
Service Chart Diagrams - Description & Application

Zakaria Maamar
College of Information

Systems
Zayed University

P.O. Box 19282, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

Boualem Benatallah
School of Computer Science &

Engineering
The University of New South

Wales
Sydney NSW 2052, Australia

boualem@cse.unsw.edu.au

Wathiq Mansoor
College of Information

Systems
Zayed University

P.O. Box 19282, Dubai, U.A.E
wathiq.mansoor@zu.ac.ae

ABSTRACT
This paper presents an approach for the design and development
of service-driven applications. These applications rely on the col-
laboration of multiple services that businesses offer to the external
community. To ensure that the collaboration of services takes place
effectively, service chart diagrams are proposed as a specification
technique. These diagrams leverage the traditional state chart dia-
grams of UML. Furthermore, in service chart diagrams it is advo-
cated that services do not invoke each other. However, they engage
conversations before committing themselves to a composition pro-
cess of services.

Categories and Subject Descriptors
H.4.5 [Information Systems]: service-oriented applications.

General Terms
Modeling, Diagrams.

Keywords
state, service, diagram, conversation.

1. INTRODUCTION
With the rapid development of information and communication

technologies, users are becoming more and more demanding on
businesses to provide them with relevant and up-to-date informa-
tion. Furthermore, needs of users continue to grow and change be-
coming overtime more complex to satisfy. Needs vary from basic
ones such as weather forecast of city X, to complex ones such as
stock quotation of business Y and its direct competitors since last
fall. This situation appeals for advanced approaches and tools to
support software designers and developers in their work. Service-
driven applications are deemed appropriate to deal with the afore-
mentioned situations [4, 15].

The following example motivates the importance of service-driven
applications. Paul is planning for his vacation; (i) he wants to book
a domestic flight and an accommodation; (ii) he, also, wants to
find some attractions for visit; (iii) he would like to rent a car if
the location of the major attraction is far from the location of the
booked accommodation. To handle Paul’s request, the collabora-
tion of multiple services1 is required. These services are: flight

1Services are also known as Web services.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ISBN 963-311-355-5.

reservation, hotel booking, attraction search, and car rental. All the
services have to be connected according to a specific flow of con-
trol. First, flight reservation is completed. Then, hotel booking and
attraction searching are triggered concurrently. Each business be-
ing involved in the vacation scenario provides its services that may
have to collaborate with other services if needed and vice-versa.
Rather than just being invoked through their application program-
ming interfaces, we advocate that services should be given the op-
portunity to engage conversations if they wish. There is an increas-
ing trend towards run-time composition, where services choose dy-
namically with whom they would like to trade. The composition
of services from multiple origins calls for new design approaches
and representation formalisms. This is motivated by the following
elements:

• Distribution: businesses that provide services are most of the
time spread across multiple locations. These businesses have
to get together in order to be aware of their respective capa-
bilities and constraints.

• Heterogeneity: services are developed independently from
each other with diverse technologies. It is agreed that pro-
grammers who implement services are unlikely to collabo-
rate with each other during development.

• Autonomy: services carry out operations without consider-
ing the operations of other services. Services are considered
as self-contained components.

To undertake work on service composition, we suggest as a part
of the solution the use of service chart diagrams as an extension to
the state chart diagrams of UML [9]. A service chart diagram iden-
tifies the context surrounding the execution of a service in terms of
who provides a service (organization), with whom a service en-
gages conversations (flow), with what a service contributes (in-
formation), and where a service contributes (location of execu-
tion). We strengthen the fact that services have to be able to decide
with whom to collaborate, what kind of support they offer/request
to/from other services, and what ”visible” parts of behavior (from
private to public, and vice-versa) to exhibit. Processes that imple-
ment services illustrate that behavior.

Section 2 presents briefly UML state chart diagrams. Section 3
provides basic definitions about services. Section 4 introduces ser-
vice chart diagrams in terms of rationale and basics. For illustra-
tion purposes, Section 5 applies service chart diagrams to a running
example. Section 6 presents related work. Finally, Section 7 con-
cludes the paper.

2. STATE CHART DIAGRAM
A state chart diagram is one of the several diagrams that UML

integrates [9]. It is a graphical representation of a state machine that
visualizes how and under what circumstances a modelled element
(e.g., a class, a system, or a business process) changes its states.
Furthermore, a state chart diagram is used for showing which ac-
tivities are executed as a result of the occurrence of events. Mainly,
a state chart diagram displays the states that an object takes during
its life in response to received stimuli. Responses correspond to the
execution of activities.

3. WEB SERVICES
Regardless of its type (E-service or M-service), a Web service

is a set of ordered operations to perform according to certain in-
puts. The order can be sequential or concurrent. Samples of Web
services are currency conversion and cinema ticket purchasing. Po-
tential users have to know how to request a service for execution.
However, users do not have to know neither how to operate the
service nor how the service operates or is operated. [13] distin-
guishes between two types of services: E-services and M-services
(M for Mobile).

In this paper, a composite services consists of several component
services whether composite services or services. Multiple tech-
nologies are associated with the success of Web services: WSDL,
UDDI, and SOAP. These technologies aim at supporting the defi-
nition of Web services, their advertisement, and their binding for
triggering purposes [10].

a. E-services
An E-service is a component that an organization provides in order
to be assembled and re-used in a distributed, Internet-based envi-
ronment. A component is an E-service if it is [5]: 1) indepen-
dent as much as possible from specific platforms and computing
paradigms; 2) developed mainly for inter-organizational situations
rather than for intra-organizational situations; and 3) easily com-
posable, its assembling with other E-services does not require the
development of complex adapters.

b. M-services
Two definitions are associated with an M-service. The ”weak” def-
inition is to trigger remotely an E-service from a mobile device
for execution. In that case, the E-service is an M-service. The
”strong” definition is to transfer wirelessly an E-service from its
hosting site to a mobile device where its execution takes place.
In that case, the E-service is an M-service that meets the follow-
ing requirements [14]: 1) transportable through wireless networks;
2) composable with other M-services; 3) adaptable according to
the computing features of mobile devices; and finally 4) runnable
on mobile devices. In this paper, we focus on the M-services that
comply with the ”strong” definition.

Figure 1 illustrates a snapshot of a mobile service running on
a cell-phone. The service provides information to tourists visiting
Dubai. Upon request of tourists, the service is downloaded to their
mobile devices.

c. E-services vs. M-services
The difference between an E-service and M-service occurs at two
levels. The first level concerns the communication channel, i.e., wired
vs. wireless. The second level concerns the location of where the
processing of the service occurs: server side on a fixed platform for
an E-service vs. user side on a mobile platform for an M-service.

Figure 1: Mockup of tourist mobile-book

4. DESCRIPTION OF SERVICE CHART DI-
AGRAMS

4.1 Rationale
The current requirements of designing applications call for new

representation formalisms and design approaches. Designers are
faced with multiple obstacles that need to be dealt with quickly and
efficiently. An example of these challenges consists of maintain-
ing the coherence of the content of a database of an e-commerce
site. Thousands of customers from over the world may initiate at
the same time multiple purchase requests for the same product but
with different selection criteria. This scenario puts forward new
demands not only on support and delivery information technology,
but also on the way business processes have to be designed, de-
veloped, and maintained. Another example of challenges that face
designers consists of dealing with the issues and obstacles of mo-
bile applications. Designers and programmers are put on the front
line of satisfying the promise of businesses and service providers
of delivering Internet content to users of mobile devices. Service-
driven applications seem to be one of the relevant technologies that
could help in addressing the aforementioned challenges and obsta-
cles. Services, rather than code, are emerging as the key artifacts
of software design and development, raising therefore the level of
abstraction. Service chart diagrams are among the pillars on top
of which the trend of service-driven applications can be built. Ser-
vices in such diagrams are not only invoked for their operations but
rather asked to establish conversations before joining any service
composition process.

4.2 Concepts & Formalisms
A service-driven application is a process that connects multi-

ple services. The connection is an outcome of the conversations
that take place between services. Different parameters are included
in those conversations, e.g., workload and location of a service.
Having several services enables the consideration of multiple busi-
nesses that offer those services. Quality and execution cost of a
service are among the selection criteria that affect the shape of any
composite service in terms of number of services to be considered
and execution chronology of these services.

Service chart diagrams are based on UML state chart diagrams.
This time, the emphasize is on the context surrounding the exe-
cution of a service rather than on the states that a service takes.

Services are represented from five perspectives. Besides the state
perspective that includes the states of a service (see Section 2), the
flow perspective corresponds to the execution chronology of the
connected services. Here, the flow is conversation-based. The orga-
nization perspective identifies the business that supplies a service.
The information perspective identifies the data that are exchanged
between services. These data are identified during conversations
and packaged into XML documents. A service that completes its
execution may have to leave certain data to the next services that
are due for execution, so they could resume pending operations. Fi-
nally, the location perspective identifies the current site of a service.
A service can be in one of the two sites: 1) business site waiting to
be selected and inserted into a composite service; or 2) execution
site under performance. According to Section 3, an execution site
corresponds to a business site for an E-service or client site for an
M-service.

A service chart diagram enhances a state chart diagram with de-
tails obtained from the various perspectives of Figure 2. Therefore,
the service chart diagram of a composite service consists of con-
necting the service chart diagrams of all the services that constitute
that composite service. Table 1 summarizes the three layers that
constitute a service chart diagram. Interesting is layer 2 which con-
tains the states that a service takes. These states constitute them-
selves a state chart diagram that is wrapped in the different per-
spectives. It should be noted that the states of layer 2 integrate
both normal and ad-hoc operating of a service. Ad-hoc operating
corresponds to the exceptional cases that may occur, e.g., execu-
tion failure. Thus, back-up states and also, extra services can be
requested to deal with the exceptional cases.

Data from
previous services

Data to
next servicesSite

2

3

Previous
services

Next
servicesBusiness1

ServiceLayers

in

State 1 State 2

B
State j

E

State 3 out

Figure 2: Representation of a service chart diagram

In Figure 2, the three-layer representation of a service chart di-
agram offers two major advantages. First, the layers allow a clear
distinction between the components that contribute to the specifi-
cation of a service. If a component has to be modified, the mod-
ification impact on that specification will be limited. Second, the
layers offer a connection between the services at three levels of ab-
straction. These levels are data, state, and service.

Table 1: Layers of a service chart diagram
Layer Field Perspective
1 Previous services Flow

Next services
Business Organization

2 States State
3 Data from previous services Information

Data for next services
Site Location

In Table 1, next services field represents the list of services that
are due for execution after a service completes its execution. This
list is an expression that combines services over logical operators
(AND, OR). For instance, services that are connected with an AND
operator have to be triggered in a concurrent way. A similar de-

scription applies to OR operator. Each service that appears in next ser-
vices field is also annotated with the following elements:

1. The protocol that enables the invocation of the service. SOAP
over HTTP is among the protocols that can be used [1].

2. The conditions to check before the service is invoked. The
elements of a condition are obtained from the states of the
service that is under execution.

5. APPLICATION OF SERVICE CHART DI-
AGRAMS

In Section 1, the vacation of Paul motivated our discussions on
the importance of new design approaches. We pointed out that
4 services were required to handle Paul’s request. Figure 3 is a
sample of travel planning composite service that will be used in the
rest of this paper. In addition to these services, 2 new services are
added: driving time calculation that checks the distance between
the location of the hotel and the location of the main attraction, and
user notification that provides responses to user.

Flight
reservation

Driving time
calculation

Hotel
booking

Attraction
searching

Car
rental

User
notification

and xor

Figure 3: Travel planning composite service

In an open economy market, competition between businesses is
a natural practice. To set up a composite service brokering mech-
anisms such as UDDI have to be made available. The role of such
mechanisms is first, to facilitate the search of businesses that of-
fer services and second, to match these services to the submitted
requests of users. Despite their importance, brokering and service
selection mechanisms do not fall within the scope of this paper.

5.1 Service chart diagrams vs. Sites
According to the location perspective, a service (i.e., an instance)

can be in one of the following two sites: business site or execution
site. Both types of site influence the content (in term of states) and
shape (in term of chronology) of a service chart diagram. In what
follows, the conceptual description of the service chart diagram of
Figure 2 is applied according to the features of each site. Flight
reservation service of Figure 3 is used for illustration purposes.

service takes stand by state waiting, first to be selected among
multiple services by the composition process and then, connected
to other services. Figure 4 is the service chart diagram of the ser-
vice in business site. In this diagram, certain fields of Table 2
(e.g., business, next services, and site) are filled with values. In
addition, stand by, preparation, and transfer are the states that the
service takes. Different activities are undertaken within each state.
Transfer state only applies to M-services. Indeed, the execution of
M-services takes place in a different site to the business site. Flight
reservation service is followed by two services: hotel booking and
attraction searching. Both services are triggered in case a flight
reservation is confirmed.

service is due for execution. This execution occurs either in the
business site for an E-service or client site for an M-service. Fig-
ure 5 is the service chart diagram of flight reservation service in
execution site. Preparation state only applies to M-services; they
need to be checked and installed upon arrival from the business site
to the site of user which is a mobile device. Table 3 illustrates how
the fields of Table 1 are instantiated according to execution site.

Select
service

Ready to transfer
/[m-service]

Preparation

Do/
create instance

Stand by
Do/

Transfer

Do/
prepare service

Business 1

"Flight Reservation" service

null
(Res(?).Hotel-Book.)

and
(Res(?).Attr.-Search.)

Site 1null

Ready to execute
/[e-service]

Send m-service

? Destination city
? Departure date
? Return date

Figure 4: Service chart diagram - Business site

Table 2: State chart diagram details - Business site
Field Value

Previous services null
Next services (Reservation(?).Hotel Booking)

and
(Reservation(?).Attraction Searching)

Business Business1 (offers the service)
States Stand by, Preparation, /Transfer
Data from previous null
services
Data for next services ?Destination city, ?Departure date,

?Return date
Site Site1 (where the service is located now)

After finishing the execution of flight reservation service, the rel-
evant information such as date of departure and date of return are
obtained and afterwards, submitted to the next services.

Preparation

Do/
check service

Service arrival
/[m-service]

Ready to
execute

Terminate
/[no service]

in

"Flight Reservation" service

null
(Res.(y).Hot.-Boo.)/Pro.HB

and
(Res.(y).Att.-Search.)/Pro.AS

Business 1

Execution
Do/
run service
request
next service out

null Site 1 xor Site user

Ready to execute/[e-service]

Destination city = value
Departure date = value
Return date = value

Figure 5: Service chart diagram - Execution site

Note: In Table 3, ProtocolHB and ProtocolAS correspond respec-
tively to the protocols that trigger Hotel Booking service and At-
traction Searching service.

5.2 Conversation-driven composition
In Section 5.1, we pointed out that a service is initially in a se-

lection stage (i.e., business site) and afterwards, enters an execution
stage (i.e., execution site). We advocate that services must be able
to talk to each other before they decide if to join a composition
process, what states they take according to the outcome of conver-
sations, and what activities they perform within these states. Con-
versations are based on a Conversation Language (CL) and are of
different types, e.g., representatives, directives, commissives, and
permissives [8]. When services engage conversations, they need
a-priori to agree upon the exchange protocol to communicate with
each other.

In our research, the use of conversations aims at raising the level
of services to the level of autonomous components that are able to
make independent decisions [11]. This aids in building composite
services at run-time instead of design-time. What is interesting to
point out is the concurrency that exists between the selection and

Table 3: State chart diagram details - Execution site
Field Value

Previous services null
Next services (Res.(y).Hotel Booking)/Pro.HB

and
(Res.(y).Attraction Searching)/Pro.AS

Business Business1 (offers the service)
States /Preparation, Execution
Data from previous null
services
Data for next services Value(Des. city,Dep. date,Ret. date)
Place Site1 ⊕ Siteuser

execution stages of a service in an execution site. When a service
is under execution, it has at the same time to initiate conversations
with the services that are due for execution (see next services field).
The purpose of these conversations is twofold: invite the services
to join the composition process and make sure that the services are
ready for execution after they agreed on joining the process. Since
service chart diagrams of Figure 4 and Figure 5 do not contain any
conversation state, we deemed appropriate to complete these dia-
grams with the missing states.

a. Business Site
Figure 6 illustrates a light version (i.e., with no perspectives) of the
new service chart diagram in business site after introducing the con-
versation state. The main difference with the service chart diagram
of Figure 4 is that now a service can either accept or reject joining
a composition process. Without conversations, it was granted that
a service will take part to the composition process. A service can
turn down an invitation to join a process of composing services for
various reasons; e.g., the maximum number of the instances that
can be deployed at the same time of that service has been reached.

Not join composite
service/[Reject]

Request to
converseStand by

Conversation

Do/
analyse conv.

Join composite
service/[Accept] Preparation

Figure 6: Updated service chart diagram - Business site

b. Execution Site
Figure 7 illustrates a light version of the new state chart diagram
in execution site after introducing the conversation state. While
a service is being executed, it engages conversations with the next
services that are due for execution. It should be noted that execution
and conversation states are concurrent.

Execution
Request to
converse Stop conversation

 /[last service]

Conversation

Do/
prepare conv.

 Send conversation
concurrent states

Figure 7: Updated service chart diagram - Execution site

Figure 8 represents a conversation-based interaction diagram be-
tween two services of a composite service CS. It includes n com-
ponent services (service1, ··· , i, j, ··· , n). For the sake of simplicity,
the services are executed sequentially. In this figure, rounded rect-
angles correspond to states, italic sentences correspond to conver-
sations, and numbers correspond to the chronology of these con-

versations. Initially, servicei takes two concurrent states; execution
state where certain activities are carried out and conversation state
where certain activities to select the next services, namely servicej ,
are carried out, too. In what follows, We focus on the conversation
state of servicei.

service i
Conversations

Execution Conversation 1. Request to join
a composite service

2.1 Decline to join

Service j

Stand by

Assessment

Request to
be considered

Reject/
Accept
to delay

2.2 Request to delayAssessment

Preparation

Decision made

Conversation

2.3 Accept to join*

 2.2.1 Accept to delay

[Service i done]/Invoke service j
Execution

later on

Conversation

Exchange
/[more services]

Figure 8: Conversation-based interaction diagram between
services

With conversations, our aim is to enable services to make de-
cisions regarding their intention to join a composite service. In
Figure 8, the first established conversation consists of sending a re-
quest from servicei to servicej to join the composite service (1).
This composite service is decomposed into three segments. The
first segment corresponds to the services that have completed their
execution (service1, ··· , i−1). The second segment corresponds to
the service that is currently under execution (servicei). Finally, the
third segment corresponds to the composite service that is under
preparation (servicej, ··· , n). Servicej is in stand by mode waiting
to receive invitations of joining a composition process. When it
receives an invitation, servicej enters the assessment state. Within
that state, servicej considers its constraints and makes a decision
whether to decline the invitation, to delay its making decision, or to
accept the invitation. Samples of constraints could be the number
of active requests invoking a service simultaneously and the period
of no-availability of a service for some maintenance work. Table 4
illustrates a conversation message that has several attributes among
them the identifier and subject of conversation.

Case a. - In case servicej declines the invitation, a conversation
message is sent back from servicej to servicei for notifica-
tion (2.1). Thus, servicei enters again the conversation state,
asking another servicek, (k 6= j) to join the composite ser-
vice (1). It could be assumed that there is always one service
that returns a positive response to the invitation of joining a
composite service.

Table 4: Sample of a conversation message
<Conversation

Identifier: conversation1

In-reply-to: null
From: Servicei

To: Servicej

Content:
Subject: request-to-join-composite-service
Deadline-to-respond: time & date
· · ·

/>

Case b. - In case servicej cannot make a decision before the dead-
line of response that servicei has fixed, servicej requests
from servicei to extend this deadline (2.2). Servicei has two
alternatives: a) refuse the request of servicej which means
that servicei has to look again for another service (Case a.),
or b) accept the request of servicej which means servicej will
get notified about the acceptance of servicei (2.2.1). In alter-
native b), servicej enters the assessment state again in order
to make a decision. Servicej may request an extension of the
deadline for several reasons. For example, it cannot commit
additional instances of servicej while other instances have
not yet completed their execution. Indeed, it is argued that
for service composition it is desirable to dynamically choose
service providers, and service instances based on current net-
work and servers loads.

Case c. - In case servicej accepts to join the composite service it
notifies its acceptance to servicei (2.3), so a Service Level
Agreement (SLA) can be established [12]. At the same time,
servicej enters the preparation state to get itself ready for
execution. It should be noted in Figure 8 that Accept-to-join
link between conversation and preparation states of servicej

plays two roles: a transition to enter the preparation state and
a trigger for a conversation message to notify servicei.

When servicei finishes its execution, it invokes servicej according
to the agreement that was established in Case c. Therefore, servicej

enters the execution state and at the same time, initiates conversa-
tions with the next services. Servicej adopts the aforementioned
approach.

6. RELATED WORK
The Web Service Conversation Language (WSCL) of [6] de-

scribes the structures (types) of documents a service expects to re-
ceive and produce, as well as the order in which the interchange
of documents takes place. In fact, the conversation component of
a service is seen as a way to describe the kinds of operations the
service supports (e.g., clients to log in first and then request cata-
log). In our work, we see conversations as a means for services to
discuss the establishment of a composite service at different levels:
if to join, when to join, and with what to join. A service enters
different states depending on the outcome of conversations. The
interactions that a service supports are part of the activities under-
taken within the states.

In [7], the authors discussed the way DAML-S organizes a Web
service description into three conceptual areas. The profile area de-
scribes what the service does in terms of advertising, discovery, and
matching. This is the kind of information service-seeking agents
require in their work. The process model area tells how the service

works, including information about the service’s inputs, outputs,
pre-conditions, and effects. The process model is also important in
composing and monitoring processes. Finally, the grounding area
tells how an agent can access a service. Typically, it specifies a
communication protocol and provides details such as port numbers
used in contacting the service. The conceptual areas that DAML-S
puts forwards have a lot of similarities with the perspectives that
embed a service chart diagram. First, the profile can be associated
with the organization perspective. Indeed, an organization that pro-
vides a service decides what functionalities and capabilities to put
into a service. Second, the process model corresponds to the flow
perspective at the composite service level and to the state chart dia-
gram at the service level. Finally, the grounding corresponds to the
next services field of the flow perspective. A service that is listed in
that field is annotated with the protocol that enables its invocation.

Conversations between Web services have attracted the attention
of Ardissono et al. [3]. Ardissono et al. worked on a conversa-
tional model that aims at supporting complex interactions between
clients and Web services, where several messages have to be ex-
changed before the service is completed. Conversation may evolve
in different ways, depending on the state and the needs of the par-
ticipants. While we view the conversations of [3] as application-
domain dependent and execution-driven, our suggested conversa-
tions are application-domain independent and composition-driven.
It should be noted that both types of conversations complement
each other. Composition-driven conversations are part of the ini-
tial exchange of messages that takes place during the preparation
of a composite service (e.g., does a Web service have an interest
in joining a composition process?). While execution-driven con-
versations illustrate the exchange of messages that occur during the
deployment of a composite service (e.g., how to submit a user’s
request to a Web service?). Therefore, the chronology of conver-
sations starts with composition-driven conversations and continues
with execution-driven conversations.

7. CONCLUSION
In this paper, we presented an approach for designing service-

driven applications. Service chart diagrams constitute the backbone
of the approach; they leverage the traditional state chart diagrams
of UML. Additional elements are added to state diagrams, such as
the organization that offers a service and the place of where the
execution of the service takes place. The specification of a com-
posite service consists of connecting the service chart diagrams of
all the services that are involved in that composite service. Before
connecting them, contributing services engage conversations to de-
cide if they join the composite service or not. Conversations aim at
raising raise the services to the level of autonomous components.
As stated in [2], the services that are capable of engaging intelli-
gent interactions would be able to discover and negotiate with each
other, mediate on behalf of their users, and compose themselves
into more complex services.

One of the main issues that needs to be dealt with during conver-
sations is scalability. If a service is requested by a great number of
services, a bottleneck situation may happen. Indeed, the requested
service has to engage conversations with each service which could
definitely take time and require computing resources.

Acknowledgments
The authors would like to thank Aysha Alsayed Mohamed Ismail
Almarzouqi, a fourth year student at ZU for her tourist mobile-book
service.

8. REFERENCES
[1] Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/SOAP/, Visited July 2002.
[2] S. Akhil, M. Vijay, S. Mehmet, L. Li Jie, and C. Fabio.

Automated SLA Monitoring for Web Services. Technical
Report HPL-2002-191, HP Laboratories, Palo Alto,
California, USA, 2002.

[3] L. Ardissono, A. Goy, and G. Petrone. Enabling
Conversations with Web Services. In Proceedings of the
Second International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS’2003), Melbourne,
Australia, 2003 (forthcoming).

[4] B. Benatallah and F. Casati (Editors). Special Issue on Web
Services. Distributed and Parallel Databases, An
International Journal, Kluwer publishers, 12(2-3) September
2002.

[5] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv
Environment for Web Services Composition. IEEE Internet
Computing, 7(1), January/February 2003.

[6] D. Beringer, H. Kuno, and M. Lemon. Using WSCL in a
UDDI Registry 1.02.
http://www.uddi.org/pubs/wsclBPforUDDI 5 16 011.doc,
2001. UDDI Working Draft Best Pratices Document,
Hewlett-Packard Company.

[7] J. J. Bryson, D. L. Martin, S. A. Mcllraith, and L. A. Stein.
Toward Behavioral Intelligence in the Semantic Web. IEEE
Computer, 35(11), November 2002.

[8] B. Chaib-draa and F. Dignum. Trends in Agent
Communication Language. Computational Intelligence,
2002.

[9] L. L. Constantine. Fundamentals of Object-Oriented Design
in UML. Addison-Wesley, 2000.

[10] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing, 6(2), March/April 2002.

[11] M. Huhns. Agents as Web Services. IEEE Internet
Computing, 6(4), July/August 2002.

[12] H. Ludwig, A. Keller, A. Dah, and R. King. A Service Level
Agreement Language for Dynamic Electronic Services. In
Proceedings of the 4th IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based
Information System (WECWIS’2002), Newport Beach,
California, USA, 2002.

[13] Z. Maamar, B. Benatallah, and Q. Sheng. Towards a
Composition Framework of E-/M-Services. In Proceedings
of The 1st International Workshop on Ubiquitous Agents on
Embedded, Wearable, and Mobile Devices held in
conjunction with the 1st International Joint Conference on
Autonomous Agents & Multi-Agent Systems (AAMAS’2002),
Bologna, Italy, 2002.

[14] Z. Maamar, W. Mansoor, and Q. H. Mahmoud. Software
Agents to Support Mobile Services. In Proceedings of the
First International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS’2002) (Poster
Session), Bologna, Italy, 2002.

[15] J. Roy and A. Ramanujan. Understanding Web Services.
IEEE IT Professional, November/December, 2001.

