
The Nokia Open Source Browser

Guido Grassel1, Roland Geisler2, Elina Vartiainen1, Deepika Chauhan2, Andrei Popescu1
1Nokia Research Center, P.O. Box 407, 00045 Nokia Group, Finland

2Nokia Technology Platforms, 5 Wayside Road, Burlington, MA 01803, U.S.A,
[guido.grassel, roland.geisler, elina.vartiainen, deepika.chauhan, andrei.popescu]@nokia.com

ABSTRACT

With the advent of faster wireless networks and more
capable mobile devices we expect to see growth in the mobile use
of the Internet. In this paper we describe a new Web browser for
mobile devices that we have built based on Open Source Software
components. Our goal was to design a full Web browser that is
easy to use, an architecture that is portable to other mobile
software platforms, and an Open Source development approach to
give others the opportunity to further develop it or use it for
research purposes. We describe our technical implementation, the
usability features that we invented, and discuss the benefits and
Nokia's plans to work with the Open Source community to further
develop the browser.

Keywords
Web browser, Internet, Mobile devices, Usability, User

Experience, Open Source Software.

1. INTRODUCTION
We started looking into a new Web browser for the S60

smart phone mobile software platform1 of Nokia in 2003. It was
not enough that it would show pages authored in a special, mobile
friendly, syntax such as XHTML Mobile Profile [16], and a
mobile-optimized layout. We set out to solve several challenging
goals at the same time:

First, we were aiming for a Web browser that would be
capable of showing all Internet Web pages. Effectively, we were
aiming for the level of Web site compatibility of mainstream
desktop browsers.

Second, we wanted to solve the usability problem of
browsing Web pages on mobile devices that had been created with
consideration of desktop computers only. This meant both solving
the issue of showing a large page on the small screen of a mobile
phone, as well as finding highly usable means how the user could
navigate on the page and interact with it. We were not satisfied
with the state-of-the-art and were looking for a novel Web
viewing method. A solution to the first problem was required for
solving the second problem because excellent Web site
compatibility is a pre-requisite for good usability.

Third, we wanted to bring down costs for our own software
development and for licensing third party software.

This paper is structured as follows: Chapter 2 focuses on the
background of our research by outlining related work. Chapters 3
and 4 describe our browser implementation work and the usability
features we developed. Chapter 5 discusses our plans to work with
the Open Source community, chapter 6 outlines our lessons

1 http://s60.com

learned and benefits, and chapter 7 summarizes and makes final
conclusions.

2. RELATED WORK
Both Web browsers licensed by Nokia as well as S60’s own

browser used Narrow Layout. Narrow Layout is a method
whereby the Web page is reformatted into one column that fits the
width of a typically small handheld device display. This way, the
need for horizontal scrolling is eliminated and the user will see all
the content just by scrolling down. From our own experience
using these browsers, and based on usability studies [17] we
concluded that this method was insufficient. The main concerns
with Narrow Layout were as follows:
• This method often destroys the intended logical grouping of

content, leading to situations where users cannot even
recognize familiar pages.

• It is hard for users to realize that they have proceeded to a
new page after following a link, because the first screen of
the new page may look exactly the same as that of the
previous page.

• Pages that rely on a two-dimensional layout (e.g. timetables,
maps) are broken since Narrow Layout will force them into a
one-dimensional layout.
Based on these observations, we concluded that we had to

find a Web viewing method that works better for end-users than
Narrow Layout.

In addition to Narrow Layout, there exist several Web
viewing methods for handheld devices that apply the Overview
plus Detail method. In this method, an overview is used to display
the whole data, while a detailed view shows a close-up portion of
the data. These views can be presented next to each other [23], by
showing them separately [14],[15], or by overlapping them [9]. If
the views are shown simultaneously, with the overview on top of
the detailed view, transparency can be used to avoid distracting
the detailed view [13].

Implementations of the Overview plus Detail method can be
divided into two groups: the ones that only visualize a Web page
in a different way but do not modify its contents and the ones that
make modifications to the page contents in order to optimize for
small screen devices. The implementations that do not modify the
page are based on showing the whole or a part of the overview of
the page [2],[9],[23]. The page can be analyzed to create logical
sections that can be selected by the user for viewing them
independently from the rest of the document. Another solution is
to allow the user to interact directly with the overview by means
of special tools, such as a link selector, or a pick-up tool for
extracting certain elements.

The implementations that modify the page aim to optimize
and extract sensible content to be shown to the user [5], [8],[15].

An intermediate content transcoding proxy can be used to create
the optimized content including summary views or to convert
HTML pages [4],[12].

Apart from Narrow Layout and Overview plus Detail, other
Web viewing methods simply eliminate some of the content [6],
sometimes even without offering any possibility to view the page
in its original form (layout and content) [24].

Some implementations are targeted for PDAs that have larger
screen sizes than mobile phones [2],[4],[23],[25], while others
require a pointing device [2],[9],[12],[15].

3. IMPLEMENTATION
The overall architecture of the new Nokia Open Source

Browser is depicted in Figure 1. The core of the system consists
of two Open Source cross-platform libraries, WebCore and
JavaScriptCore, a library with platform dependent functionality,
S60 WebKit, and the user interface. The role of each of these
components is detailed in the following sections.

Figure 1: Nokia Open Source Browser architecture.

Light gray boxes indicate components that are part of
Symbian OS. Medium gray boxes designate cross-platform
components, which are shared with Mac OS X, while dark

gray boxes show S60 specific components.

3.1 Browser Engine Choice
We needed a very good browser engine for solving the Web

site compatibility issue. It was not an option for us to develop our
own browser engine if it was meant to be on a par with Mozilla
Gecko and Internet Explorer Trident in terms of Web site
compatibility. It requires many years of developing, testing and
optimizing a browser engine in order to reach a comparable level
of Web site compatibility. The main causes for this situation lie in
the large variety of Web standards interpretations, as well as in the
multitude of proprietary markup extensions.

Since we wanted to further develop the browser engine, we
needed full access to the engine source code. That prevented us
from working with a licensed engine since none of Nokia’s
licensing partners were able to provide the source code of their
browser engine. We therefore decided to go with an Open Source
browser engine and chose KHTML of the KDE Konqueror
browser. The benefits of KHTML consisted of a clean design,

small code size, good start-up performance, low memory
consumption and sufficient Web site compatibility. We found our
decision reinforced when Apple announced in January 2003 that
they had made the same choice for their Safari browser [1]. We
decided to start with Apple’s code base, WebCore and
JavaScriptCore, because we benefited from Apple’s changes to
the original KDE code to make WebCore and JavaScriptCore
more portable, and from their improvements to performance and
Web site compatibility.

3.2 WebCore and JavaScriptCore
Both components form the heart of the browser engine.

WebCore is an Open Source, cross-platform library that contains
the functionality required to parse, format and render HTML [21]
documents. Its most important parts are the HTML and CSS [19]
parsers, the HTML and XML [22] DOM (Document Object
Model) [20] implementation, the document layout and rendering
logic as well as main memory cache and a resource loading
component. The main strengths of WebCore are clean design,
portability, small code size, low memory consumption and, as a
result of that, a short start-up time. Since this component has been
extensively tested and improved over time, it now provides
excellent compatibility with Web content.

JavaScriptCore is an Open Source, cross-platform JavaScript
engine. JavaScriptCore is integrated to the DOM implementation
in WebCore to access the HTML document and pass events.

WebCore and JavaScriptCore are both licensed under LGPL
[7]. The main requirement imposed to a software component by
the LGPL license is that any changes to the component itself must
be released as Open Source. Separate software built around an
LGPL component (e.g. the S60 browser application or S60
WebKit) is allowed to remain closed source.

WebCore and JavaScriptCore are used by Apple Safari,
Apple Dashboard, and other applications in Mac OS. Apple
engineers took the KHTML engine from the Linux KDE project
as a basis for creating WebCore. They enhanced KHTML
significantly and released the new version as Open Source
Software. Unfortunately this resulted in a fork with the KHTML
code base. JavaScriptCore is based on KDE KJS library and a fork
of the code was avoided in this case.

3.3 S60 WebKit
The S60 WebKit library contains platform dependent

functionality such as image decoding, graphics drawing, resource
loading over Symbian OS’s HTTP stack or from the device local
storage, SSL and certificate management, etc. The WebKit library
also implements a “browser control interface” that allows S60
GUI applications to include the browser as a normal control.
WebCore and WebKit interact following a bridge-like pattern,
where certain components defined in WebCore delegate
operations to WebKit objects, which are part of a different class
hierarchy. All code is written in C++.

4. USABILITY IMPROVEMENTS
Using an Open Source browser engine was not enough to

achieve all of our goals. It solved pretty well the compatibility
problem with Web content, but there were more usability
problems for mobile browsing, such as how the user views,
navigates, and interacts with the content. As discussed under
related work, we felt that none of the state-of-the-art Web viewing

methods could solve the problem well enough or required a larger
screen size or a pointing device. Therefore, we had to create
something new and better. We followed a user-centric approach
for which several user studies were the starting point. We
iteratively created and refined a number of mobile optimized
features, prototyped them, and evaluated their usability. Usability
evaluations were first done by usability experts, and later testing
the features with end-users and in the lab, and finally in larger
field trials.

In the following we outline the features that achieved the best
usability in our tests. These features are included in the new Nokia
Open Source Browser that ships as part of the S60 3rd edition
platform.

4.1 Unique Usability Features

Intended Web Page Layout

The Nokia Open Source Browser renders the Web page as
intended by the author meaning that it obeys the CSS (Cascading
Style Sheets) layout definition. The achieved layout is very
similar to the one on the PC. A user who is familiar with a Web
page from the PC easily recognizes the page when viewing it on
the Nokia Open Source Browser. By rending a Web page with the
intended layout we avoid the problems caused by reformatting the
page in Narrow Layout: "breaking" pages that rely on a two-
dimensional layout, with the consequence that users lose
orientation, and need to scroll a lot vertically.

Narrow Text Column

Applying only Intended Web Page Layout can result in a
paragraph of text being laid out wider than the screen. The user
would need to scroll horizontally for reading each line of text in
such a layout. To avoid this situation we have modified the CSS
layout algorithm of the browser in such a way that the width of a
line of text is at most as large as the viewport width (i.e. it is also
never wider than the screen).

Figure 2a: In normal layout text runs wider than the viewport

(marked by red rectangle).
This layout mechanism is a unique feature, we do not know

of any other mobile browser with this or a similar feature. Figure
2a shows how text is rendered without the Narrow Text Column
feature, and Figure 2b shows the same text with the Narrow Text
Column feature enabled.

Figure 2b: The Narrow Text Column ensures the text width

fits the viewport (marked by red rectangle).

Mini Map

 The purpose of this feature is to provide the user with a
sense of orientation and overview of the Web page. A thumbnail,
or Mini Map, overview of a larger part of the page is displayed
automatically whenever the user continuously scrolls the page in
horizontal or vertical direction. The Mini Map is shown on top of
the main view. A red rectangle in the thumbnail indicates the
current visible part of the Web page in the main view. The
thumbnail overview appears with a short delay while scrolling,
and disappears immediately when the user stops scrolling. Figure
3 shows this feature in action.

Figure 3: Mini Map shown on top of the main view of a Web

page.
Page Overview

The Page Overview serves the same purpose as the Mini
Map: it provides a full-screen overview of the Web page. While
the Mini Map becomes visible automatically, Page Overview
needs to be activated and de-activated by pressing a shortcut key
(e.g. "5" on a Nokia E60 keypad). By moving a red rectangle over
the full-screen overview with the cursor keys, the user can re-
position the browser viewport over the desired Web page region.

From our experience, Page Overview and Mini Map are
complementary features. It is easier for users to discover the Mini
Map (since it appears automatically), whereas Page Overview,
due to its larger full-screen size, provides more context. Some
users have commented that Page Overview works better on Web
pages whose layout they are familiar with, while the Mini Map is

more suited for finding content on unfamiliar pages. A screenshot
with this feature can be seen in Figure 4.

Figure 4: Page Overview.

Text Search

Because of the inherently smaller browser viewport,
searching on a Web page is more important on a small screen
device than it is on a desktop browser. We provide an easy way
for the users to quickly search for a text string on the current Web
page. While the user is typing, the viewport automatically scrolls
to the first occurrence of the entered search phrase (Figure 5).
Pressing the left soft key will offer a menu option that allows the
user to move the viewport to the next occurrences (if any).

Figure 5: Text Search on Web page

Virtual Pointer

The Nokia Open Source Browser employs a sophisticated
virtual pointer that the user controls with the 5-way joystick. Here,
the innovation lies in combining the two state-of-the-art methods:
focus navigation and mouse pointer. This way, we get the benefits
of both methods: being able to easily and quickly select a
focusable element with a minimal amount of key presses (with
focus navigation), and the ability to freely position the pointer on
top of any element (e.g. to enable a context sensitive browser
menu). Our method therefore naturally supports dynamic content
such as DHTML and CSS menus. Firstly, the optimization of a
free moving pointer method lies in the intelligent adaptation of the
distance the pointer moves each time the user presses the cursor
keys. This distance changes depending on the distance to the

nearest page element in the direction of the moving pointer.
Secondly, the Web page scrolls automatically as the pointer
moves over the page. By scrolling the page in vertical or
horizontal direction the pointer remains close to the center of the
viewport unless an edge of the Web page has been reached.

Visual History

Visual History is our improved version of the "Back" and
"Forward" functions of browsers. The Visual History shows
thumbnails of previously visited Web pages. It is activated by
pressing the right soft key ("Back"). It allows the user to go one or
several pages back (or forward) in the page history at once. Its
main benefit is that it allows the user to quickly switch to a new
page without waiting for intermediate pages in the page history to
render. The Visual History and the Mini Map have been the two
features that created the biggest "wow" effect in user tests and
when demonstrating the browser. Figure 6 shows an example
screenshot of the Visual History.

Figure 6: Visual History

Multiple Document Support

A required minimum level of multiple document support
needs to handle popup windows. While we agree that Web pages
should not use popups and popup blockers are useful, there are
sites that do not work without support for popups. Full fledged
multiple document support consists of several additional features:
the possibility to open a page in a new window, to select a link to
be opened in a new window, and easy means for switching
between open documents. We have user-tested several solutions.
Two solutions scored about equally well in our tests: First, tabs
(Figure 7a) similar to Mozilla Firefox and Opera for PCs, and
second, a combination of Visual History and document switching
in one function (Figure 7b). More advanced users preferred the
latter solution. One reason for their preference might be that
document switching is readily available from the right soft key in
this solution. The simplicity of the user interface was likely the
reason why average users preferred the first solution. Initial
releases of the Nokia Open Source Browser will only have basic
support for popups and full multiple document support using
either of the discussed solutions is expected later.

Figure 7a: Document switching with tabs

Figure 7b: Combined Visual History and document switching

4.2 Usability Test Results

As mentioned above, we have conducted a large number of
end-user tests to refine and verify aforementioned features.

Intended Page Layout & Mini Map versus Narrow Layout

We carried out a field trial to verify the superiority of our
own Web viewing method over Narrow Layout. The tested
version of our own method included an implementation of
Intended Page Layout, Narrow Text Column, Mini Map, and Text
Search features on the research prototype of the Nokia Open
Source Browser running on a Nokia 6600 GPRS phone. For
testing Narrow Layout we used a commercial version of ACCESS
Netfront running on the same phone to obtain comparable results.

This trial involved 20 users of various ages and backgrounds.
We had 12 male subjects and 8 were female, ages 15-50. Of all
users, 7 had never used a full Web browser on a mobile phone
before, while 5 participants were frequent users. The trial lasted
two weeks. Half of the test subjects used the Narrow Layout
method first. The other half used our own Web viewing method
first. After one week we swapped the Web viewing method.

After using the methods for one week each we asked which
method they preferred for viewing Web content on a mobile
phone. We used a 7-point scale 3 meaning strong preference for
either method, and 0 meaning no preference. At the end of the

trial, 18 participants preferred our own method, while 2 users
liked the Narrow Layout method better. Usually in this kind of
tests, it is rare to get participants give strong preference ratings, so
it is notable that as many as 12 participants used the extreme
preference rating for our own method. The order of testing the
method affected the ratings, so that the first used method got their
preference more easily: All users who used our own method first
(Group 1) clearly preferred it, whereas the preference distribution
of the other group (Group 2) varied more (Figure 8). Still, 8 out of
10 participants who first learned the Narrow Layout method
preferred our own method after they also learned to use this one.
Roto et.al. have published the full details of this test [18]. This
result shows a clear superiority of our own method over the state-
of-the-art.

Figure 8: 18 participants preferred the Browser with the Mini

Map method, Group 1 more clearly than Group 2.
Intended Layout & Page Overview versus Narrow Layout

The Page Overview feature was created later than the other
features. Therefore, we executed another usability evaluation for
this feature. This time, our implementation included the Intended
Layout, Narrow Text Column, and Page Overview features.
Implementation was again on the research prototype of the Nokia
Open Source Browser on a Nokia 6600 phone. The method to
compare with was again Narrow Layout. Users either used
ACCESS Netfront or Opera Mobile if they had used Opera
Mobile before. Users were allowed to switch between Narrow
Layout and Intended Layout on Netfront or Opera Mobile.

We used 20 test subjects, 6 male, and 14 female, ages 21-50.
These were other persons than in the previous test. The test was
done in the lab, for at most 2 hours. All but one user had previous
experience with browsing on mobile devices.

When asked if they needed to access Web pages via a mobile
phone, which browser they would prefer to use 18 out of 20
persons preferred our own method. The preference of 10 was
extreme (score 3). Only two users had a slight preference for the
Narrow Layout method (Figure 9). Also these results show a clear
superiority of our own method over the state-of-the-art Narrow
Layout method.

Figure 9: 18 participants preferred the Browser with the Page
Overview and Intended Layout features, 2 users had a slight

preference for the browser with Narrow Layout.
It should be noted that the results of the first and the second

tests cannot be interpreted that Page Overview would be better
than Mini Map because the tests differed in several aspects, e.g.
different test setup, different test subjects, and different tasks. We
have reason to believe the two features complement each other
nicely and the product version of the Nokia Open Source Browser
that includes both features scores even better when compared
against the Narrow Layout method.

5. NOKIA OPEN SOURCE PLANS
Nokia is committed to Open Source, intending to actively

participate in the Open Source community to further develop and
enhance the browser, contributing Nokia's expertise in mobility.
The Nokia Open Source Browser will ship on S60 3rd edition
devices, some of which will be available in the first half of 2006.
This browser is already available as part of the S60 3rd Edition
SDK, available for download from Forum Nokia2.

As the first step in our Open Source plans, we released our
modified sources for WebCore and JavaScriptCore in order to
comply with their LGPL term, which requires us to disclose any
changes that we made to the licensed code. The modified source
code for these components is available at the Nokia Open Source
Browser Web site3.

Next, we intend to host the sources for S60 3rd Edition
WebCore and JavaScriptCore at the WebKit Open Source Project
Web site4. This will enable the community to look at the sources
in a source control system (preferred to zip releases) and to
compare it with the sources in the tip of the tree. This will also
allow Nokia developers to explain to the community some of the
design decisions needed to port these components to mobile
devices. We want to avoid a permanent branch WebCore and
JavaScriptCore. Therefore, our goal is to merge our changes with
the main development branch of the WebKit Open Source project.

As a final step towards contributing a complete mobile
browser to Open Source, we will release our S60 WebKit source
code and tools. The community then will have access to a
complete mobile browser for S60: WebCore, JavaScriptCore, plus
the supporting infrastructure, which includes S60 WebKit,

2 http://forum.nokia.com
3 http://opensource.nokia.com/projects/S60browser
4 http://webkit.org

Memory Manager, and a sample UI. Together these components
enable developers to build, use, and test the browser on S60
phones, and on the emulator in the S60 SDK, running on
Windows. The Nokia browser user interface, including some of
the aforementioned user experience enhancements (such as Page
Overview) will remain closed source. The Nokia Open Source
Browser team intends to change its operational model so that
Nokia developers can work on the browser code along with the
Open Source community.

The combined development effort of Nokia, Apple, and the
Open Source community on the Open Source browser engine will
hopefully result in fast adoption of the new Web technologies as
well as enhanced compliance with Web standards. This will result
in a high quality, low cost browser engine that is available to all.
This will encourage use of the WebKit browser engine by other
mobile vendors thus reducing the browser fragmentation on
mobile devices. Our hope is that the WebKit browser engine
becomes the de facto Open Source engine for mobile browsers
thus driving innovation in content, services, browser features and
technology.

6. LESSONS LEARNED
As the first Open Source application for mainstream mobile

devices in Nokia we learned valuable lessons from this project:

First, Open Source can offer high performing and standard
compliant software also for embedded software solutions:
WebCore provides fast rendering and scrolling support, and our
new Nokia Open Source Browser is more than 117% faster than
our own Nokia in-house browser. In addition, the excellent Web
site support of WebCore and JavaScriptCore that had been
developed over years in the KDE community and later by Apple
resulted in the new Nokia Open Source Browser being 45% more
Web compliant than our existing in-house browser.

Second, using Open Source reduces time to market and
focuses company resources to innovate: It took less than two years
for us from the time we decided in Nokia to build a new browser
based on Open Source to the time we shipped our first products.
The Web browser is also on mobile software platforms one of the
most complex software components, and it would have taken
many years if such an application would have been built in-house.
In the past, many of our resources were tight to improve basic
Web site compliance and integration of 3rd party browsers into
Nokia products. By using Open Source code for the browser
engines we could instead focus our attention to develop new
innovative features, as presented in chapter 4, which improved
end-user usability.

Third, if Open Source code is architected well then legal
risks can be managed: Legal risks are usually one of the main
reasons why companies hesitate to use Open Source Software in
their products. As WebCore and JavaScriptCore are released
under the LGPL license, diligent code review or “scrubbing” was
needed before we could make our changes publicly available, to
avoid that we would release any proprietary code or code that is
subject to more limited licensing terms than LGPL. Also choosing
a license for components that were developed in-house and need
to be Open-Sourced requires diligent legal advice.

Finally, working with Open Source also for an embedded
software application is rewarding and stimulates the innovative
mindset: The prospect that some of the developed software will be

available as Open Source was seen as something very rewarding
for many of our software engineers. The Open Source mindset is
highly innovative as new ideas can openly be discussed and
collaboration is not limited to your own company and partners.

The key benefits that we have seen from this Open Source
mobile browser project over our in-house embedded software
development and 3rd party licensing are in short: lower R&D
costs, better resource focus on innovation, improved software
quality and compatibility, and reduced time to market.

7. CONCLUSIONS
We developed a Web browser for mobile devices for the S60

software platform that is based on Open Source components. Our
architecture is based on the Open Source browser engines
WebCore and JavaScriptCore from Apple that were originally
developed by the KDE community. To improve usability we
developed a number of novel features that allow users to read
Web pages on their mobile devices in a similar way like on their
desktop. We presented Mini Map, Page Overview, Visual History
and others, that provide superior usability to access full Web
pages on mobile devices than existing methods.

We have thereby progressed beyond the state-of-the-art for
mobile Web browsers in terms of usability as well as technical
realization. By using Open Source engines we invite the Open
Source and research community to work together with Nokia and
others to improve browsing for future mobile devices that will be
used by millions of people – in the future possibly more than
desktop and laptop computers combined.

8. ACKNOWLEDGMENTS
The authors wish to acknowledge the contribution of their
colleagues at Nokia Research Center and Nokia Technology
Platforms to the work described in this paper. We want to
specially mention Virpi Roto and Antti Koivisto.

9. REFERENCES
[1] Apple Computers press release on Safari launch:

http://www.apple.com/pr/library/2003/jan/07safari.html
[2] Baudisch P., Xie X., Wang C., Ma W. Collapse-to-Zoom:

Viewing Web Pages on Small Screen Devices by Interactively
Removing Irrelevant Content. Proc. ACM UIST 2004.

[3] de Bruijn O., Spence R., Chong M. Y.: RSVP Browser: Web
Browsing on Small Screen Devices. Personal and Ubiquitous
Computing (2002) 6:245–252.

[4] Buyukkokten O., Garcia-Molina H., Paepcke A., Winograd
T. Power Browser: Efficient Web Browsing for PDAs. Proc.
ACM CHI 2000.

[5] Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., Paepcke,
A., Winograd, T. Efficient Web Browsing on Handheld
Devices Using Page and Form Summarization. ACM
Transactions on Information Systems, Vol. 20, No. 1,
January 2002, p. 82–115.

[6] Gupta, S., Kaiser G., Neistadt D., Grimm, P. DOM-based
content extraction of HTML documents. WWW 2003: 207 –
214.

[7] GNU Lesser General Public License,
http://www.gnu.org/copyleft/lesser.html.

[8] Hoi K.K., Lee D.L., and Xu J. Document Visualization on
Small Displays. Proc. Int’l Conf. Mobile Data Management,
ACM Press, 2003: 262–278.

[9] Fulk, M. Improving Web Browsing on Handheld Devices.
Proc. ACM CHI 2001.

[10] Furnas, G. Generalized Fisheye Views. Proc. ACM CHI
1986, p. 16–23.

[11] Igarashi, T., Hinckley, K. Speed-dependent Automatic
Zooming for Browsing Large Documents. Proc. ACM UIST
2000, p. 139-148.

[12] Lam H., Baudisch P. Summary Thumbnails: Readable
Overviews for Small Screen Web Browsers. Proc. ACM CHI
2005, p. 681-690.

[13] Lieberman, H. A Multiscale, Multilayer Translucent Virtual
space. Proc. IEEE Information Visualization 1997, p. 124-
131.

[14] MacKay B. The Gateway: A Navigation Technique for
Migrating to Small Screens. Proc. ACM CHI 2003.

[15] Milic-Frayling, N., Sommerer, R. SmartView: Flexible
Viewing of Web Page Contents. Poster paper at WWW 2002
http://www2002.org/CDROM/poster/172/.

[16] Open Mobile Alliance (2001) XHTML Mobile Profile,
http://www.openmobilealliance.org/tech/affiliates/wap/wap-
277-xhtmlmp-20011029-a.pdf.

[17] Roto, V., Kaikkonen, A. Perception of Narrow Web Pages
on a Mobile Phone. Proc. Human Factors in
Telecommunications 2003.

[18] Roto, V., Popescu, A., Koivisto, A., Vartiainen, E. Web Page
Visualization on Mobile Phones. Proc. of ACM CHI 2006.

[19] W3C (1998) Cascading Style Sheets (CSS), level
http://www.w3.org/TR/REC-CSS2/.

[20] W3C (2000) Document Object Model (DOM) level 2
specification, Version 1. http://www.w3.org/TR/DOM-
Level-2-Core/.

[21] W3C (1999) HTML 4.01 Specification,
http://www.w3.org/TR/html401.

[22] W3C (2004) Extensible Markup Language (XML) 1.0 (Third
Edition) http://www.w3.org/TR/REC-xml/.

[23] Wobbrock J., Forlizzi J., Hudson S., Myers B. WebThumb:
Interaction Techniques for Small-Screen Browsers. Proc.
ACM UIST 2002.

[24] Yang C. and Wang F. Fractal summarization for mobile
devices to access large documents on the web. WWW 2003:
215-224.

[25] Yin X., Lee W.: Using Link Analysis to Improve Layout on
Mobile Devices. Proc. WWW 2004.

