
[Position Paper] WS-ECA: An ECA Rule Description
Language for Ubiquitous Services Computing

Jae-Yoon Jung
ASRI

Seoul National
University

Seoul, 151-742, Korea
+31-6-1953-8025

jjyjung@gmail.com

Seung-Kyun Han
Digital Interactions Lab.

Seoul National University
Seoul, 151-742, Korea

+82-2-882-0504
jackleg83@gmail.com

Jonghun Park*

Digital Interactions Lab.
Seoul National University

Seoul, 151-742, Korea
+82-2-880-7174

jonghun@snu.ac.kr

Kang Chan Lee
Protocol Eng. Center

ETRI
Dajeon, 305-700, Korea

+82-42-860-6659
chan@etri.re.kr

ABSTRACT
Ubiquitous computing network comprises a variety of distributed
service devices. Today Web services technology enables the
heterogeneous devices to provide their own services and interact
with each other via well-defined Internet protocol. Nevertheless,
service devices in ubiquitous environments require more event-
driven, autonomous interaction beyond rather passive service-
oriented architecture of the present time. This paper presents an
ECA (Event-Condition-Action) rule description language in an
attempt to support capability for autonomous interactions among
service-oriented devices in ubiquitous computing network.
Specifically, the proposed WS-ECA is an XML-based ECA rule
description language for web service-enabled devices. The rules
are embedded in distributed devices which invoke appropriate
services in the network if the rules are triggered by some internal
or external events. The presented ECA-based device coordination
approach is expected to facilitate seamless inter-operation among
the web service-enabled devices in the emerging ubiquitous
computing environment.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications and
Network operating systems; D.3.2 [Language Classifications]:
Specialized application languages.

General Terms
Management, Design, Standardization, Languages.

Keywords
Web service, ECA rule, ubiquitous devices, action constraints.

1. INTRODUCTION
Ubiquitous computing environments are becoming more
heterogeneous and service rich domains [8]. Devices with
particular services are interconnected each other via various types
of networks. While web services technology has become a
defacto standard for business application integration [9, 14], it is
also rapidly emerging as an effective means for achieving inter-
operability in ubiquitous computing environments [5, 12].

In this paper, ECA (Event-Condition-Action) rule description
language is introduced for event-driven coordination of web
service-enabled devices. The ECA rule was originally devised to
provide traditional database systems with the capability of event-

driven, instantaneous response. Due to its advantages of distinct
and comprehensible rule description, it has been spread into a
variety of domains and applications, including expert system [3],
agent collaboration [10], policy-based control and management [4,
11], and middleware [6, 7].

Even in the field of distributed computing, event-based rule
management has been actively applied to coordinate and control
distributed systems. A representative work is the policy-based
control and management presented in [4, 11]. They proposed the
policy description languages (PDL) for a centralized server to
control the distributed system. In particular, Shankar [13] defined
ECA-P with post-conditions of devices and addressed weak points
of previous ECA rules. Nevertheless, the centralized rule
execution and control has made it difficult to apply such a result
to ubiquitous computing environment, mainly due to the issues of
communication overhead among devices, service encapsulation,
and private information management.

Furthermore, there are several previous research results on event-
based service computing. The SCXML (State Chart XML) [1] is
an XML-based language that can define a control mechanism for
distributed finite state machines by specifying their state
transitions via external events. Yet, it focused on an individual
device instead of a system of devices. On the other hand, WS-
Eventing [2] defines a framework of effective event exchanges
between web services. Especially, the event messages are
delivered by use of a publish/subscribe mechanism, and the event
content in a message can be described without restrictions for a
specific application. Accordingly, this proposal can be used as a
protocol to implement event-driven architectures based on web
services, and it is adopted as a base protocol for our research.
This position paper proposes an Event-Condition-Action rule
description language for Web Services (named WS-ECA) in order
to support reactive interactions among service-oriented,
heterogeneous devices in ubiquitous environments. The proposed
language based on the ECA rules which are embedded in
distributed service devices and then are triggered by events from
internal and external devices. When the triggered rule satisfies
some condition, it will be activated to invoke appropriate services.

In the following, Section 2 propose the proposed framework for
ECA rule-based coordination of service devices, and Section 3
presents the structure and elements of the WS-ECA proposed in
this paper. Finally, Section 4 concludes the paper.

2. ECA RULE BASED MANAGEMENT IN
UBIQUITOUS SERVICE COMPUTING

* Corresponding author

Copyright is held by IW3C2.
WWW 2006, May 22–26, 2006, Edinburgh, UK.

ECA rules introduced in this paper enable the service devices to
activate each other via event-based interaction. The proposed

ECA rules have been designed so that they can satisfy the
following requirements that are necessary for effective
coordination of systems of ubiquitous service devices.

 Conditional response & event filtering: The rules can be
activated by appointed events and designated conditions
according to user preference.

 Event passing: Events satisfied by specific conditions can
be forwarded to another specific device, broadcast to
multiple devices, or multicast to predefined devices.

 Temporal reaction: For the same event type, different
actions can be performed according to their occurrence
times.

 Logical expression in rules: Rule schema can support
logical expression in rule definition such as conjunction,
disjunctions, and negation.

 Rule chaining: Complex rules can be decomposed and
expressed by several simple rules.

In ubiquitous computing environments considered in this paper,
service devices are assumed to be interacting via the events
registered through a publish/subscribe mechanism. Specifically,
the events, conditions, and actions that constitute the ECA rules
are defined as follows: Events are notification messages from
internal or external service device. Conditions are the boolean
expression that must be satisfied in a device for some actions to
occur. Finally, actions are the instructions that provide active
functionality for service devices, which includes service
invocation and event generation.
Figure 1 shows the components of the proposed WS-ECA
framework. An WS-ECA has three basic components, namely
event, condition, and action. In addition, the schema of the rule
description documents defines variables to facilitate condition
evaluation based on event messages and system states.

Web service
providers

Web service
providers

External Device

WS-ECA Rules

Actions

Invoke extService
Invoke intService

Generate extEvent
Generate intEvent

Events

Service events
Time events

Internal events
External events

Variables

Event variables
Device variables

ECA Rule

Event

Condition

Action

Device

WS-ECA Rules

Services

Services

WS-ECA Rules
WS-Eventing

Web service invocation

WS-Eventing
Service invocation

Figure 1. The basic structure of WS-ECA rules.

3. WS-ECA: ECA RULE DESCRIPTION
LANGUAGE
This section describes the schema of WS-ECA in detail. The
proposed schema supports the primitive events and actions as well
as the composite ones for distributed ECA rule processing. First,
Figure 2 shows the basic structure of WS-ECA in terms of XML.

<ECARule name=“xs:NCName” targetNampespace=“xs:anyURI”
xmlns=“http://di.snu.ac.kr/2005/eca/”
xmlns:xs=“http://www.w3.org/2001/XMLSchema” >
<variables>? <variable ... />+ </variables>
<events> event+ </events>
<actions> action+ </actions>
<rules>

<rule>+

<event name=“xs:QName”/>
<condition expression=“XPath Expression”/>
<action name=“xs:QName”/>

</rule>
</rules>

<ECARule>

Figure 2. Basic structure of WS-ECA.

3.1 Event

<events>
<timeEvent type=“once” name=“xs:NCName”>

xs:dateTime </timeEvent>
<timeEvent type=“periodic” name=“xs:NCName”

unit=“xs:duration” issued=“xs:dateTime”?
expired=“xs:dateTime”?>xs:dateTime </timeEvent>

<timeEvent type=“relative” name=“xs:NCName”
baseEvent=“xs:NCName” interval=“xs:duration”/>

<intEvent name=“xs:NCName”/>
<extEvent name=“xs:NCName” eventID=“xs:anyURI”/>
<svcEvent type=“before” name=“xs:NCName”

service=“xs:QName”/>
<svcEvent type=“after” name=“xs:NCName”

service=“xs:QName”/>
<compositeEvent type=“OR” name=“xs:NCName”>

event+ </compositeEvent>
<compositeEvent type=“AND” name=“xs:NCName”

TTL=“xs:duration”> event+ </event>
<compositeEvent type=“SEQ” name=“xs:NCName”

TTL=“xs:duration”> event+ </event>
<compositeEvent type=“NOT” name=“xs:NCName”>

event </compositeEvent>
</events>

Figure 3. Event schema of WS-ECA.

An event is the incident that triggers a rule. The events that can
trigger a rule are called primitive events, and they include the
following four types:

• t ime events: The event is generated by a t imer
at some specific point of time. Time events have three types
 of events: absolute, periodic, and relative. The event of abso
lute type is generated once at some time point, the event of p
e r i o d i c t y p e occurs p e r i o d i c a l l y , and finally t h e
event of relative type is specified relative to some specific ev
ent by use of ‘before’ or ‘after’ operator.

• internal events: The event is generated by the internal
system components including the rule engine and the device.
 It can be used to recognize the state change of a device or to
 trigger other rules.

• external events: The event is generated from a publishing de
vice and is transmitted to subscriber devices through WS-
Eventing.

• service events: The event can be one of two types: before
and after. Specifically, the before (after, respectively) type is
 generated before (after, respectively) the specific service of t
he device begins (finishes, respectively).

More than one of these four primitive events may constitute
composite events with the following logical operators.

• disjunction (e1|e2|..|en): The composite event of the type “O
R” has more than one sub-events. One or more of the sub-
events must occur within its specific time interval.

• conjunction (e1&e2&...&en): The composite event of the ty

pe “AND” has more than one sub-events. All of the sub-even
ts must occur once or more times within its specific time
interval.

• sequence (e1,e2,...,en): The composite event of the type “SE
Q” has more than one sub-events. All of the sub-events must
ever occur sequentially within its specific time interval.

• negation (~e): The composite event of the type “NOT” has
only one sub-event. The sub-events must not occur within its
 specified time interval.

3.2 Condition
The condition part of ECA rules is a boolean statement that must
be satisfied to in order to activate a rule. In WS-ECA, the
condition statement is described in terms of an XPath expression
(Clark, 1999). The expressions in the condition can use the values
excerpted from the event part of a rule through the use of
extension functions of XPath’s built-in functions as shown in
Table 1, or the variables defined in a rule document.

Table 1. Extension functions to XPath's built-in functions

Functions return type return value
eca:getVariable(event
QName, path PathExpr) xs:any Specific values from event

variables
eca:getDateTime(event
QName) xs:dateTime Date and time information

of the system

Variables can be aliases for specific elements of an events in the
rule (called event variables) or user-defined states of a system
(called device variables). The two types of variables are used to
express the conditions conveniently or to assign input data for
service invocation in the actions. The syntax for the variables is
presented in Figure 4.

<variables>?
 <variable name=“xs:NCName” systemVar=“xs:QName”?

eventVar=“eca:getVariable(event QName, path PathExpr)”? />+
</variables>

Figure 4. Variable schema of WS-ECA.

3.3 Action
The action part of the rule is the instruction that must be executed
by an internal or external device when a triggered rule is activated.
In the proposed framework, the allowed types of actions can be
one of the following:

• invokeService (service) : The ac t ion invokes a
n internal or external service.

• createExtEvent (event) : The action creates an external eve
nt and publishes it to the subscribing devices.

• createIntEvent (event) : The action creates an internal event
 and triggers other rules of the same device.

The action parts of ECA rule may consist of above primitive
actions or their composite actions. A composite action is
composed of more than one primitive or composite action with
two basic operators: conjunctive and disjunctive operators. We do
not consider sequential actions since they can be defined by use
of series of ECA rules. Figure 5 shows the proposed schema for
the action element.

• conjunction (a1&a2&...&an): The action requests to execut
e all of its sub-actions. It contains a transaction attribute that
indicates whether or not the rule engine should guarantee
atomicity of all the sub-action. The attribute is a boolean
variables of which the default value is ‘false’.

• disjunction (a1|a2|...|an): The action requests to execute one
 of its sub-actions. It contains a sequence attribute that indica
tes whether the rule engine should execute the sub-actions in
order. The attribute is of boolean type and its default value is
 ‘true’.

<actions>
<invokeService name=“xs:NCName” service=“QName”>

xs:any </invokeService>
<createIntEvent name=“xs:NCName” intEvent=“xs:NCName”>

xs:any </createIntEvent>
<createExtEvent name=“xs:NCName” extEvent=“xs:anyURI”>

xs:any </createExtEvent>
<compositeAction name=“xs:NCName” operator=“AND”

transaction=“xs:anyURI”> action+ </compositeAction>
<compositeAction name=“xs:NCName” operator=“OR”>

action+ </compositeAction>
</actions>

Figure 5. Action schema of WS-ECA.

4. CONCLUSIONS AND DISCUSSION
This paper proposed the schema of event-based rule description
language for the purpose of effective coordination of web service-
enabled devices in ubiquitous computing environment. The
proposed WS-ECA rules enable the service devices to interact
with each other via WS-Eventing. WS-ECA is a stateless and
light service description language that can support instantaneous
activation upon a WS-Eenting message. It has advantages that
users can describe required interaction among the devices in
ubiquitous computing environment where multiple devices
exchange their events based on publish/subscribe mechanism.
WS-ECA rules for individual devices may have service
discrepancies with each other or cause undesirable situations
when they are executed concurrently, since they can be created
and processed independently. Motivated by this, we are now
developing conflict detection and resolution algorithms for
distributed ECA rule processing in order to prevent the situation.
A rule conflict may occur when several rules triggered by an
event are ready to execute simultaneously possibly conflicting
service actions. The conflicts of ECA rules in distributed devices
can be categorized into static conflicts and dynamic conflicts
depending on whether the conflict is resolved in design time or
run time. When a new rule is evaluated to contain any conflict
with other rules in design time, it is said to be in a static conflict,
and it cannot be registered and must be modified by users. On the
other hand, if it is judged to contain any potential dynamic
conflict with others in run time, additional resolution rules must
be supplemented in order to register the rule in the system.
Afterwards, if a dynamic conflict among the registered rules
actually happens in run time, its resolution rules will handle the
conflict and instruct some prescribed actions to the corresponding
devices.
The presented framework on event-driven coordination of
distributed web-service-enabled devices is expected to contribute

to the efficient implementation of emerging ubiquitous service-
based systems.

5. REFERENCES
[1] R.J. Auburn, J. Barnett, M. Bodell, and T.V. Raman. State

Chart XML (SCXML): State Machine Notation for Control
Abstraction 1.0. W3C Working Draft, 2005.

[2] D. Bank et al. Web Services Eventing. 2004.
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[3] N. Bassiliades, and I. Vlahavas. DEVICE: Compiling
production rules into event-driven rules using complex
events. Information and Software Technology, 39:331-342,
1997.

[4] S. Calo, and M. Sloman, Policy-Based Management of
Networks and Services. Journal of Network and Systems
Management. 11(3):249-252, 2003.

[5] A. Carter, and M. Vukovic. A Framework For Ubiquitous
Web Service Discovery. In Proc. of the 6th UbiComp, 2004.

[6] M. Cilia, and A. Buchmann. An Active Functionality Service
for E-Business Applications. ACM SIGMOD Record, 31(1):
24-30, 2002.

[7] K. Dube, B. Wu, and J. Grimson. Framework and
Architecture for the Management of Event-Condition-Action
(ECA) Rule-Based Clinical Protocols. In Proc. of the 15th

IEEE Symp. on Comp.-Based Med. Sys., pages 288-294,
2002.

[8] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink.
Supporting Service Discovery, Querying and Interaction in
Ubiquitous Computing Environments. Wireless Networks
10:631–641, 2004.

[9] Y. Huang, and H. Garcia-Molina. Publish/Subscribe in a
Mobile Environment. Wireless Networks 10:643–652, 2004.

[10] K. Liu, L. Sun, A. Dix, and M. Narasipuram. Norm Based
Agency for Designing Collaborative Systems. Information
Systems Journal, 11(3): 229-247, 2001.

[11] J. Lobo, R. Bhatia, and S. Nagvi. A Policy Description
Language. In Proc. of National Conference of the American
Association for Artificial Intelligence, Orlando, FL, 1999.

[12] A. Sashima, N. Izumi, and K. Kurumatani. Location-
Mediated Coordination of Web Services in Ubiquitous
Computing, in Proc. of IEEE Int’l Conf. Web Services
(ICWS’04), pages 109-114, 2004.

[13] C.S. Shankar, A. Ranganathan, and R. Campbell. An ECA-P
Policy-based Framework for Managing Ubiquitous
Computing Environments. In Proc. of the 2nd Int’l Conf. on
Mobile and Ubiq. Sys., 2005.

[14] S. Vinoski. Integration with Web Services. IEEE internet
computing, 7(6): 75-77, 2003.

	INTRODUCTION
	ECA RULE BASED MANAGEMENT IN UBIQUITOUS SERVICE COMPUTING
	WS-ECA: ECA RULE DESCRIPTION LANGUAGE
	Event
	Condition
	Action

	CONCLUSIONS AND DISCUSSION
	REFERENCES

