
predicable performance for soft real-time applications.

1.4 Multi-media caching
A lot of work has been done to improve the scalability,
the latency, the bandwidth utility, and the stream
quality in multi-media applications. For example, A
Multimedia Proxy Caching (MCaching) was proposed
to complement the end-to-end architecture for the
delivery of quality adaptation, layered-encoded streams
over the Internet [12].

1.5 Objectives
Based on previous related work on proxy caching, this
study is to propose an adaptive proxy caching scheme
for Web servers in soft real-time applications, and to
improve the quality of the caching system in terms of
access time, load balance, data coherency, simplicity
and ability to deal with data heterogeneity. The specific
objectives of the investigation are to improve, by
means of simulation analysis:
Replacement algorithm to handle data heterogeneity in
terms of simplicity, hit rate, byte hit rate, delay saving,
etc.

Adaptive TTL to maintain the cache coherency with
relatively low network traffic.

2 Algorithms
2.1 Hash Table Algorithm
A hash table is maintained to store the exact location of
objects and map the Uniform Resource Locator (URL)
to a hash key, which helps retrieve the exact location of
objects or remove the objects from the table according
to a replacement policy. URL is used to identify a Web
document and contains the machine name or IP
address, and the file name. These requests from clients
will be checked with the hashing table for potential hits
before the requests are sent out. Proxy servers check
the availability of a request object before the request is
forwarded to destination servers. There are three cases
to handle.
(1) The location of object is in the hash table and is on
the default servers. Just fetch it from the default proxy
server.
(2) The location of object is in the hash table and is on
the other proxy servers. Fetch the requested object
from the proxy server where the object is stored and
send the object to clients.
(3) The location of object is not in the hash table. It
means that the object is not saved in the proxy server
group. The request has to be sent to Web servers to get
the object from the data source.

In this study, the reference point of IP address and
documents are saved in the harsh table to reduce the
latencies related with Domain Name Service (DNS)
lookup. The reference saving can avoid the times for a
DNS lookup and the persistent connection with a
default server can save the connection times.

2.2.2 Replacement Algorithm
Most caching proxies handle text, images and
continuous Media (CM) by different policies and
priorities since the size of CM is much larger and is
real-time data. In this approach, the text, image and
CM are treated by one replacement policy. CM will be
allocated with fixed and relatively larger caching space
to avoid exhausting caching space and bandwidth by
large CM data. The remainder of CM data will be
fetched from the servers when they are requested by
clients. The replacement policy can also be simplified
and be more adaptive.

The replacement policy uses the Modified LUV (Least
unified value) that is found to be effective in improving
the hit rate and the byte hit rate [3]. This algorithm is
used with the resource-based policy to make the most

use of the bandwidth and the storage space. The key
idea of resource-based policy is to calculate the
utilization of bandwidth and storage, and keep their
utilization to be mostly the same. However, there
should be enough spare storage space and bandwidth
reserved for the new requests. In other words, the
replacement should be started to remove the object
with the least LUV before the resource runs out. A
priority queue is maintained to save LUV values and
hash table keys in order to remove the objects from
cache proxies with the least LUV value.

Modified Least Unified Value (MLUV):
a: Constant to adjust the weight to the recent
referred objects
Cavrg : Average cost during dt
Ci: Total cost during dt
dt: Time period from the last reference to the
current time
n: Reference times during time period dt
Navrg: Average reference times during dt
Pn: Function value decreased with elapse time, it
gives more weight to recent values.
Savrg: Average size during dt
Si: Size of caching objects
St: Total size during dt
ti: Time elapse from the moment when the LRV
is calculated
Wc: Constant weight for the ratio of cost and size
Wc(i): Dynamic weight for the ratio of cost and size
Wp: Weight for popularity

LRV(k+1) = Pn(dt)*LRV(k) + �
=

n

i 1

Wc(i) * (Ci /

Cavrg) / (Si / Savrg) + Wp*((n/Navrg)/dt)

LRV(k+1) = Pn(dt)*LRV(k) + �
=

n

i 1

Wc(i)* (Ci / Si)

* (St / Ct) + Wp*((n/Navrg)/dt)
Wc(i) = Pn(i)*Wc

Pn(i) =
)/(dttiae −

This algorithm considers the historic records but need
not save every historic record in comparison with the
original LRV approaches. The old value is
accumulated in the priority value and the weight for old
values is decreased with the time elapse. To achieve
better adjustment of the Modified Least Unified Value
(MLUV), the formula has been normalized.

2.2.3 Prefetching and Data Coherency
Algorithm
In this study, prefetching policy is applied to satisfy the
requirements of Continuous Media (CM) and data
coherency based on the available resources such as
bandwidth and storage capacity. This policy can
support the data coherency of soft real-time application
and different data types such as text, image, audio and
video. Also, this policy can provide predicable
performance for soft real-time applications.

The resource such as storage place and bandwidth can
be utilized to prefetch request objects to satisfy the data
coherency of real-time data or deliver the remainder of
large objects such as CM objects between the requests.
During the idle times, the objects are prefetched to
reduce the latency of data requests by using the
available caching space and bandwidth. The available
caching space and bandwidth are limited, so objects
should be prefetched effectively according to the
replacement priority. Replacement policy is applied to
improve hit rate and byte hit rate of cached objects. If
the prefetched objects are not used, the bandwidth and
storage space are wasted. It is compliant with the goal
of replacement policy if the objects with highest
priority values are prefetched. On the other hand, the
objects with the same popularity and higher cost
efficiency should be prefetched. Also, the remainder of
CM data will be prefetched with the available
bandwidth and caching space.

2.2.3.1 Pull and Push Mechanism
As shown in Figure 2, S(t) denotes the data source
value, C(t) and U(t) denote the values at the cache and
at the user respectively. A constraint c is specified by
the user. Servers need not inform the user if the
changes of data magnitude are less than c in the source
data, but need to inform the user if the change is greater
than constraint c. The system must satisfy, |U(t) – S(t)|
< c.

To improve the scalability of systems, a novel push-
and-pull hybrid data broadcast scheme is proposed for
wireless information networks in [1], the simulation
results show that the hybrid scheme is very effective in
reducing the data access time for each class of clients.

A proxy server pulls data from web servers and pushes
it to users immediately. This way can reduce the data
delay between the users and the cache. If
communication delay can be ignored, the user data and
data of the cache can theoretically be synchronized.
The user constraint can be known by the cache proxy

before the stock price actually changes though user do
not know how the stock price will change. Once the
change in stock price is greater than the user constraint,
the cache just push the updated stock price to the user.

2.2.3.2 Modified Adaptive TTL
Adaptive TTL (Time To Live) is used to keep the
temporal coherency of real-time data or documents.
The proxy server has a challenging issue to maintain
temporal coherency with reasonable networks traffic.
Take the stock trading as an example: a broker only
needs the desired information from mobile device. The
broker must get the stock price on time to make the
decision to sell or buy. However, a broker just wants to
know the change beyond some price limit like more
than $0.50 or within a certain delay like 5 minutes. In
this study, the coherency of real-time data will be
discussed based on the previous work in [4].

To evaluate the performance of the system, the
following two metrics are used:
#polling: The number of times the source is polled; an
indication of the networking overhead.
VProb: Probability of a user’s temporal coherency
violation.
The lower the Vprob, the better performance with
respect to the temporal consistency but the higher
possible cost in terms of #polling.

The adaptive algorithm uses following factors to
determine the new TTL.
Dynamic TTLdr within Static Bounds:
TTLds = Max(TTL���, Min(TTLdr , TTL���))
Adaptive TTL:
������	
�������������������������������
���������

����������������������������
�

Fudge factor f: 0<= f <= 1

In this adaptive approach, dynamic TTL�� is a
candidate for the new TTL to reflect the changes in the
new future. ����� corresponds to the fastest source
change so far and �����
�corresponds to the change
trend. ������ accommodates both of them, giving
different weight to each of them by fudge factor f. If f
is close to 0, it entirely relies on recent trend; this will
result in a loose upper bound if the recent source
changes are slow. See more details about the formula in
[4].

In this study, adaptive TTL algorithm has been
improved to reduce VProb and maintain acceptable

#polling by adding the dynamic TTL boundary and
using dynamic VProbdr. Proxy servers poll real-time
data from web server and push the data immediately to
clients according to the adaptive TTL. The adaptive
TTL is determined in consideration of the fastest
source change rate and historic data change rate.
Generally, the rapid changes of data need smaller TTL.
The adaptive TTL is also bound by dynamic limits and
static critical limits to avoid unreasonable network
traffic or stale data due to a too small TLL or a too
large TLL.

������and������ are static lower bound and upper
bound. They avoid unreasonable TTL in adaptive
approach. They are estimated bounds in advance since
the changes of stock price are unpredictable. If ������
or������is too low, it will cause highoverheads;��
������or������ is too high, the high incoherency
will be expected. The TTL easily becomes saturated
when the data change rapidly. In this study, a modified
adaptive TTL with dynamic bounds is suggested to
improve the system performance.

In the modified adaptive TTL, ������ and������
are dynamic bounds that are determined by dynamic
VProbdr and the constraint Vprobconstr. VProbdr is
more accurate to calculate the dynamic coherency
violation and make the algorithm more adaptive. The
Vprobconstr is specified by the user in advance.
Dynamic VProbdr is

where t1, t2 , t3,…, tn: the durations when |U(t) –��
��

���during������	
����
 Rate_Polling = #Polling / ������	
���

Two critical static bounds �������and������� are
added, and dynamic ������ and ������ must
change within the critical static bounds. The reduction
factor of bounds is introduced to reduce the dynamic
������and������ according to dynamic VProb��,
Vprobconstr and Rate_Polling. The algorithm is as
follows:
if(Vprob�� > Vprob� ��
� && Rate_Polling <
Rate_Polling_factor)
{������ = f_red*������;
������ = ������	
��� / f_red; }

�
=

=
n

1i

itVprob
adaptive

dr TLL

 if(������ <�������)
 ������ = �������;
if(������ > �������)
������ = �������;
where 0.0 <f_red < 1, Rate_Polling_factor > 4.

When Vprob��> Vprob� ��
�� the possible reason is
that the ������	
��� reaches the static lower bound or
the rapid change of stock price needs smaller
������	
���. To control the number of polling, the
constraint Rate_Polling < Rate_Polling_factor is
introduced, which means the #polling increasing is
under control. At the same time, the ������ is
determined by current ������	
��� to avoid too large
upper bound. Finally, the dynamic ������ and
������ are checked by the critical static bounds
�������and��������

3 Analysis and Discussion

The proposed proxy caching system is simulated to
investigate the replacement algorithm and the adaptive
TTL to improve the performance of client proxies and
proxy servers. Due to the resource limitations and
needs to simplify the simulation, the assumptions and
simplification are made as follows:
The network bandwidth is high enough for proxies to
prefetch the remainder of large objects and maintain
the data coherency during idle times. This can be
satisfied by increasing bandwidth, controlling Quality
of Service (QOS), rejecting new requests, etc.
Some components in the simulation system are
simplified as parameters. For example, the bandwidth
of every request is calculated based on the assumed
total bandwidth and its usage.
 No error happens during the data delivery through the
network. The cost of data delivery is estimated in the
average value with some fluctuations.
Hash table collision does not happen when adding
cache objects into the hash table or retrieving the
location of cached objects in cache proxies.
Messages among the client proxies, proxy servers and
Web servers can be handled by each other without
errors and delays.

3.1 Evaluation of Replacement Algorithm
The simulation of proxy servers to cache requested
objects was conducted using the proposed replacement
and prefetching algorithm to investigate the
performance of proxy servers. The web trace is used as
the client request input. This trace contains a day's

worth of all HTTP requests to the EPA (Environmental
Protection Agency) WWW server. The request
distribution is skewed and the requests from the clients
reach the peak at afternoon. Client requests fluctuate
greatly from 100 to 1000 times every 10 minutes. The
request size ranges from hundred bytes to over 10MB.

Every record in the Web Trace includes information
such as host, time stamp, request, HTTP version,
response ID, object size, etc. The ULR is included in
the request item, which is used as a key in the hash
table maintained by cache proxies. The hash table
stores the location of the cache objects containing the
IP address and document path. Hashing is an
implementation technique that guarantees)1(O
efficiency for Add, Remove, and Retrieve operations
regardless of the number of objects in the collection.
Because the objects are saved in a hash table without
order, a ordered list is maintained to decide which
object will be remove from hash table according to the
priority value such as LUV for LUV replacement
algorithm and time stamp for LRU replacement policy.
The hash key is included in the ordered list and used to
remove an element from the hash table when
replacement policy is executed. The complexity of time
can be)(log2nO which is the same as those of LUV in
[3], LFU and LUV. Also, space complexity has the
same order as those of LUV, LFU and LUV. This
algorithm considers the historic records but need not
save every historic record in comparison with the
original LUV approaches. The old value is
accumulated in the priority value and the weight for old
values is decreased with the time elapse.

The objective of the replacement algorithm is to
increase the hit rate, byte hit rate, and delay saving rate
of cache objects at proxy servers. They are defined as
follows:
Hit rate = Total reference times / Total request times
Byte hit rate = Total reference size / Total request size
Delay saving = Total response time of referenced
objects / Total response time of requested objects

The hit rate, byte hit rate and delay saving are shown in
Figures 3.3, 3.4, 3.5, respectively. The simulation
results show that the modified LUV algorithm has
better performance in terms of hit rate, byte hit rate,
and delay saving rate. The caching space has an effect
on the performance of proxy caching. The overall hit
rate of MLUV changes from 25% up to 82 %, the byte
hit rate increases from about 12% to 72%, and the
delay saving increases from around 12% to 73 % when
the caching size ranges from 50MB to 1GB.

The replacement algorithm of the proposed caching
proxies should handle text, images and continuous
Media (CM). If the entire contents of several long
streams of video are stored in cache proxy, the cache
space can be exhausted. A parameter called Maximum
Object Ratio (MOR) is utilized to control the allowed
space to store large objects in proxies, which is the
ratio of the allowed storage space for large objects to
the total cache size of proxies. In other words, a fixed
storage space is allocated to save a part of large objects
according to MOR. If MOR is fixed and the total cache
size of proxies is larger, a bigger part of the larger
object is allowed to be stored in cache proxies. The
remainder of the large objects will be fetched from the
data source when it is requested by the clients.

In Figures 3.6, the hit rate of the caching proxies
change with the Maximum Object Ratio (MOR) when
different replacement policies such as MLUV, LUV,
LRU and LFU are applied. This simulation is
conducted when the total cache capacity is 1 GB. The
four replacement policies have the same behavior. The
hit rate, the byte hit rate, and the delay saving rate
decrease as the MOR increases. When the Maximum
Object Ratio increases, a large cache object is allowed
to be stored in the proxy server and other small cache
objects are dropped out of the proxy server. The small
number of cache objects may reduce the hit probability.
For the MLUV algorithm, the hit rate decreases from
82% to 30%. The similar behaviors are observed with
the byte hit rate, and the delay saving rate of proxy
servers. It is shown that the MOR must be set within a
certain range to maintain the hit rate, the byte hit rate,
and the delay saving rate of proxy servers when the size
of the cache objects is too large.

It is also found that the hit rate, the byte hit rate, and
the delay saving rate can still be kept at a high level
when the number of group proxy servers increases,
even if the MOR of every server is high. Therefore, the
overall performance can still be predicted in a large
proxy group even when the large objects are allowed to
be cached in cache proxies. This issue will be
discussed in more details for client proxies.

Figure 3.3: Hit rate comparison of Modified LUV(MLUV) with
other cache replacement algorithms

20

30

40

50

60

70

80

90

0 20 40 60 80
Cache size (percent)

H
it

ra
te

(p
er

ce
nt

)

LRU

LUV

MLUV

LFU

Figure 3.4: Byte hit rate comparison of Modified LRV(MLUV)
with other cache replacement algorithms

0

10

20

30

40

50

60

70

80

0 20 40 60 80
Cache size (percent)

H
it

ra
te

(p
er

ce
nt

)
LRU

LUV

MLUV

LFU

Figure 3.5: Delay saving rate comparison of modified LUV(MLUV)
with other cache replacement algorithms

0
10
20
30
40
50
60
70
80

0 20 40 60 80
Cache size (percent)

D
el

ay
 s

av
in

g
ra

te
 (p

er
ce

nt
)

LRU

LUV

MLUV

LFU

Figure 3.6: Hit rate comparison of Modified LUV(MLUV) with other
cache replacement algorithms versus maximum object ratio for proxy

servers

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

 Maximum object ratio (%)

H
it

ra
te

 (%
)

LRU
LUV
MLUV
LFU

3.2 Evaluation of Replacement Algorithm for
Client Proxies
Client proxies usually have small caching capacities
but have a large amount. Simulation results show that
the cooperation of client proxies can substantially
improve the overall performance of the caching system
in terms of the hit rate, the byte hit rate, the delay
saving rate, and the computing cost. In the simulation,
the client is a mobile device like a handheld with the
cache capacity of 8 MB and the number of the clients
can be large. The clients were grouped to share the
cache objects. The weight for the ratio of cost to size is
set to be 0.8 for MLUV.

In Figures 3.10, 3.11, 3.12, the hit rate, the byte hit rate
and the delay saving of grouped client proxies are
plotted with cache sizes respectively. The Modified
Least Unified Value (MLUV) was simulated for client
proxies in comparison with other replacement policies
such as the Least Unified Value (LUV), the Least
Recently Used (LRU) and the Least Frequently Used
(LFU). The hit rate of MLUV is 5% higher than that of
the LUV, 6% higher than that of the LRU, and over
13% higher than that of the LFU; the byte hit rate of
the MLUV is about 3% higher than that of the LUV,
5% higher than that of the LRU, and over 11% higher
than that of the LFU; the delay saving rate of the
MLUV is about 3% higher than that of the LUV, 5%
higher than that of the LRU, and over 12% higher than
that of the LFU.

Figure 3.10: Hit rate comparison of Modified LUV(MLUV) with other
cache replacement algorithms for client proxies

0

10

20

30

40

50

60

70

80

90

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

Cache size (MB)

H
it

ra
te

(p
er

ce
nt

)

LRU

LUV

MLUV

LFU

Figure 3.11: Byte hit rate comparison of Modified LRV(MLUV) with
other cache replacement algorithms for client proxies

0

10

20

30

40

50

60

70

80

90

0 40 80 120 160 200 240 280 320 360 400

Cache size (MB)

H
it

ra
te

(p
er

ce
nt

)

LRU

LUV

MLUV

LFU

Figure 3.12: Delay saving rate comparison of Modified LUV(MLUV)
with other cache replacement algorithms for client proxies

0

10

20

30

40

50

60

70

80

90

0 40 80 120 160 200 240 280 320 360 400

Cache size (MB)

D
el

ay
 s

av
in

g
(p

er
ce

nt
)

LRU

LUV

MLUV

LFU

Figure 3.14: Hit rate of modified LUV versus maximum object ratio for
client proxies

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

 Maximum object ratio (%)

H
it

ra
te

 (%
)

Proxy=1
000
Proxy=1
00
Proxy=1
0
Proxy=1

3.3 Data Coherency
The proxies have to handle various data types with the
limited proxy space. Normally, the size of the MD
ranges from several mega bytes to hundreds of mega
bytes. The whole cache space can be exhausted by one
large cache object like a stream of video. The caching
size will be controlled for one cache object by the
Maximum Object Ratio (MOR). The effect of the large
objects on the performance of client proxies is
simulated when the sizes of the objects range from
several bytes to 50MB and the size of one single proxy
is 8MB. The hit rate, the byte hit rate, and the delay
saving rate of client proxies are plotted with the MOR
in Figures 3.14. When the replacement algorithm is
applied to a single client proxy, the hit rate decreases
from 44% to 27%. Similarly, the byte hit rate drops
from 23% to 12%, and the delay saving rate decreases
from over 24% to 12% as the MOR changes from 5%
to 95%. In other words, the allowed cache space of one
cache object increases from 400KB to 7.6MB.
Similarly, the hit rate, the byte hit rate, and the delay
saving rate of client proxies decrease with the
increment of the MOR, but the decrement of
performance tends to be less obvious when the proxy
number increases in the client proxy group. When the
proxy number increases up to 1000, the large cache
objects have less effect on the hit rate, the byte hit rate,
and the delay saving of client proxies. The reason is
that the small objects can be found from the other
group proxies even if the large objects force a number
of small objects out of the cache proxy on one host.
Therefore, the performance of proxy caching is still

predictable in terms of the hit rate, the byte hit rate, and
the delay saving rate even if the proxies need to deal
with a variety of data.

Take stock price change as an example: the simulation
is implemented to investigate data coherency among
the clients, proxy servers, and source servers with the
adaptive TTL. As proposed in Chapter 2, the stock
prices are pulled from in the Web servers and pushed
to clients/users by the default proxy servers. The data
delay between the cache proxy servers and the users
may introduce the further delay between the stock
prices presented to user and the source data. If this
delay is much smaller than the TTL, the delay can be
ignored.

Figure 6 shows the modified adaptive TTL algorithm
has better performance in term of VPro. Figure 7 shows
the #pooling of both cases, the #polling of modified
adaptive TTL is from 2 to 3 times of that of original
one. It is reasonable higher and has much better
performance in terms of data consistency, especially
when user constraint is greater than $0.3. Both Vprob
value and #polling value increase since the critical
minimum bound is 1min which is not small enough to
meet the low user constraint. In other words, the
smaller critical bound is necessary but it will cause
more #polling or overheads. There is a tradeoff
between the temporal coherency and system overheads.

Figure 3.25: #Polling Comparison of Original and Modified Adaptive
TTL

(TTLmin =16min, TTLmax = 30min, f=0.7)

0
10
20
30
40
50
60
70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Constraint ($)

#P
ol

lin
g

original

modifie
d

 Figure 3.24: VProb Comparison of Original and Modified Adaptive
TTL

(TTLmin =16min, TTLmax = 30min, f=0.7)

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Constraint ($)

 V
pr

ob
 (%

)
original

modified

4 Conclusions and Future Work
The simulation of both client proxies and proxy servers
was performed with different replacement algorithms
such as the Least Unified Value (LUV), the Least
Recently Used (LRU) and the Least Frequently Used
(LFU). The simulation results show that the modified
LUV algorithm has better performance in terms of the
hit rate, the byte hit rate, and the delay saving rate.

Proposed cache proxies can deal with a variety of data
utilizing the Maximum Object Ratio (MOR) to control
the cache size for the requested large objects in a
cooperative cache proxy group. The remainder of the
large objects will be prefetched once the large object is
requested. It is shown that the performance of proxy
caching scheme is still predictable in terms of the hit
rate, the byte hit rate, and the delay saving rate even if
the proxies need to deal with a variety of data.
However, this will put more pressure on bandwidth
utilization.

The cooperative architecture allows the proxy group
members to share resources with one another. This
improves the reliability of the system and the
predictability of the performance even when the size
variance of cache objects is great. The number of the
cache proxies should be controlled to avoid the need to
maintain a large hash table and overwhelming network
traffic among group proxies. The group proxies can
communicate with the other proxies at the same level
or the higher level to achieve better scalability.

A push and pull hybrid scheme for the cache proxies
was applied in this study. This can solve the scalability
problem and avoid making modification to the source
severs and the HTTP protocols. Users can specify the
constraints of data objects for a cache proxy. The users

only get the information that is interesting and
necessary. It will reduce unnecessary network traffic.

The modified adaptive approach with the dynamic TTL
bounds is shown to solve the problem caused by the
static TTL bounds through the simulation. When the
domain is not well known, the static bounds may not be
specified correctly. It may cause high temporal
incoherency and increase overheads. The dynamic
bounds are determined by the rate of polling, the
dynamic Vpro, and the constraint factors. In this way,
the more reasonable TTL bounds can be specified even
if the initial TTL bounds are not specified
appropriately. In comparison with the original adaptive
TTL algorithm, the modified adaptive TTL has better
adaptive performance when the data change rapidly and
the user constraint is more critical. With better TTL
adaptation, the modified adaptive TTL algorithm has
better performance in terms of the combination of
temporal coherency and system overheads.

In the future, we will attempt to fine-tune the
algorithms to achieve a more predictable performance
necessary for soft real-time applications.

References
[1] J. Hu et al., “A Novel Push-and-Pull Hybrid Data
Broadcast Scheme for Wireless Information
Networks,” Proceedings of IEEE 2000, 2000.
[2] T. M. Kroeger et al., “Exploring the Bounds of
Web Latency Reduction from Caching and
Prefetching”, Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems,
Monterey, CA, December 1997.
[3] H. Bahn et al., “Efficient Replacement of
Nonuniform Objects in Web Caches,” Computer, June
2002.
[4] Raghav Srinivasam, Chao Liang, and Krithi
Ramamritham. Maintaining Temporal Coherency of
Virtual Data Warehouses, in proceedings of IEEE
1998, 1998.
[5] P. Rodriguez, C. Spanner, and E. W. Biersack,
“Web Caching Architectures: Hierarchical and
Distributed Caching, ” Proceedings of WCW’99, 1999
[6] E. Bommaiah et al., “Design and Implementation of
a Caching System for Streaming Media over the
Internet,” IEEE Real Time Technology and
Applications Symposium, June 2000.
[7] C.M. Bowman et al., “The Harvest Information
Discovery and Access System,” In Second
International World Wide Web Conference, October
1994.

[8] R. Caceres et al., “Web Proxy Caching: The Devil
is in the Details,” ACM, Performance Evaluation
Review, 26(3): pp. 11-15, December 1998.
[9] R. P. Wooster and M. Abrams, “Proxy Caching that
Estimates Page Load Delays,” Proceedings of the 6th
International WWW Conference, April 1997.
[10] M. Rabinovich et al., “Not All Hits are Created
Equal: Cooperative Proxy Caching Over a Wide Area
Network,” In 3rd International Web Caching
Workshop, June, 1998.

[11] J. Yang et al., “Dynamic Web Caching,” In Tech
Report, University of California, Los Angeles,
November 1998.
[12] R. Rajaie, J. Kangasharju, “Mocha: A Quality
Adaptive Multimedia Proxy Cache for Internet
Streaming,” Proceedings of the International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, Port Jefferson, New
York, June 2001.

