
LAOS: Layered WWW AHS Authoring Model and their
corresponding Algebraic Operators

Alexandra I. Cristea
Faculty of Computer Science and Mathematics

Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven, The Netherlands

+31-40-247 4350

a.i.cristea@tue.nl

Arnout de Mooij
Faculty of Computer Science and Mathematics

Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven, The Netherlands

a.m.d.mooij@stud.tue.nl

ABSTRACT
In this paper, we describe the design steps for WWW authoring of
adaptive hypermedia via a five layer model. We argue that we
need to introduce the goal and constraints model between the
domain model and adaptation and user models, in order to be able
to generate adaptive hypermedia on the fly and to actually
implement the so often quoted re-usage paradigm. We also show
the operators necessary to implement functionality at the different
levels, and exemplify this layered construction with MOT, an
adaptive hypermedia (in particular, courseware) authoring system
we have built at the Eindhoven University of Technology.

Categories and Subject Descriptors
H.1 [Information Systems] Models and Principles; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia - architectures, navigation, user issues;
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing - abstracting methods, dictionaries, indexing
methods; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval - clustering, information
filtering, query formulation, relevance feedback, retrieval models,
search process, selection process; E.1 [Data]: Data Structures -
distributed data structures, graphs and networks; K.3.1
[Computers and Education]: Computer Uses in Education -
distance learning

General Terms
Design, Experimentation, Standardization, Languages, Theory.

Keywords
Adaptive authoring, adaptive hypermedia, AHS, AHAM,
ontologies, semantic web, RDF, MOT

1. INTRODUCTION
Adaptive hypermedia is a relatively new field, tracing back to the
early 1990s. Adaptive hypermedia system (AHS) are becoming
nowadays more popular, due to their correlation with the recent
strive of the W3C and the IEEE LTTF [18] community towards
(ontology-based) customization and the semantic Web [28]. The
success of such research AHS as AHA! [15], Interbook [7],
TANGOW [9] or other Web adaptation engines such as Firefly

(before it was bought by Microsoft) has pushed AHS forward.
Their edge over classical Intelligent Tutoring Systems (ITS)
systems [6] relies on their simplicity: they contain a simple
domain model, user model (usually an overlay model of the
domain model), aimed at a quick response, which is extremely
beneficial in the speed-concerned WWW environment. However,
for quite a long while there has been a lack of powerful authoring
tools for adaptive hypermedia [5][11]. One of the main reasons
was the great (but fruitful) diversity in AHS implementations,
many with implicit models [31]. Recently, stimulated by the
ripening of the field, a group of researchers is working towards
the implementation of adaptation standards [12][15], which can
stay at the basis of such authoring systems. This lead to a strive
towards obtaining clear explicit models for adaptive authoring
[3][5][8][11][12][27][30][31].

Here we build upon AHAM [31], a well-known model developed
at the Eindhoven University of Technology, and on previous
models proposed by us for the educational field [11], to construct
a more general layered model for adaptive hypermedia authoring.

The paper is organized as follows: Section 2 introduces our five
layer model for AHS authoring. Section 3 populates the proposed
model with algebraic operators and draws parallels to an RDF
algebra. Section 4 exemplifies the defined model and operator
implementations based on MOT, an AHS adaptive authoring
system built at the Eindhoven University of Technology for on-
line adaptive course production. Finally, section 5 draws
conclusions by summarizing our contributions.

2. LAYERED MODEL
Previously we have defined a layered model for adaptive
hypermedia authoring design methodology for (WWW)
courseware [11]. This model suggested the usage of the following
main three layers: conceptual layer expressing the domain model
(CL - with sub-layers: atomic concepts and composite concepts –
with their respective attributes), lesson layer (LL - of multiple
possible lessons for each concept map or combination of concept
maps) and student adaptation and presentation layer (SAPL -
based on: adaptation model and presentation model). All these
layers should have been powered by the adaptation engine (AE).
Note that already, compared to [27] we were using the lesson
model (LM) as an intermediate model between the domain model
(DM) and the user and adaptation model (UM, respectively AM).

Here we give a more generalized model for generic adaptive
hypermedia authoring. The idea is based on the book–course or
book–presentation metaphor: generally speaking, when making a
presentation, be it on the Web or not, we base this presentation on

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM

one or more references. Simplifying, a presentation is based on
one or more books. With this in mind it is obvious why we cannot
jump from the DM to the AM (or UM): it would be equivalent to
skip the presentation and just tell the user to read the book. In
other words, the search space is too big and there is a too high
degree of generality (no purposeful orientation of the initial
material - i.e., book).

Therefore, what we need is an intermediate authoring step that is
goal and constraints related: goals1 to give a focused
presentation, and constraints to limit the space of the search2.
Simplifying, we can consider the goal as being a specific end-
state, and the constraint to be defined as a sub-layers of the GM
model (see Fig. 1, where the GM is a multiple sub-layers model).
So, in a general-purpose adaptive hypermedia authoring
environment, LL is replaced by the goal and constraints layer
(GM). Moreover, obviously, student adaptation and presentation
returns to the user model, UM, and the teacher author becomes a
general adaptive hypermedia designer.

There are some fundamental differences between having only DM
or the two new layers, DM and GM, as follows:

• Dynamic (adaptive) presentation generation becomes
possible [13].

• The actual presentation seen by the user can contain both
elements of the GM as well as elements of the DM (e.g., for
clarification of an explanation based on only the GM, the
other elements/ objects of the respective concept, or the
other concepts related to the current concept, can be
referred, via a jump over one layer).

• This increases the flexibility and expressivity of the created
adaptive presentations.

• The AE has to actually implement not only selectors, but
also constructors [27], as presentations can contain any type
of combination of (ordered and weighted) attributes of
concepts; in AHAM constructors are mentioned, but
considered outside the scope of the model.

• This however increases the complexity of the system, and
issues such as guaranteeing termination and confluence get
new dimensions [27].

The total model is composed therefore of five components: DM,
GM, UM, AM, PM, as can be seen in Fig. 1.

Moreover, we defined in previous research [11] some (concept
map oriented) design steps for the authors to take, with regard to
the first layered authoring model introduced. Below is a new
refinement of these steps, reflecting the requirements imposed by
the new layered model:

• STEP 1: write concepts + concept hierarchy

1 By introducing goals it is also clear why this level is a dense

level made of multiple versions for each initial concept map or
combination of concept maps: simply because there are multiple
design goals to consider.

2 Note that this still means that various flexibility degrees are left
for the adaptation to the user and presentation model, so that the
presentation material doesn’t become uniquely determined.

• STEP 2: define concept attributes (define main and extra
attributes)

• STEP 3: fill concept attributes (write contents)

• STEP 4: add content related adaptive features regarding GM
(design alternatives – AND, OR, weights, etc.)

• STEP 5: add UM related features (simplest way, tables as in
AHAM [30], with attribute-value pairs for the user-related
entities)

• STEP 6: decide among adaptation strategies, write in
adaptation language medium-level adaptation rules (such as
defined in [8]) or give the complete set of low level rules [12]
(such as condition-action (CA [31]) or IF-THEN rules).

• STEP 7: define format (presentation means-related; define
chapters)

• STEP 8: add adaptive features regarding presentation means
(define variable page lengths, variables for figure display,
formats, synchronizations points [29], etc.).

In the following we will analyze what type of operators we need
for the authoring process of each layer.

3. ALGEBRAIC OPERATORS PER LAYER
3.1 Conceptual Layer
At the conceptual layer level we have a set of basic operators that
follow basically the ones defined in [3]. The main difference here

Figure 1. The five level AHS authoring model.

is that we do not deal with tasks, but with goals and constraints.
Goals are more general than tasks and include them and their
practical aspects, but can be (and are) also more abstract.
Moreover, the algebraic operators here have to reflect the new
refined model structure.

First we have to give a more formal definition of the concept map
elements (objects)3.

Definition 1. We consider a concept map CM of the AHS to be
determined by the tuple <C,L>, where C represents the set of
concepts and L the set of links (CM ⊆CM, the set of all concept
maps of the AHS).

Definition 2. A concept c∈C is defined by the tuple <Ac,Cc>
where Ac (Ac≠∅) is a set of attributes and Cc a set of sub-
concepts.

Definition 3. Amin is the minimal set of (standard) attributes
required for each concept to have (Ac⊇Amin).

This minimal set of standard attributes is determined by the
adaptive course design constraints, that aim at creating concepts
annotated with sufficient meta-data, as prescribed by W3C for the
creation of the semantic web [28]. Note that if Amin =∅ this
means that there are no required standard attributes.

Definition 4. A concept c∈C is a composite concept if Cc≠∅.

Definition 5. A concept c∈C is an atomic concept if Cc=∅.

Definition 6. A link l∈L is a tuple <c1, c2, nl, wl> with c1∈C,
c2∈ CM.C start and end concepts, respectively, nl a name or
label of the link and wl a weight of the link.

This means that links can be added between any concept of the
owned CM as the start concept to any concept of the whole CM
space of concepts. If the end concept is outside the current CM,
the author will not be allowed to edit the contents of the end
concept. Please note that at this level these weights’ meaning is
only given by the semantics of their label.

Definition 7. An attribute a∈Ac is a tuple <var,val>, where var is
the name of the attribute (variable or type) and val is the value
(contents) of the attribute4.

Constraints on the model:

Definition 8. Each concept c must be involved at least in one link
l. This special relation is called hierarchical link (or link to father
concept). Exception: root concept.

As all the sets above are finite, they can be given (relative)
identification numbers. Therefore, concept c is determined (and
therefore can be referred to) by its identification i∈{1,…,C}
(where C=card(C)) and the attributes of concept i are ai[h], with
h∈{1,…,A i} and Ai≥Amin (where Ai=card(Ac) and
Amin=card(Amin)).

With the above domain definitions, we need to define algebraic
operators and the respective operations over the model. The
justification of the need of constructing a proper algebra for the
AHS authoring model is given on one hand by the motivation

3 All these elements defined below are considered to be indexed.
4 With values being volatile or not according to AHAM [30].

towards comparable semantics of AHS authoring systems [17],
and on the other hand by the need of allowing a crisp structuring
of the authoring process. The algebraic operators are of four
types: constructors (create, edit), destructors (delete),
visualization or extractors: (list, view, check) and compositors
(repeat). From the perspective of their effects, they can be
categorized as being: restructuring (constructors, destructors and
any compositors using at least one operator belonging to the
previous categories) or structure neutral (visualization and any
compositors applied to visualization alone). The complete
operation – operator list is presented in Table 1.

Table 1. Algebraic operators definitions for DM authoring

operation
&

operator

Range of operation in DM Description

Create

&

‘C’

• Input (atomic): optionally object
name (text label) of objects such
as for CMx,; father concept for c,;
ids (numerical) of (c1, c2) and
expression for l, ai[h] (with
h>Amin)

• Input (set): as above for sets of
objects { cj}

+,{ l j}
+,{ai[h]} + (with

1≤h≤Amin)

• Output space: CM, C , L, Ac

• Output : CMx ,
{ cj}

*,{ l j}
,{ ai[h].var}

• creates one object
such as a concept
map, concept, link, a
non-standard attribute

• creates sets of objects
such as set of new
hierarchical child
nodes and/ or links
connected to the same
parent or a full
standard attributes set

Edit

&

‘E’

• Input : object ids or expression

• Output : { {CMx, c, l, ai[h]}.val}*

edits the object value5

Delete

&

‘D’

• Input : as the two above together,
condition or expression

• Output space: CM, C , L, Ac

deletes an object (set)
from the corresponding
structure or empties the
contents

List

&

‘L ’

• Input : Any sets from above,
optional condition or expression

• Output : interface object

 lists the objects of the
set(s)

View

&

‘V’

• Input : (set of) object id-s and
mode (e.g., Graph/ Text)

• Output : interface object

gives alternative views
of the results to the
author

Check

&

‘Ck’

• Input : (set of) object id-s from
CM, C , L, A c , checking goal,
(and implicitly their value
domains)

• Output : interface object

checks the checking goal
for the selected object
and informs about value
domain trespasses

Repeat

&

‘R’

• Input : Any of above, number of
times or other stopping condition

• Output space: same as operation
performed

Repeats any of the
operations above

The condition is a statement with a truth-value attached or a
Boolean function that works on objects in the CM space and
constants, uses atomic operators, comparison operators (< , ≤, = ,
≥, > , or the equivalent string operators) between literals and
logical operators (and, or, not).

5 We assume here that val is defined analogously for CM, c, l.

The expression represents (set of) objects of the CM space or the
result of applying an operator. An expression allows the
composition of the operators according to their domain
restrictions.

The interface objects are texts, figures, multimedia presentations,
any combinations of objects, etc., for the authoring environment.
Note that they might be different from the interface objects for the
adaptive hypermedia end-user.

These operators we have defined very often work, in fact, on
databases, due to the fact that the DM and GM, in their CM form,
can be easily represented as databases, as we will be illustrating in
section 4. Therefore it might be useful to replace the operators
with their database counterpart. As the Resources Description
Framework (RDF) [4][20] is intended to serve as a metadata
language for the WWW, we have compared our algebraic
operators with a RDF database-based algebra (Table 2).

Symbols used: π projection; σ selection; × join; natural
join; ∪ union; ∩ intersection;  difference.
Due to lack of space we have not written the details of the full
expressions of the RDF database-based algebra counterpart.

Table 2. RDF algebra database counterpart of atomic operators6

DM
operator

RDF database-based algebra
counterpart [17]7

Comparison:
limitations,
advantages

‘C’ Node [name8, id_superconcept]()

 Link[[name],c1, c2](object: expression)

No attribute creation
in RDF algebra (can
be implemented as
node creation, but
CM semantics is
lost)

‘E’ No current counterpart

‘D’ No current counterpart

‘L ’ π [name](object)=L(object.name)

 (object set1)×(object set2) = L(os1×os2)

 os1∪os2=L(os1,os2)

 os1∩os2=L(os1,os2,os1.c≠os2.c)

 os1os2=L(os1, os1.c≠os2.c)

 os1 [condition]os2=

 =L(os1×os2, cond)

List is a more
general operator,
that can extract any
information
provided with a
condition

‘V’ σ[“Text”](object set)=V(“Text”, object

 set)

Selection is more
general than View,
which is presently
limited to 2 types.

‘Ck’ σ[Goal](object set)=Ck(Goal, object set) as above

‘R’ Map[f](expression)=R(f, expression)

 Kleene Star:

 *[f](expression)=R(f, expression)

Repeat cannot
normally implement
infinite loops, like
Kleene Star (could
be done via a
condition with
constant truth value)

6 Note that there is only a limited equivalence, depending on the

input structure, and our operators are in principle more general.
7 Slightly modified for comparison
8 Id-s we consider to be automatically generated and unique.

Names can be repeated, to keep ontological mappings easy.

This comparison however shows clearly that, although it is
undoubtedly useful to make the link to the internal database
structure of this type of representation, and also the link to the
RDF architecture, our model needs more expressivity and
flexibility than is offered by these basic models.

3.2 Goal and Constraints Layer

Some of the operators at the GM level (Table 3) can be (almost)
transferred directly from the DM level (Table 1), but we have to
take into consideration the insertion of AND/OR relations and the
extra constraints introduced. Moreover, OR relations combine
their elements according to weights9. However, there is also a
drastic change in structure: there are (practically) no predefined
sets of standard attributes to include in a goal-oriented
presentation, and every concept has to point to an attribute from
the CM.

These types of restrictions form the constraints of the layer, thus
generating a smaller search space. The combination of AND-OR
relations is supposed to lead to the goal of the layer.

First we have to give a more formal definition of the goal map
elements (objects)10. We consider a goal map GM of the AHS to
be a special CM, as follows.

Definition 9. A concept c∈C in GM is defined by the tuple <
Ac,Cc> where Ac (card(Amin)=2) 11 is a set of attributes and Cc a set
of sub-concepts.

Definition 10. A link l∈L in GM is a tuple <c1, c2, nl, wl> with
c1∈C, c2∈ CM.C 12 start and end concepts, respectively, nl a
name representing the type (i.e., hierarchical or AND/OR
connections) of the link and wl a weight of the link.

Table 3. Atomic algebraic operator definitions for GM authoring

Atomic
operation

&
operators

Range of operation in GM Description

Create

&

‘C’

• Input : original concept id in CM
and attribute id; optionally object
name (text label) of objects such
as for GMx, father concept for c;
ids (numerical) of (c1, c2);
expression for l

• Input : as above for sets of objects
{ cj}

+,{ l j}
+,{ai[h].var}+ (1≤h≤2)

• Output space: CM, C , L, Ac

• Output : GMx, { cj}
*,{ l j}

*,
{ ai[h].var}*

• creates one object
such as a goal and
constraints map,
concept, link, a non-
standard attribute

• creates sets of objects
e.g., set of new
hierarchical child
nodes +/- links to the
same parent or a full
standard attributes set

9 The exact way of combining the weights has to be set by the

triple (UM,AM,AE).
10 All these elements defined below are considered to be indexed.
11 Each GM concept has only 2 attributes: ‘name’ and ‘contents’.
12 Links can be added between any concept of the owned GM to

any concept of the whole CM space of concepts, within GM or
jumping a level, to the DM.

Edit

&

‘E’

• Input : object ids or expression

• Output : { {GMx, c, l, ai[h]}.val}*

edits the object value13

Delete

&

‘D’

• Input : as the two above together,
condition or expression

• Output space: CM, C , L, Ac

deletes an object (set)
from the corresponding
structure or empties the
contents

List

&

‘L ’

• Input : Any sets from above,
optional condition or expression

• Output : interface object

lists the objects of the
set(s)

View

&

‘V’

• Input : (set of) object id-s and
mode (e.g., Graph/ Text)

• Output : interface object

gives alternative views
of the results to the
author

Check

&

‘Ck’

• Input : (set of) object id-s from
CM, C , L, A c , checking goal,
(and implicitly their value
domains)

• Output : interface object

checks the checking goal
for the selected object
and informs about value
domain trespasses

Repeat

&

‘R’

• Input : Any of above, number of
times or other stopping condition

• Output space: same as operation
performed

Repeats any of the
operations above

The CM constraints are respected by the GM.

Note that only at this level AHAM [30] can be applied, and that
this happens in the special case where the links’ end concepts are
in C (c1,c2∈C). This is because AHAM does not allow to
combine attributes (in AHAM notation, fragments) that are
belonging to (originating in) different concepts, thus implying a
very rigid adaptation space.

3.3 User, Adaptation and Presentation Model
UM and AM have been described relatively well by AHAM [30].

 However, a maybe more interesting way of representing the UM
is to keep the conformity with the DM and GM (uniform
ontological representation [20]) and to also represent the UM as a
concept map (CM). In such a way, relations between the variables
within the UM can be explicitly expressed as relations in the UM,
and do not have to be “hidden” among adaptation rules. A table of
attribute-value pairs cannot show any relation that might exist
between the different UM variables. Of course, if the UM happens
to be just an overlay model of the DM, this type of linked
representation results implicitly (via concept links).

We have introduced in [12] a new three-layer adaptation model
(defining low level assembly-like adaptation language, medium
level programming adaptation language and adaptation strategies
language) that we are in the process of refining and populating,
but this is beyond the scope of the present paper.

The PM has to take into consideration the physical proprieties and
the environment of the presentation and provide the bridge to the
actual code generation for the different platforms (e.g., HTML,
SMIL [29]). Due to lack of space and to the fact that PM is so
platform oriented, we are not going to go into details about this
model here. For our purpose it is only important to note that the

13 We assume here that val is defined analogously for GM, c, l.

consideration about PM should be kept separate from the ones for
the other layers.

4. AN IMPLEMENTED EXAMPLE: MOT
In the following, we show for exemplification the definitions of
the Conceptual Layer and Goal and Constraints Layer for a
specific system developed at the Eindhoven University of
Technology: the MOT system, an adaptive authoring system for
adaptive hypermedia, previously described [13]. MOT is going to
be used as extra reference material at the Faculty of Mathematics
and Computer Science, Eindhoven University of Technology, for
a 4th year undergraduate course on “Neural Networks”.

4.1 RDF Schema and Instance of MOT
4.1.1 RDF Schema of MOT
To continue with the RDF-mapping started in Table 2, we give
next an RDF schema of an actual implementation of the DM and
GM in MOT in Figure 2.

4.1.2 Domain Model
The structure of the DM can be seen in Figure 2, left hand side. In
MOT, a concept contains one or more sub-concepts, which are
concepts in their turn, hence inducing a hierarchical (tree)
structure of concepts.

Each concept contains concept attributes. These attributes hold
pieces of information about the concept they belong to. There are
several kinds of attributes possible, corresponding to the different
attribute instances in the diagram. For example, a concept can
have a ‘title’-attribute, a ‘description’-attribute or an ‘example’-
attribute.

Concept attributes can be related to each other. Such a relation,
characterized by a label and a weight, indicates that their contents
treat similar topics.

The hierarchical structure of concepts is implemented by means
of a separate ‘concept-hierarchy’ entity, relating a super-concept
to one / more sub-concepts. For re-usage and flexibility purposes,
we allow sub-concepts to be only links to other concepts (so
pointers to content instead of actual content). As a result, cycles
can occur in the hierarchy. To prevent this, a check has to be
performed, each time a hierarchy relation is added. I.e., a concept
CA in concept map A can link to a concept CB in concept map B.
If (a sub-concept of) concept CB links back to concept CA, a cycle

Figure 2. RDF Schema of MOT.

appears. This kind of cycles (over one or more concept maps) are
allowed, because course designers (teachers) should be able to
link to each others concept maps unrestrictedly. However, this
freedom can generate problems that will require a loop-checking
mechanism in a future design and implementation step. For the
present implementation, we assume that the course creation is
done in such a way that unintentional loops are avoided.

Concepts can contain concept attributes. A concept attribute has
been given a type (for example ‘title’ or ‘text’). The relatedness of
the concept attributes is replaced by a relatedness at concept-
level. The relatedness of concepts is still based on commonalities
between concept attributes. That is why a relatedness-relation is
also given a type, indicating by which attributes the concepts are
related. This type is one of the possible attribute types (for
example ‘title’, if the concepts are related by their titles).

A concept map couples a name and an owner to a hierarchy of
concepts. It contains a pointer to the root of this concept
hierarchy. The structure of this hierarchy is stored in several
concept-hierarchy objects.

4.1.3 Goal and Constraints Model
The structure of the GM can be seen in Figure 2, right hand side.
In MOT, the goals and constraints are given by lesson
constructions. A lesson contains sub-lessons, which are lessons in
their turn, hence creating a hierarchical structure of lessons. Sub-
lessons within a lesson can be OR-connected (being lesson
alternatives) or AND-connected. To facilitate this, a lesson
contains a lesson attribute, which in its turn contains a holder for
OR-connected sub-lessons or a holder for AND-connected sub-
lessons. The holder contains the actual sub-lessons in a specified
order.

A lesson attribute contains, besides the sub-lesson holders, one or
more concept attributes. This is the link with the concept domain.
The idea is that the lesson puts pieces of information that are
stored in the concept attributes together in a suitable way for
presentation to a student.

A lesson of a course is the equivalent of a concept map in the
concept domain. It couples a name and an owner to a hierarchy of
sub-lessons. It contains a pointer to the root of the sub-lesson
hierarchy.

The hierarchy of sub-lessons consists of sub-lessons which are
related by means of lesson-hierarchy objects, comparable to the
concept-hierarchy objects in the concept domain. A sub-lesson
which has no sub-lessons (e.g. is a leaf in the sub-lesson
hierarchy) corresponds to a (one) concept attribute. This
represents the link with the concept domain.

4.1.4 RDF Instance of MOT
Furthermore, Figure 3 shows and example RDF instance of MOT.

For the DM side (left hand side of Figure 3), we can see in the
figure how concept r11 is the root of the concept map r2 owned
by the designer r1. The concept r4, belonging to the same concept
map is called “Discrete Neuron Perceptrons” and is a direct child
of r11. Attribute r9 called “Keywords” is contained in concept r4
and contains the keyword list “perceptron; one-layer; multi-layer;
weight; linear separability; perceptron convergence; boolean
functions; region classifications in multidimensional space”.
Moreover, concept r4 is related to concept r12 via the attribute
“Keywords” in a proportion of 24%.

For the GM side (right hand side of Figure 3), the figure shows us
that the previously mentioned attribute r9 expressing the
“Keywords” of concept r4 is assembled in sub-lesson r5, which is
also the root of the GM lesson model. Lesson r5 also contains
sub-lesson r10 in an OR connector (connection=”0”) with the
weight 30%, the priority order “2” and the label “detailing
keywords”.

In this way, specific instances of MOT can be represented in
RDF.

4.2 CM and GM as Databases in MOT
To show how the CM and GM can be implemented with the
definitions above, we show the composing elements of the MOT
system. These are the statements to create the database tables of
MOT (Figures 4,5). The database implementation follows in
principle the RDF Scheme in Figure 2.

So, MOT justifies basing AHS authoring algebra on databases.

4.3 Run-time WWW Operations in MOT
The interface is based on the interface of the existing My Online
Teacher system [23]. This means for one thing that it is a web
interface based on CGI-scripts written in the Perl language. In
principal the interface consists of two parts, reflecting the two
parts of the RDF-schema diagram (Figure 2): one part for
designing concept maps and one for designing lessons.

In MOT a teacher logs in via a login-screen with password check.
S/he then enters a menu where s/he can choose between the
concept maps and/or lessons s/he has already created. S/he can
also select to create a new concept map or lesson.

• After selecting a concept map (Figure 6), the concept map
frameset will appear. This frameset consists of two frames.
On the left hand side the concept map structure is displayed
and on the right hand side information about the selected
concept (attributes) is shown.

• After selecting a lesson (Figure 7) from the menu, the lesson
frameset will appear. This frameset also consists of two
frames. On the left hand side the lesson structure is displayed
and on the right hand side information about the selected sub-
lesson is shown.

The specific operations with the concept map corresponding to
the DM and the lesson map corresponding to the GM can be
followed in the two Figures 6,7. They implement at a higher level
the ‘C’, ‘E’, ‘D’, ‘L’, ‘V’, ‘Ck’, and ‘R’ operato rs (tables 1,3).

Figure 3. RDF Instance of MOT.

CREATE TABLE ConceptHierarchy
(
 Id INTEGER PRIMARY KEY Unique number.
ConceptId1 INTEGER NOT NULL Parent concept in

relation. References
Concept.

ConceptId2 INTEGER NOT NULL Child concept in
relation. References
Concept.

);
CREATE TABLE Relatedness
(
 Id INTEGER PRIMARY KEY Unique number.
ConceptId1 INTEGER NOT NULL References Concept.
ConceptId2 INTEGER NOT NULL References Concept.
Name TEXT NOT NULL Name of relation.
Weight DOUBLE NOT NULL Weight of relation.
Type INTEGER NOT NULL Relation type, which

corresponds to a
standard attribute.
References table
StandardAttribute.

);
CREATE TABLE AllKeywords
(
 Id INTEGER PRIMARY KEY Unique number.
ConceptId INTEGER NOT NULL Concept to which the

keyword belongs.
References Concept.

Keyword TEXT NOT NULL Keyword contents.
);
CREATE TABLE Lesson
(
Id INTEGER PRIMARY KEY Unique number.
Name TEXT NOT NULL Lesson’s name.
Owner INTEGER NOT NULL Owner (creator) of

lesson. References
Teacher.

ToplessonId INTEGER NOT NULL Root sub-lesson of
lesson tree. References
Sublesson.

);
CREATE TABLE Sublesson
(
Id INTEGER

PRIMARY KEY
Unique number.

AttributeId INTEGER NOT
NULL

Concept attribute in which the
contents of this sub-lesson is stored.
References ConceptAttribute

);
CREATE TABLE LessonHierarchy
(
Id INTEGER

PRIMARY KEY
Unique number.

Sublesson
Id1

INTEGER NOT
NULL

Parent sub-lesson in relation.
References Sublesson.

Sublesson
Id2

INTEGER NOT
NULL

Child sub-lesson in relation.
References Sublesson.

Connection TEXT NOT NULL ‘AND’, if child sub-lesson is part
of a sequence (or stand-alone), or
‘OR’, if child sub-lesson is one
out of more alternatives.

Orderind INTEGER NOT
NULL

Order index that indicates the
position of the child sub-lesson
relative to the other sub-lessons
of the parent sub-lesson.

 Weight DOUBLE Weight of hierarchy relation.
 Label TEXT Label/name of hierarchy relation.
);

CREATE TABLE Teacher
(
 Id INTEGER PRIMARY KEY Unique number.
Name TEXT NOT NULL Teacher’s name.
Password TEXT NOT NULL Teacher’s password.
);
CREATE TABLE Concept
(
Id INTEGER PRIMARY KEY Unique number.
Owner INTEGER NOT NULL Owner (creator) of

concept. References
Teacher.

Timestamp TEXT Not used.
Mapid INTEGER NOT NULL Map to which concept

belongs. References
Concept map.

);
CREATE TABLE ConceptAttribute
(
Id INTEGER PRIMARY KEY Unique number.
Concept
Id

INTEGER NOT NULL Concept to which
attribute belongs.
References Concept.

Standard
Attribute
Id

INTEGER NOT NULL Standard attribute type
or 100 (if not). Referen-
ces StandardAttribute.

Name TEXT NOT NULL Attribute name, if it is
not a standard attribute.

Contents TEXT NOT NULL Attribute contents.
);
CREATE TABLE Conceptmap
(
Id INTEGER PRIMARY KEY Unique number.
Name TEXT NOT NULL Conceptmap name.
Owner INTEGER NOT NULL Owner (creator) of

conceptmap.
References Teacher.

Rootconcept
Id

INTEGER NOT NULL Root concept of
conceptmap, which is
a tree of concepts.
References Concept.

);
 CREATE TABLE StandardAttribute
(
Id INTEGER PRIMARY KEY Unique number.
Name TEXT NOT NULL Standard attribute’s name.
);
CREATE TABLE ConceptmapAttribute
(
 Id INTEGER PRIMARY

KEY
Unique number.

Conceptmap
Id

INTEGER NOT
NULL

Conceptmap that has this
attribute as a standard
attribute. References
Conceptmap.

Standard
attributeId

INTEGER NOT
NULL

Standard attribute that is
included in this concept
map. References
StandardAttribute.

 Include INTEGER NOT
NULL

1 = include in lesson (when
converting to a lesson), 0 =
do not include in lesson.

);

Figure 5. CM (cont.) and Lessons in MOT.

Figure 4. Concept Map in MOT.

The operations in Figure 6 are based on the definitions in Table 1
and the operations in Figure 7 on those in

Table 3. There are two connections between the concept map
frameset and the lesson frame set, as follows.

• When the user is working in the concept map frameset, s/he
can choose to edit/convert the existing concept map to a
lesson, deciding on what attributes to keep and which to
ignore. The result will be a lesson with a hierarchical structure
following the pseudo-order of the concept – sub-concept
relations and the pseudo-order of their respective attributes.

• When the user is working in the lesson frameset, s/he can
choose to add a sub-lesson based on a concept attribute. S/he
then will be presented with the concept map-frameset, where
s/he can select a concept map, a concept and finally a concept
attribute to add to the lesson. After this, s/he is redirected
back to the lesson frameset.

The concept map structure, as well as the lesson structure, are
displayed as trees resembling the tree structure for showing
directory structures in, for example, the Microsoft Windows
operating systems (i.e., as lists containing sub-lists).

Figure 6. Call graph for the cgi-files of the concept map part.

Figure 7. Call graph for the cgi-files of the lesson map part.

An element in a concept map or lesson can be moved or selected
by pressing the appropriate hyperlink attached to it.

4.4 IMPLEMENTATION NOTES
4.4.1 Database
The database is implemented using MySQL, which is a freely
distributed SQL database. Some advantages of MySQL are: it is
for free; it is the most popular and widely distributed SQL
database; it is easy to use.

However, MySQL is very limited in some aspects. Important
features that are missing in MySQL are: Views, Functions and
procedures and Table constraints.

MySQL supports only a very limited number of table constraints.
For example, it is not possible to add a constraint to a table that
demands a certain field to reference another table.

PostgreSQL is another freely distributed SQL database, which
does have all of the above features. It should therefore be taken
into consideration for future implementations to use this database
instead of MySQL. The SQL statements that are used in the
current MOT system should also work with PostgreSQL, in the
worst case requiring some slight syntactical modifications.

4.4.2 Client-Server Structure
The MOT interface uses CGI scripts. The CGI (Common
Gateway Interface) is a standard for interfacing external
applications with information servers, such as HTTP or Web
servers. CGI scripts are processed by the web server, to transmit
information to the database engine, receive the results and display
them to the client. A CGI script can be interpreted by the web
server directly, in contrast to a CGI program (for example written
in C++) that would have to be compiled first.

To transfer parameters from one script to another two methods
exist. With the GET method, parameters are passed after a
question mark in the URL. With the POST method, parameters
are passed hidden to the user. Both methods are used in MOT.
When the user presses a hyperlink to go to another page,
parameters are passed using the GET method. These parameters
are visible in the location bar of the web browser. The values
entered by the user in the several fill-in forms are passed using the
POST method.

Luckily, a great Perl CGI library, CGI.pm [10], exists, that hides
all kinds of technical aspects of the CGI to the programmer. In
MOT, functions from this library are used most of the time when
calling the CGI. An extra advantage of this is that it makes the
code easier to read.

For the database communications, functions from the Perl DBI
library are used. This library provides a database independent
interface for Perl, which means that the code would still work if
the database should be replaced by some other database. This
library also makes the code easy to write and read.

Furthermore, for most of the rest of the processing, the Perl
language is used. Perl [25] is a language optimized for scanning
arbitrary text files, extracting information from those text files,
and printing reports based on that information. It's also a good
language for many system management tasks. The language is
intended to be practical (easy to use, efficient, complete) rather
than beautiful (tiny, elegant, minimal).

The fact that Perl is optimized for scanning arbitrary text files
makes it very useful for the calculation of relatedness relations
(which are automatically generated links [13]). For this task a lot
of occurrence counts are needed, which can be very efficiently
programmed in the Perl language. However, these very efficient
constructs are not as easy to read.

4.4.3 Other User-side Interface Issues
 The concept map and lesson structures are displayed as nested
lists. At first, non-collapsible HTML-lists were implemented.
However, these lists tended to grow very large, making it hard for
the user to keep a good overview. Also it didn’t make sense to
send calls to the server each time the user wanted to increase or
decrease the view granularity (operator ‘V’). That is why
collapsible lists were introduced, using JavaScript. The JavaScript
collapsible lists are taken from [19].

5. CONCLUSIONS
In this paper we introduced a five level AHS authoring model
with a clear cut separation of the processing levels:

1. the domain model (DM),

2. the goal and constraint model (GM),

3. the user model (UM),

4. the adaptation model (AM) and finally

5. the presentation model (PM).

Compared to previous models we have introduced a goal and
constraints level and its corresponding model between the domain
model and the user and adaptation models.

We have delimited the actions that take place at each level first
informally, than with a higher degree of formalism, focusing
especially on the newly refined layers, DM and GM.

We defined the objects of the model and described primitive
algebraic operators to work on them. These operators are based on
a RDF database oriented algebra [17] and on our previous
research on defining operations for a slightly different domain [3].
In order for our set of algebraic operators to be sufficient (and to
form an algebra) it would have to be complete, covering any
possible transactions that occur in an AHS authoring setting.

Moreover, we have showed an implementation of the proposed
model for MOT, an adaptive hypermedia system WWW
authoring environment being developed at the Eindhoven
University of Technology. The motivational aspect about ways in
which MOT confers benefits to users (teachers) is treated in [13].

For the specific case of MOT, we have presented the RDF schema
and an example instance for describing the system, as well as the
database table definitions for the focus issues, the DM and GM.

The main justification of introducing the GM lies in the dynamic
adaptive presentation possibilities is opens. MOT already
implements some primitive functionality of automatic
transformations from the DM to the GM (described elsewhere
[13]) that lead us to claim to work towards “a course that writes
itself” for the specific application of adaptive WWW courseware.

6. ACKNOWLEDGMENTS
This research is linked to the European Community Socrates
Minerva project "Adaptivity and adaptability in ODL based on
ICT" (project reference number 101144-CP-1-2002-NL-
MINERVA-MPP).

7. REFERENCES
[1] 2L690: Hypermedia Structures and Systems, Lecturer: Prof.

De Bra. http://wwwis.win.tue.nl/~debra/2L690/

[2] Apache 1.3 download and documentation.
http://httpd.apache.org/docs/

[3] Aroyo, L., Cristea, A.I., and Dicheva, D. A Layered
Approach towards Domain Authoring Support. In
Proceedings of ICAI 2002 (Las Vegas, US) CSREA Press.

[4] Brickley D., and Guha, R.V. Rdf vocabulary description
language 1.0: Rdf schema. W3C Working Draft 30 April
2002. http://www.w3.org/TR/rdf-schema/.

[5] Brusilovsky, P. Adaptive hypermedia, User Modeling and
User Adapted Interaction, Ten Year Anniversary Issue
(Alfred Kobsa, ed.) 11 (1/2), 2002, 87-110.

[6] Brusilovsky, P., Schwarz, E., Weber, G. ELM-ART: An
intelligent tutoring system on world wide web. In
Proceedings of International Conference on Intelligent
Tutoring Systems (ITS’96) (Montreal, Canada, June 1996),
261-269.

[7] Brusilovsky, P., Eklund, J., and Schwarz, E. Web-based
education for all: A tool for developing adaptive courseware.
Computer Networks and ISDN Systems, In Proceedings of
Seventh International World Wide Web Conference (14-18
April 1998) 30 (1-7), 291-300.

[8] Calvi, L., and Cristea, A.I. Towards Generic Adaptive
Systems Analysis of a Case Study. In Proceedings of AH’02
(Malaga, Spain, May 2002) Adaptive Hypermedia and
Adaptive Web-Based Systems, LNCS 2347, Springer, 79-89.

[9] Carro, R. M., Pulido, E. Rodríguez, P. Designing Adaptive
Web-based Courses with TANGOW .In proceedings of the
7th International Conference on Computers in Education,
ICCE'99 (Chiba, Japan, November 4 - 7, 1999) V. 2, 697-
704.

[10] CGI.pm – a Perl5 CGI Library.
http://stein.cshl.org/WWW/software/CGI/

[11] Cristea, A.I., and Aroyo, L. Adaptive Authoring of Adaptive
Educational Hypermedia, In Proceedings of AH 2002,
Adaptive Hypermedia and Adaptive Web-Based Systems,
LNCS 2347, Springer, 122-132.

[12] Cristea, A.I., and De Bra, P. Towards Adaptable and
Adaptive ODL Environments. In Proceedings of AACE E-
Learn’02 (Montreal, Canada, October 2002), 232-239.

[13] Cristea, A., De Mooij, A. Adaptive Course Authoring: MOT,
My Online Teacher. In Proceedings of ICT-2003, IEEE
LTTF International Conference on Telecommunications,
"Telecommunications + Education" Workshop (Feb 23 -
March 1, 2003 Tahiti Island in Papetee - French Polynesia)
(in press).

[14] Cristea, A.I., Okamoto, T., and Kayama, M. Considerations
for Building a Common Platform for Cooperative &
Collaborative Authoring Environments. In Proceedings of
AACE E-Learn’02 (Montreal, Canada, October 2002), 224-
231.

[15] De Bra, P. and Calvi, L. AHA! An open Adaptive
Hypermedia Architecture. The New Review of Hypermedia
and Multimedia, vol. 4, Taylor Graham Publishers,
1998,115-139.

[16] European Community Socrates-Minerva project (project
reference number 101144-CP-1-2002-NL-MINERVA-MPP).
http://wwwis.win.tue.nl/~alex/HTML/Minerva/index.html

[17] Frasincar, F., Houben, G.J. , Vdovjak, R. , and Barna P.
RAL: An Algebra for Querying RDF. In Proceedings of the
3rd International Conference On Web Information Systems
Engineering (WISE 2002) (Singapore, December 2002).

[18] IEEE LTTF, Learning Technology Task Force.
http://lttf.ieee.org/

[19] JavaScript collapsible list.
http://devedge.netscape.com/toolbox/examples/2001/xbColla
psibleLists/

[20] Lassila, O. and Swick, R. R. Resource description
framework (rdf) model and syntax specification. W3C
Recommendation 22 February 1999. http://www.w3.org/

[21] Mizoguchi, R., Bourdeau, J. Using Ontological Engineering
to Overcome Common AI-ED Problems, International
Journal of AI in Education, 11 (2), 107-121.

[22] My English Teacher.
http://wwwis.win.tue.nl/~alex/MyEnglishTeacher/TeachersS
ite/index.html

[23] My Online Teacher.
http://wwwis.win.tue.nl/~alex/MOT01/TeachersSite-
html/index.html

[24] MySQL documentation. http://www.mysql.com

[25] Perl documentation. http://www.perldoc.com or
http://www.perl.com

[26] PostgreSQL documentation. http://www.postgresql.org/

[27] Wu, H., De Bra, P. Sufficient Conditions for Well-Behaved
Adaptive Hypermedia Systems. In Proceedings of the First
Asia-Pacific Conference on Web Intelligence: Research and
Development (Maebashi, October 2001). Lecture Notes in
Artificial Intelligence, Vol. 2198, Springer, 148-152.

[28] WC3, Semantic Web. http://www.w3.org/2001/sw/

[29] W3C, SMIL, Synchronized Multimedia Language.
http://www.w3.org/AudioVideo/

[30] Wu, H., De Kort, E., De Bra, P. Design Issues for General-
Purpose Adaptive Hypermedia Systems. In Proceedings of
the ACM Conference on Hypertext and Hypermedia
(Aarhus, Denmark, August 2001) 141-150.

[31] Wu, H. A Reference Architecture for Adaptive Hypermedia
Applications, doctoral thesis, Eindhoven University of
Technology, The Netherlands, ISBN 90-386-0572-2.

