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Abstract 
 
An adaptive cache proxy is developed to improve the 
performance of web access in soft real-time 
applications. It consists of client proxies and 
cooperative proxy servers with a server-side pushing 
schema. The large amount of heterogeneous data will 
be stored in the proxy servers and delivered to clients 
through computer networks to reduce the response 
time and network traffic. The adaptive proxy pre-
fetches and replaces heterogeneous data dynamically 
in consideration of networks cost, data size, data 
change rate, etc. The simulation results show that the 
modified LUV algorithm has better performance in 
terms of hit rate, byte hit rate, and delay saving rate. 
With the cooperative proxy caching, it is shown that 
the performance of the proxy caching system is more 
predictable even if the proxies need to deal with a 
variety of data. The modified adaptive TTL algorithm 
has better performance in terms of the combination of 
temporal coherency and system overheads. 
 
Keywords: adaptive proxy caching, web servers, 
soft real-time systems, mobile networking, temporal 
coherency. 
 
 
1 Introduction 
 
The World Wide Web (the “Web”) has become a 
widely accepted channel for distributing a large variety 
of data and services in recently years. Although the 
Internet backbone capacity increases up to 60% per 

year, the scale of Web usage still far exceeds the 
capacity of the Internet infrastructure and leads to the 
relatively poor performance and low reliability of Web 
service.  Therefore, it is challenging to deliver real-time 
data such as stock quotes, storm warning, and 
audio/video broadcasting to customers in a timely 
manner through the Web. 
 
Researchers have been working on how to improve 
Web performance by means of proxy caching since the 
early 90’s. Proxy caching is applied to store popular 
objects at the locations close to the customers, and has 
been proved to be an effective way to reduce the 
response time and network traffic, and to improve the 
robustness and scalability of the Web system. The 
following related work has been done to investigate 
different approaches to maximize the benefits of proxy 
caching. 
 
1.1 Caching Architectures 
The proxy servers can be organized to improve the 
performance of the caching proxy. A caching 
architecture can help caching proxies communicate and 
coordinate more efficiently to achieve a better 
performance. Caching architectures can be classified 
into hierarchical caching architecture, distributed 
caching architecture, hybrid caching architecture, and 
clustered caching architecture.  
 
In hierarchical caching architecture [7], caching proxies 
exist in several network levels, such as bottom, 
institutional, regional, and national level. A 
hierarchical caching architecture has shorter connection 
times than distributed caching. Cache servers are added 



to key access points to set up a hierarchy.  This 
requires significant coordination among the 
participating caching servers. The extra delay may be 
introduced at every hierarchy level. High-level caches 
may become the bottleneck with long queuing delays. 
Copies of same documents at intermediate cache levels 
may introduce redundancy though it helps reduce 
latency.  
 
In distributed caching architecture, there are no other 
intermediate cache levels other than the institutional 
caches, which serve each other and share the 
documents. Distributed caching systems have shorter 
transmission times than hierarchical caching systems 
[5]. It also allows better sharing and error tolerance. 
However, a large-scale caching system may have 
problems such as high connection times, higher 
bandwidth usage, and difficulties in system 
administration.  
 
In hybrid caching, a certain number of caches 
cooperate at different levels of a caching hierarchy 
using distributed caching.  The distribution at every 
network level can balance the workload of caching 
servers at different levels and reduce the overall 
retrieval latency.  A cooperative proxy caching system 
[10] limits the cooperation among neighbor caches to 
avoid fetching documents from distant or slower 
caches, which could have been retrieved directly from 
Web servers at a lower cost.  
 
Cluster-based Caching uses multicast groups for 
sharing cache objects, which is formed for a set of 
pages that are often accessed together. When a client 
wants to access one of these web pages, it can multicast 
the request to that group. Dynamic Web Caching [11] 
uses the “association rules” to find correlation that will 
be accessed based on another page that has been 
accessed. This approach can enhance the resource 
sharing among the group members and can increase hit 
rate. However, It introduces network traffic due to 
multicast query, especially when the group becomes 
large. In addition, distances among group members 
may not be close. 
 
This paper will provide an approach using a distributed 
caching architecture with a default proxy server to 
achieve better scalability, efficiency and availability. 
This protocol avoids caching redundancy by saving 
URLs (or IP address and document path) uniquely 
among collaborative proxies by a hash function. Proxy 
servers cooperate with each other to make the most use 
of resources, as shown in Figure 1. The caching system 

consists of a client proxies, proxy servers, and web 
servers. Every mobile device works as a client and has 
its own Web browser and client proxy. The client 
proxy only maintains a part of cached objects because 
of the limited storage space of mobile devices. The 
other large amount of data will be saved in proxy 
servers. The proxy servers share cache objects among 
the group members. When the request of an object is 
sent to default proxy server from a client, the requested 
object will be checked with the cache objects in the 
default proxy server or group proxy servers through the 
hash table. If the requested object is found in the proxy 
group, the object is fetched from the proxy group and 
sent back to the client; if the object is not in the proxy 
group, the object is fetched from Web servers and sent 
back to the client. It can also reduce the connection 
overhead if the clients have persistent connections with 
the default proxy server. 
 
 
 
 
 
 
 
 
 
 
   
 
 
   
 
 
 
Proxy groups can be clustered based on certain 
association rules as the cluster caching architecture has. 
The group can be formed according to the least 
delivery latencies among the proxy servers or based on 
the similar client access patterns.  Also, the caching 
proxies can cooperate with other caches at the same 
level or at a higher level to form a larger scale system 
with more extensive resource sharing like hybrid 
caching.  
 
The number of proxy servers should be controlled in a 
group to avoid the need to maintain a large hash table, 
and the delivery latencies among the cache proxy 
members should be limited. A large hash table may 
increase implementation overhead. If the distance 
between two member proxies is too far and the delivery 
latency is high, the proxy server may fetch the 
requested objects directly from web server. 

Proxy 
Server 

Proxy 
Server 
(Default) Proxy 

Server 

clients 

Proxy 
Server 

servers 

Figure 1: Proxy servers of soft real-time systems  



 
 Similarly, client proxies are organized into a client 
proxy group to share resource among the group 
members, as shown in Figure 2. There is a hash table to 
save the content information of its own proxy and other 
participating proxies. The limited storage spaces of 
clients are put together to increase the total cache size, 
which potentially leads to higher hit rate. First, the 
requested objects by the client browser are look up in 
its own client proxy or in the other group client proxies 
though the hash table. Second, the request will be sent 
to its default proxy servers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A proxy server consists of the main parts such as a hash 
table of caching objects, pre-fetching management, and 
placement/replacement management, as shown in 
Figure 2.3.   A hash table will be saved on the proxy 
servers to manage all the cache space in a server group. 
The requests of clients will be sent to default proxy 
servers. The hash table provides the exact caching 

location of a requested object. Each proxy keeps a 
summary of the locations of cached objects at 
participating servers. 
 
Prefetching management predict the possible requests 
of clients based on the previous user access pattern, 
and get the possibly requested objects for clients 
between requests. Prefetching management also 
coordinate with cache coherency algorithm to fetch 
real-time data to keep data coherency and reduce 
latency. 
 
1.2 Cache Replacement 
A placement/replacement policy has a significant effect 
on the performance of proxy caching. In uniform 
caching environment, the size and the cost of each 
requested object are identical. A 
placement/replacement policy has significant effect on 
the performance of proxy caching. The previous works 
are divided into three categories:  
a. Traditional replacement used such as Least Recently 
Used (LRU) and Least Frequently Used (LFU); 
b. Key-based replacement such as LRU-MIN [7], LRU-
Threshold [7], Lowest Latency First [9]. 
c. Cost-based replacement policy such as Lowest 
Relative Value [6], Least Unified Value (LUV) [3], 
Sized-Adjusted LRU [8], Hybrid [9], etc. 
 
A new replacement policy is proposed and simulated to 
handle the heterogeneity of data types, to improve the 
hit rate and the byte hit rate, and to reduce the response 
time. The historic record, cost efficiency, and 
popularity of caching objects are reflected with 
adjustable weights in the current replacement policy 
based on Least Unified Value (LUV) [3]. In comparison 
with other replacement algorithms, LUV exhibits better 
performance in terms of hit rate, byte hit rate, and delay 
savings ratio in our trace simulation. 
 
1.3 Prefetching and Data Coherency 
Proxy servers can anticipate future objects and prefetch 
these objects into local cache to improve the hit rate 
and reduce the access latency. This approach predicts 
which cached objects a user might reference next and 
takes advantage of the idle time between user requests 
by either pushing cache objects to the user or pulling 
the documents from Web server [2].  
 
Although the prefetching can increase hit rate and 
reduce delivery latency, the extra network traffic and 
the bandwidth wasting are introduced when the 
prefetched objects are idle. Every cache proxy must 
update its objects so that it can give users the objects or 

Client 1 

Proxy Servers 
C(t) 

Text, 
Image, 
CM 
data    

Push 
with
Adat
Data 

D
ata source 

Request and 
pre-fetching 
Management 

Caching 
and Hash 
table 

Replaceme
nt 
manageme
nt 

Client 
N 

Figure 2: Configuration of proxy servers 
in soft real-time systems  

Client 
U(t) 

Server
s S(t) 



data that are as current as possible. Time To Live 
(TTL) is used to decide if the data are invalid. As to 
real-time cache data, cache coherency becomes more 
important because the data are useful only if they are 
valid. Also, it is more challenging to maintain the 
coherency of real-time data whose change can be 
periodic or sporadic.  
 
The adaptive TTL adjusts a cached object’s TTL based 
on observations of its life-time. For example, if a 
cached file has not been modified for a long time, it 
tends to stay unchanged. Thus, the TTL attribute to a 
document is assigned to be a percentage of the 
document’s life span, which is the current time minus 
the last modified time of the document. Studies [4] have 
shown that adaptive TTL can keep the probability of 
stale documents within reasonable bounds (5%). One 
the other hand, users cannot control the degree of 
staleness they are willing to tolerate. Users have to wait 
for expiration checks to occur even though they can 
tolerate the staleness of the requested objects.  
 
In this paper, prefetching policy and adaptive TTL are 
applied to satisfy the requirements of Continuous 
Media (CM) and data coherency based on the available 
resources such as bandwidth and storage capacity. This 
policy can support the coherency of real-time data and 
different data types such as text, image, audio and 
video. Also, this policy can provide the function to let 
user specify the degree of staleness and the coherency 
predicable performance for soft real-time applications. 
 
1.4 Multi-media caching 
A lot of work has been done to improve the scalability, 
the latency, the bandwidth utility, and the stream 
quality in multi-media applications. For example, A 
Multimedia Proxy Caching (MCaching) was proposed 
to complement the end-to-end architecture for the 
delivery of quality adaptation, layered-encoded streams 
over the Internet [12]. 
 
1.5 Objectives 
Based on previous related work on proxy caching, this 
study is to propose an adaptive proxy caching scheme 
for Web servers in soft real-time applications, and to 
improve the quality of the caching system in terms of 
access time, load balance, data coherency, simplicity 
and ability to deal with data heterogeneity. The specific 
objectives of the investigation are to improve, by 
means of simulation analysis: 
Replacement algorithm to handle data heterogeneity in 
terms of simplicity, hit rate, byte hit rate, delay saving, 
etc. 

Adaptive TTL to maintain the cache coherency with 
relatively low network traffic. 
 
2 Algorithms 
2.1 Hash Table Algorithm 
A hash table is maintained to store the exact location of 
objects and map the Uniform Resource Locator (URL) 
to a hash key, which helps retrieve the exact location of 
objects or remove the objects from the table according 
to a replacement policy. URL is used to identify a Web 
document and contains the machine name or IP 
address, and the file name. These requests from clients 
will be checked with the hashing table for potential hits 
before the requests are sent out. Proxy servers check 
the availability of a request object before the request is 
forwarded to destination servers. There are three cases 
to handle.  
(1) The location of object is in the hash table and is on 
the default servers. Just fetch it from the default proxy 
server. 
(2) The location of object is in the hash table and is on 
the other proxy servers. Fetch the requested object 
from the proxy server where the object is stored and 
send the object to clients. 
(3) The location of object is not in the hash table. It 
means that the object is not saved in the proxy server 
group. The request has to be sent to Web servers to get 
the object from the data source. 
 
In this study, the reference point of IP address and 
documents are saved in the harsh table to reduce the 
latencies related with Domain Name Service (DNS) 
lookup. The reference saving can avoid the times for a 
DNS lookup and the persistent connection with a 
default server can save the connection times. 
 
2.2.2 Replacement Algorithm 
Most caching proxies handle text, images and 
continuous Media (CM) by different policies and 
priorities since the size of CM is much larger and is 
real-time data. In this approach, the text, image and 
CM are treated by one replacement policy. CM will be 
allocated with fixed and relatively larger caching space 
to avoid exhausting caching space and bandwidth by 
large CM data. The remainder of CM data will be 
fetched from the servers when they are requested by 
clients. The replacement policy can also be simplified 
and be more adaptive. 
 
The replacement policy uses the Modified LUV (Least 
unified value) that is found to be effective in improving 
the hit rate and the byte hit rate [3]. This algorithm is 
used with the resource-based policy to make the most 



use of the bandwidth and the storage space. The key 
idea of resource-based policy is to calculate the 
utilization of bandwidth and storage, and keep their 
utilization to be mostly the same. However, there 
should be enough spare storage space and bandwidth 
reserved for the new requests. In other words, the 
replacement should be started to remove the object 
with the least LUV before the resource runs out. A 
priority queue is maintained to save LUV values and 
hash table keys in order to remove the objects from 
cache proxies with the least LUV value.  
 
Modified Least Unified Value (MLUV): 
a: Constant to adjust the weight to the recent 
referred objects 
Cavrg : Average cost during dt 
Ci:  Total cost during dt 
dt:        Time period from the last reference to the 
current time 
n: Reference times during time period dt 
Navrg:  Average reference times during dt 
Pn:   Function value decreased with elapse time, it 
gives more weight to recent values. 
Savrg:  Average size during dt 
Si:   Size of caching objects 
St:  Total size during dt 
ti:  Time elapse from the moment when the LRV 
is calculated 
Wc:  Constant weight for the ratio of cost and size 
Wc(i):  Dynamic weight for the ratio of  cost and size 
Wp:     Weight for popularity 

LRV( k+1) = Pn(dt)*LRV( k) + �
=

n

i 1

Wc(i) * (Ci  / 

Cavrg) / (Si / Savrg) + Wp*((n/Navrg)/dt)  
    

LRV( k+1) = Pn(dt)*LRV( k) + �
=

n

i 1

Wc(i)* (Ci  / Si) 

* ( St / Ct) + Wp*((n/Navrg)/dt) 
Wc(i) = Pn(i)*Wc 

Pn(i) = 
)/( dttiae −

  
 
This algorithm considers the historic records but need 
not save every historic record in comparison with the 
original LRV approaches. The old value is 
accumulated in the priority value and the weight for old 
values is decreased with the time elapse. To achieve 
better adjustment of the Modified Least Unified Value 
(MLUV), the formula has been normalized. 
 

2.2.3 Prefetching and Data Coherency 
Algorithm 
In this study, prefetching policy is applied to satisfy the 
requirements of Continuous Media (CM) and data 
coherency based on the available resources such as 
bandwidth and storage capacity. This policy can 
support the data coherency of soft real-time application 
and different data types such as text, image, audio and 
video. Also, this policy can provide predicable 
performance for soft real-time applications. 
 
The resource such as storage place and bandwidth can 
be utilized to prefetch request objects to satisfy the data 
coherency of real-time data or deliver the remainder of 
large objects such as CM objects between the requests. 
During the idle times, the objects are prefetched to 
reduce the latency of data requests by using the 
available caching space and bandwidth. The available 
caching space and bandwidth are limited, so objects 
should be prefetched effectively according to the 
replacement priority. Replacement policy is applied to 
improve hit rate and byte hit rate of cached objects. If 
the prefetched objects are not used, the bandwidth and 
storage space are wasted. It is compliant with the goal 
of replacement policy if the objects with highest 
priority values are prefetched. On the other hand, the 
objects with the same popularity and higher cost 
efficiency should be prefetched. Also, the remainder of 
CM data will be prefetched with the available 
bandwidth and caching space. 
 
2.2.3.1 Pull and Push Mechanism 
As shown in Figure 2, S(t) denotes the data source 
value, C(t) and U(t) denote the values at the cache and 
at the user respectively. A constraint c is specified by 
the user. Servers need not inform the user if the 
changes of data magnitude are less than c in the source 
data, but need to inform the user if the change is greater 
than constraint c. The system must satisfy, |U(t) – S(t)| 
< c. 
 
To improve the scalability of systems, a novel push-
and-pull hybrid data broadcast scheme is proposed for 
wireless information networks in [1], the simulation 
results show that the hybrid scheme is very effective in 
reducing the data access time for each class of clients.  
 
A proxy server pulls data from web servers and pushes 
it to users immediately. This way can reduce the data 
delay between the users and the cache. If 
communication delay can be ignored, the user data and 
data of the cache can theoretically be synchronized. 
The user constraint can be known by the cache proxy 



before the stock price actually changes though user do 
not know how the stock price will change. Once the 
change in stock price is greater than the user constraint, 
the cache just push the updated stock price to the user. 
 
2.2.3.2 Modified Adaptive TTL 
Adaptive TTL (Time To Live) is used to keep the 
temporal coherency of real-time data or documents. 
The proxy server has a challenging issue to maintain 
temporal coherency with reasonable networks traffic. 
Take the stock trading as an example: a broker only 
needs the desired information from mobile device. The 
broker must get the stock price on time to make the 
decision to sell or buy. However, a broker just wants to 
know the change beyond some price limit like more 
than $0.50 or within a certain delay like 5 minutes.  In 
this study, the coherency of real-time data will be 
discussed based on the previous work in [4]. 
 
To evaluate the performance of the system, the 
following two metrics are used: 
#polling: The number of times the source is polled; an 
indication of the networking overhead. 
VProb: Probability of a user’s temporal coherency 
violation.   
The lower the Vprob, the better performance with 
respect to the temporal consistency but the higher 
possible cost in terms of #polling. 
 
The adaptive algorithm uses following factors to 
determine the new TTL. 
Dynamic TTLdr within Static Bounds: 
TTLds = Max(TTL���, Min(TTLdr , TTL���)) 
Adaptive TTL: 
������	
�������������������������������
���������

����������������������������
�

Fudge factor f:  0<= f <= 1 
 
In this adaptive approach, dynamic TTL�� is a 
candidate for the new TTL to reflect the changes in the 
new future. ����� corresponds to the fastest source 
change so far and �����
�corresponds to the change 
trend.  ������ accommodates both of them, giving 
different weight to each of them by fudge factor f. If f 
is close to 0, it entirely relies on recent trend; this will 
result in a loose upper bound if the recent source 
changes are slow. See more details about the formula in 
[4]. 
 
In this study, adaptive TTL algorithm has been 
improved to reduce VProb and maintain acceptable 

#polling by adding the dynamic TTL boundary and 
using dynamic VProbdr. Proxy servers poll real-time 
data from web server and push the data immediately to 
clients according to the adaptive TTL. The adaptive 
TTL is determined in consideration of the fastest 
source change rate and historic data change rate. 
Generally, the rapid changes of data need smaller TTL.  
The adaptive TTL is also bound by dynamic limits and 
static critical limits to avoid unreasonable network 
traffic or stale data due to a too small TLL or a too 
large TLL.  
 
������and������ are static lower bound and upper 
bound. They avoid unreasonable TTL in adaptive 
approach. They are estimated bounds in advance since 
the changes of stock price are unpredictable. If ������
or������is too low, it will cause highoverheads;��
������or������ is too high, the high incoherency 
will be expected. The TTL easily becomes saturated 
when the data change rapidly. In this study, a modified 
adaptive TTL with dynamic bounds is suggested to 
improve the system performance.  
 
In the modified adaptive TTL, ������ and������
are dynamic bounds that are determined by dynamic 
VProbdr and the constraint Vprobconstr.  VProbdr  is 
more accurate to calculate the dynamic coherency 
violation and make the algorithm more adaptive. The 
Vprobconstr is specified by the user in advance.  
Dynamic VProbdr is 
 
where t1, t2 , t3,…, tn: the durations when |U(t) –��
��

���during������	
����
     Rate_Polling = #Polling / ������	
��� 

Two critical static bounds �������and������� are 
added, and dynamic ������ and ������ must 
change within the critical static bounds. The reduction 
factor of bounds is introduced to reduce the dynamic 
������and������ according to dynamic VProb��, 
Vprobconstr and Rate_Polling.  The algorithm is as 
follows: 
if(Vprob�� > Vprob� ��
� && Rate_Polling < 
Rate_Polling_factor) 
{������ = f_red*������; 
������ = ������	
��� / f_red;   } 
 

�
=

=
n

1i

itVprob
adaptive

dr TLL



 if(������ <�������) 
 ������ = �������; 
if(������ > �������) 
������ = �������; 
where 0.0 <f_red < 1, Rate_Polling_factor > 4.  
 
When Vprob��> Vprob� ��
�� the possible reason is 
that the ������	
��� reaches the static lower bound or 
the rapid change of stock price needs smaller 
������	
���. To control the number of polling, the 
constraint Rate_Polling < Rate_Polling_factor is 
introduced, which means the #polling increasing is 
under control. At the same time, the ������  is 
determined by current ������	
��� to avoid too large 
upper bound. Finally, the dynamic ������ and
������  are checked by the critical static bounds 
�������and�������� 
 
3 Analysis and Discussion 
 
The proposed proxy caching system is simulated to 
investigate the replacement algorithm and the adaptive 
TTL to improve the performance of client proxies and 
proxy servers. Due to the resource limitations and 
needs to simplify the simulation, the assumptions and 
simplification are made as follows: 
The network bandwidth is high enough for proxies to 
prefetch the remainder of large objects and maintain 
the data coherency during idle times. This can be 
satisfied by increasing bandwidth, controlling Quality 
of Service (QOS), rejecting new requests, etc. 
Some components in the simulation system are 
simplified as parameters. For example, the bandwidth 
of every request is calculated based on the assumed 
total bandwidth and its usage. 
 No error happens during the data delivery through the 
network. The cost of data delivery is estimated in the 
average value with some fluctuations. 
Hash table collision does not happen when adding 
cache objects into the hash table or retrieving the 
location of cached objects in cache proxies. 
Messages among the client proxies, proxy servers and 
Web servers can be handled by each other without 
errors and delays. 
 
3.1 Evaluation of Replacement Algorithm 
The simulation of proxy servers to cache requested 
objects was conducted using the proposed replacement 
and prefetching algorithm to investigate the 
performance of proxy servers. The web trace is used as 
the client request input. This trace contains a day's 

worth of all HTTP requests to the EPA (Environmental 
Protection Agency) WWW server.  The request 
distribution is skewed and the requests from the clients 
reach the peak at afternoon. Client requests fluctuate 
greatly from 100 to 1000 times every 10 minutes. The 
request size ranges from hundred bytes to over 10MB.  
 
Every record in the Web Trace includes information 
such as host, time stamp, request, HTTP version, 
response ID, object size, etc. The ULR is included in 
the request item, which is used as a key in the hash 
table maintained by cache proxies. The hash table 
stores the location of the cache objects containing the 
IP address and document path. Hashing is an 
implementation technique that guarantees )1(O  
efficiency for Add, Remove, and Retrieve operations 
regardless of the number of objects in the collection. 
Because the objects are saved in a hash table without 
order, a ordered list is maintained to decide which 
object will be remove from hash table according to the 
priority value such as LUV for LUV replacement 
algorithm and time stamp for LRU replacement policy. 
The hash key is included in the ordered list and used to 
remove an element from the hash table when 
replacement policy is executed. The complexity of time 
can be )(log2nO  which is the same as those of LUV in 
[3], LFU and LUV.  Also, space complexity has the 
same order as those of LUV, LFU and LUV. This 
algorithm considers the historic records but need not 
save every historic record in comparison with the 
original LUV approaches. The old value is 
accumulated in the priority value and the weight for old 
values is decreased with the time elapse. 
 
The objective of the replacement algorithm is to 
increase the hit rate, byte hit rate, and delay saving rate 
of cache objects at proxy servers. They are defined as 
follows: 
Hit rate = Total reference times / Total request times  
Byte hit rate = Total reference size / Total request size 
Delay saving = Total response time of referenced 
objects / Total response time of requested objects 
 
The hit rate, byte hit rate and delay saving are shown in 
Figures 3.3, 3.4, 3.5, respectively. The simulation 
results show that the modified LUV algorithm has 
better performance in terms of hit rate, byte hit rate, 
and delay saving rate.  The caching space has an effect 
on the performance of proxy caching. The overall hit 
rate of MLUV changes from 25% up to 82 %, the byte 
hit rate increases from about 12% to 72%, and the 
delay saving increases from around 12% to 73 % when 
the caching size ranges from 50MB to 1GB.  



 
The replacement algorithm of the proposed caching 
proxies should handle text, images and continuous 
Media (CM). If the entire contents of several long 
streams of video are stored in cache proxy, the cache 
space can be exhausted. A parameter called Maximum 
Object Ratio (MOR) is utilized to control the allowed 
space to store large objects in proxies, which is the 
ratio of the allowed storage space for large objects to 
the total cache size of proxies. In other words, a fixed 
storage space is allocated to save a part of large objects 
according to MOR. If MOR is fixed and the total cache 
size of proxies is larger, a bigger part of the larger 
object is allowed to be stored in cache proxies. The 
remainder of the large objects will be fetched from the 
data source when it is requested by the clients. 
 
In Figures 3.6, the hit rate of the caching proxies 
change with the Maximum Object Ratio (MOR) when 
different replacement policies such as MLUV, LUV, 
LRU and LFU are applied. This simulation is 
conducted when the total cache capacity is 1 GB. The 
four replacement policies have the same behavior. The 
hit rate, the byte hit rate, and the delay saving rate 
decrease as the MOR increases. When the Maximum 
Object Ratio increases, a large cache object is allowed 
to be stored in the proxy server and other small cache 
objects are dropped out of the proxy server. The small 
number of cache objects may reduce the hit probability.  
For the MLUV algorithm, the hit rate decreases from 
82% to 30%. The similar behaviors are observed with 
the byte hit rate, and the delay saving rate of proxy 
servers. It is shown that the MOR must be set within a 
certain range to maintain the hit rate, the byte hit rate, 
and the delay saving rate of proxy servers when the size 
of the cache objects is too large.  
 
It is also found that the hit rate, the byte hit rate, and 
the delay saving rate can still be kept at a high level 
when the number of group proxy servers increases, 
even if the MOR of every server is high. Therefore, the 
overall performance can still be predicted in a large 
proxy group even when the large objects are allowed to 
be cached in cache proxies. This issue will be 
discussed in more details for client proxies.  
 
 

Figure 3.3: Hit rate comparison of Modified LUV(MLUV) with
other cache replacement algorithms
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Figure 3.4: Byte hit rate comparison of Modified LRV(MLUV)
with other cache replacement algorithms
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Figure 3.5: Delay saving rate comparison of modified LUV(MLUV)
with other cache replacement algorithms
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Figure 3.6: Hit rate comparison of Modified LUV(MLUV) with other
cache replacement algorithms versus maximum object ratio for proxy

servers
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3.2 Evaluation of Replacement Algorithm for 
Client Proxies 
Client proxies usually have small caching capacities 
but have a large amount.  Simulation results show that 
the cooperation of client proxies can substantially 
improve the overall performance of the caching system 
in terms of the hit rate, the byte hit rate, the delay 
saving rate, and the computing cost.  In the simulation, 
the client is a mobile device like a handheld with the 
cache capacity of 8 MB and the number of the clients 
can be large. The clients were grouped to share the 
cache objects. The weight for the ratio of cost to size is 
set to be 0.8 for MLUV. 
 
In Figures 3.10, 3.11, 3.12, the hit rate, the byte hit rate 
and the delay saving of grouped client proxies are 
plotted with cache sizes respectively. The Modified 
Least Unified Value (MLUV) was simulated for client 
proxies in comparison with other replacement policies 
such as the Least Unified Value (LUV), the Least 
Recently Used (LRU) and the Least Frequently Used 
(LFU).  The hit rate of MLUV is 5% higher than that of 
the LUV, 6% higher than that of the LRU, and over 
13% higher than that of the LFU; the byte hit rate of 
the MLUV is about 3% higher than that of the LUV, 
5% higher than that of the LRU, and over 11% higher 
than that of the LFU; the delay saving rate of the 
MLUV is about 3% higher than that of the LUV, 5% 
higher than that of the LRU, and over 12% higher than 
that of the LFU.  
 
 

Figure 3.10: Hit rate comparison of Modified LUV(MLUV) with other
cache replacement algorithms for client proxies
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Figure 3.11: Byte hit rate comparison of Modified LRV(MLUV) with
other cache replacement algorithms for client proxies
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Figure 3.12: Delay saving rate comparison of Modified LUV(MLUV)
with other cache replacement algorithms for client proxies
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Figure 3.14: Hit rate  of modified LUV versus maximum object ratio for
client  proxies
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3.3 Data Coherency 
The proxies have to handle various data types with the 
limited proxy space. Normally, the size of the MD 
ranges from several mega bytes to hundreds of mega 
bytes. The whole cache space can be exhausted by one 
large cache object like a stream of video.  The caching 
size will be controlled for one cache object by the 
Maximum Object Ratio (MOR). The effect of the large 
objects on the performance of client proxies is 
simulated when the sizes of the objects range from 
several bytes to 50MB and the size of one single proxy 
is 8MB. The hit rate, the byte hit rate, and the delay 
saving rate of client proxies are plotted with the MOR 
in Figures 3.14. When the replacement algorithm is 
applied to a single client proxy, the hit rate decreases 
from 44% to 27%. Similarly, the byte hit rate drops 
from 23% to 12%, and the delay saving rate decreases 
from over 24% to 12% as the MOR changes from 5% 
to 95%. In other words, the allowed cache space of one 
cache object increases from 400KB to 7.6MB.  
Similarly, the hit rate, the byte hit rate, and the delay 
saving rate of client proxies decrease with the 
increment of the MOR, but the decrement of 
performance tends to be less obvious when the proxy 
number increases in the client proxy group. When the 
proxy number increases up to 1000, the large cache 
objects have less effect on the hit rate, the byte hit rate, 
and the delay saving of client proxies. The reason is 
that the small objects can be found from the other 
group proxies even if the large objects force a number 
of small objects out of the cache proxy on one host. 
Therefore, the performance of proxy caching is still 

predictable in terms of the hit rate, the byte hit rate, and 
the delay saving rate even if the proxies need to deal 
with a variety of data. 
 
 
Take stock price change as an example: the simulation 
is implemented to investigate data coherency among 
the clients, proxy servers, and source servers with the 
adaptive TTL. As proposed in Chapter 2, the stock 
prices are pulled from in the Web servers and pushed 
to clients/users by the default proxy servers. The data 
delay between the cache proxy servers and the users 
may introduce the further delay between the stock 
prices presented to user and the source data. If this 
delay is much smaller than the TTL, the delay can be 
ignored.         
 
Figure 6 shows the modified adaptive TTL algorithm 
has better performance in term of VPro. Figure 7 shows 
the #pooling of both cases, the #polling of modified 
adaptive TTL is from 2 to 3 times of that of original 
one. It is reasonable higher and has much better 
performance in terms of data consistency, especially 
when user constraint is greater than $0.3. Both Vprob 
value and #polling value increase since the critical 
minimum bound is 1min which is not small enough to 
meet the low user constraint. In other words, the 
smaller critical bound is necessary but it will cause 
more #polling or overheads. There is a tradeoff 
between the temporal coherency and system overheads. 
 
 

Figure 3.25: #Polling Comparison of Original and Modified Adaptive
TTL

( TTLmin =16min, TTLmax = 30min, f=0.7)
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 Figure 3.24: VProb Comparison of Original and Modified Adaptive
TTL

( TTLmin =16min, TTLmax = 30min, f=0.7)
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4 Conclusions and Future Work 
The simulation of both client proxies and proxy servers 
was performed with different replacement algorithms 
such as the Least Unified Value (LUV), the Least 
Recently Used (LRU) and the Least Frequently Used 
(LFU). The simulation results show that the modified 
LUV algorithm has better performance in terms of the 
hit rate, the byte hit rate, and the delay saving rate.  
 
Proposed cache proxies can deal with a variety of data 
utilizing the Maximum Object Ratio (MOR) to control 
the cache size for the requested large objects in a 
cooperative cache proxy group.   The remainder of the 
large objects will be prefetched once the large object is 
requested. It is shown that the performance of proxy 
caching scheme is still predictable in terms of the hit 
rate, the byte hit rate, and the delay saving rate even if 
the proxies need to deal with a variety of data. 
However, this will put more pressure on bandwidth 
utilization. 
 
The cooperative architecture allows the proxy group 
members to share resources with one another. This 
improves the reliability of the system and the 
predictability of the performance even when the size 
variance of cache objects is great. The number of the 
cache proxies should be controlled to avoid the need to 
maintain a large hash table and overwhelming network 
traffic among group proxies. The group proxies can 
communicate with the other proxies at the same level 
or the higher level to achieve better scalability. 
 
A push and pull hybrid scheme for the cache proxies 
was applied in this study. This can solve the scalability 
problem and avoid making modification to the source 
severs and the HTTP protocols. Users can specify the 
constraints of data objects for a cache proxy. The users 

only get the information that is interesting and 
necessary. It will reduce unnecessary network traffic. 
 
The modified adaptive approach with the dynamic TTL 
bounds is shown to solve the problem caused by the 
static TTL bounds through the simulation. When the 
domain is not well known, the static bounds may not be 
specified correctly. It may cause high temporal 
incoherency and increase overheads. The dynamic 
bounds are determined by the rate of polling, the 
dynamic Vpro, and the constraint factors. In this way, 
the more reasonable TTL bounds can be specified even 
if the initial TTL bounds are not specified 
appropriately. In comparison with the original adaptive 
TTL algorithm, the modified adaptive TTL has better 
adaptive performance when the data change rapidly and 
the user constraint is more critical. With better TTL 
adaptation, the modified adaptive TTL algorithm has 
better performance in terms of the combination of 
temporal coherency and system overheads. 
 
In the future, we will attempt to fine-tune the 
algorithms to achieve a more predictable performance 
necessary for soft real-time applications. 

 
References 
[1] J. Hu et al., “A Novel Push-and-Pull Hybrid Data 
Broadcast Scheme for Wireless Information 
Networks,” Proceedings of IEEE 2000, 2000. 
[2] T. M. Kroeger et al., “Exploring the Bounds of 
Web Latency Reduction from Caching and 
Prefetching”, Proceedings of the 1997 Usenix 
Symposium on Internet Technologies and Systems, 
Monterey, CA, December 1997. 
[3] H. Bahn et al., “Efficient Replacement of 
Nonuniform Objects in Web Caches,” Computer, June 
2002. 
[4] Raghav Srinivasam, Chao Liang, and Krithi 
Ramamritham. Maintaining Temporal Coherency of 
Virtual Data Warehouses, in proceedings of IEEE 
1998, 1998. 
[5] P. Rodriguez, C. Spanner, and E. W. Biersack, 
“Web Caching Architectures: Hierarchical and 
Distributed Caching, ” Proceedings of WCW’99, 1999 
[6] E. Bommaiah et al., “Design and Implementation of 
a Caching System for Streaming Media over the 
Internet,” IEEE Real Time Technology and 
Applications Symposium, June 2000. 
[7] C.M. Bowman et al., “The Harvest Information 
Discovery and Access System,” In Second 
International World Wide Web Conference, October 
1994. 



[8] R. Caceres et al., “Web Proxy Caching: The Devil 
is in the Details,” ACM, Performance Evaluation 
Review, 26(3): pp. 11-15, December 1998. 
[9] R. P. Wooster and M. Abrams, “Proxy Caching that 
Estimates Page Load Delays,” Proceedings of the 6th 
International WWW Conference, April 1997. 
[10] M. Rabinovich et al., “Not All Hits are Created 
Equal: Cooperative Proxy Caching Over a Wide Area 
Network,” In 3rd International Web Caching 
Workshop, June, 1998. 

[11] J. Yang et al., “Dynamic Web Caching,” In Tech 
Report, University of California, Los Angeles, 
November 1998. 
[12] R. Rajaie, J. Kangasharju, “Mocha: A Quality 
Adaptive Multimedia Proxy Cache for Internet 
Streaming,” Proceedings of the International 
Workshop on Network and Operating Systems Support 
for Digital Audio and Video, Port Jefferson, New 
York, June 2001. 
 
 

 


