
Collaborative Blog Spam Filtering
Using Adaptive Percolation Search

Seungyeop Han
Division of Computer Science

KAIST, Daejeon, Korea

syhan@an.kaist.ac.kr

Yong-yeol Ahn
Department of Physics
KAIST, Deajeon, Korea

yongyeol@gmail.com

Sue Moon
Division of Computer Science

KAIST, Daejeon, Korea

sbmoon@cs.kaist.ac.kr

Hawoong Jeong
Department of Physics
KAIST, Deajeon, Korea

hjeong@kaist.ac.kr

ABSTRACT
We propose a novel collaborative filtering method for link
spams on blogs. The key idea is to rely on manual identi-
fication of spams and share this information about spams
through a network of trust. The blogger who has identified
a spam tells a small number of fellow bloggers (content im-
plantation), and those who have not heard about it start a
search using an adaptive percolation search, combined with
content implantation, they contract the information about
identified spam in only a fraction of the query period time
without producing large volume of traffic.

1. INTRODUCTION
Spams or unsolicited bulk emails have been a pressing

problem ever since the very beginning of the Internet [1].
According to the MessageLabs, 65% of the worldwide email
traffic in July 2005 was spam [2]. Besides the email system,
spams are also prevalent in instant messages, newsgroups,
chat rooms, voice calls, and blogs.

A blog is a web-based publication consisting primarily of
periodic articles [3]. Most of the blogs are used as personal
diaries and also used by corporations, in media programs,
or for political campaigns. The number of blogs is growing
remarkably. By mid 2005, there were over 14.2 million blogs
worldwide, and the population continues to double roughly
every 5.5 months [4]. With such rapid growth, the number
of blog spams has also increased to a problematic level.

The vulnerability of blog systems to spams lies in the
openness of a comment or a trackback, which are the stan-
dard ways of communication among bloggers. A comment
is a short reply to a writing in a blog; a trackback is a notifi-
cation about a reply relevant to a blog, but written on some
other blog. Both the comment and trackback are displayed
along with the original post. Most blogs allow anyone to
write comments and trackbacks, and they use a common
trackback protocol. Hence, a spammer can easily write a
comment or a trackback on most blogs.

As comments and trackbacks appear on the web page,

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

they are good targets for link spams which contain URLs
pointing to the spammers’ intended web sites. In contrast
to content spams, in which the content of the spam itself is
annoying, the main goal of link spams is to mislead search
engines in order to obtain higher-than-deserved ranking in
search results [5]. The links to the web site of a spammer
boost its ranking, as the number of incoming links plays
an important role in the score of ranking algorithms many
search engines use [6].

In 2005, major search engines, including Google, MSN
Search, and Yahoo, came up with a partial solution for link
spams: they recommend the “rel=nofollow” attribute to be
added to hyperlinks in automatically generated parts of web
pages (e.g., comments and trackbacks). When a search en-
gine sees this attribute on hyperlinks, those links will not get
any credit as they rank websites in their search results [7].
Although using the nofollow attribute may be effective in
decreasing the level of pollution by link spams, it has not
discouraged spammers from sending out spams to blogs,
whether they employ the nofollow attribute or not. Another
drawback of this solution is that not only the spammers, but
also legitimate web pages, do not get justifiable benefits from
the incoming links to their web pages. Whether to adopt
nofollow or not is still under debate, and no conclusion has
been drawn yet [8].

Various approaches to block spams have been proposed,
mostly focusing on the email spams. Bayesian filters are
widely deployed to block email spams (e.g., SpamProbe [9]
and SpamAssassin [10]). They are quite effective in block-
ing content spams. However, a link spam may be filled with
random words or some phrases people typically use in greet-
ings that do not look like spam lexically; thus the contents of
link spams and benign ones are indistinguishable in practice.
Therefore they are not suitable in blocking link spams.

A collaborative spam filtering has been proposed for email
spams [11–14]. Since a spam is typically sent to a very large
number of recipients, anyone who first identifies it as a spam
can share the knowledge with others, thus benefiting the
community. However, such a scheme is not very effective
against content spams, as spammers customize their spams
by attaching word salad (i.e., random words) in order to
avoid being matched as spams. Nevertheless, collaborative

spam filtering scheme can effectively block link spams. Thus,
we propose using a collaborative spam filter to block link
spams in blog systems. We propose a new trust building
scheme, which exploits existing social trust relations and a
new search method to obtain information about identified
spams.

Our approach is based on a simple peer-to-peer trust build-
ing process and a novel information search method, called
adaptive percolation search (APS). Under our scheme,
each blog sends out queries to its neighbors in the trusted
network to see if anyone has already identified it as a spam.
The basic idea of our APS is that the query is forwarded
with the probability adjusted at every peer according to the
peer’s degree (i.e., the number of neighbors it has). Through
this strategy, our algorithm always percolates the network
without producing broadcast-like traffic. We use a periodic
or an asynchronous query scheme to collect information from
network to identify spams. We also present rigorous simu-
lation results to show the effectiveness of our approach.

The rest of the paper is organized as follows. In Section 2,
we survey related works in the area of blocking blog spams
and present backgrounds on the blog networks. In Section
3, we describe our collaborative spam filtering approach in
detail. In Section 4, we perform a simulation of our method
based on a real-world blog network. We conclude in Section
5.

2. PRELIMINARIES
In this section, we introduce backgrounds on the blog net-

works and survey related works in the area of blocking blog
spams.

2.1 Collaborative Spam Filtering Scheme
Collaborative spam filtering can be an effective way to

exploit the massiveness of spams in the fast evolution of
spam robots against various spam filters.

There are three key features in collaborative spam filter-
ing: where the information of spam is stored; how to manage
the trust relations; and how to effectively share and search
the information.

Collaborative spam filtering may operate in a central-
ized or a distributed manner. Existing collaborative email
spam filters mostly use a centralized approach (e.g., Spam-
Net [13]). A centralized server model is known to scale
poorly as the number of spams increases, and has a single
point of failure. Moreover, determining whom to trust is a
difficult problem in the centralized model. SpamWatch [12]
is the first known spam filter adopting a totally decentral-
ized approach. Its operation is based on a distributed text
similarity engine. More recently, Damiani et al. suggested
a peer-to-peer (P2P) based collaborative filter with a hier-
archical network topology [11], and Kong et al. proposed
collaboration using existing email social networks [14]. Our
approach is motivated by these collaborative spam filters.
However, our focus is on blog systems.

In any collaborative endeavor, determining whom to trust
is an important issue. When a peer cooperates with other
peers in order to ferret out spams, one needs to evaluate
and manage how trustworthy other peers are. Depending on
the scope of the trust, two evaluation schemes are possible:
global and local. In a global trust scheme, each peer has a
single reputational value for one’s own trustworthiness, and
all the other peers refer to the single reputation value. In a

Figure 1: Forwarding probabilities of a node: (a) PS
and (b) APS. In (b), α is tunable constant, here is
set to 1.

local trust scheme, each peer could be rated differently by
different peers.

There are several studies on building a global trust in
distributed systems. Kamvar et al. propose a distributed
and secure method, called EigenTrust, to compute global
trust values based on local information [15]. They also show
that their reputation system works well, even when mali-
cious peers cooperate under various scenarios. Golbeck et
al. propose a reputation inference algorithm used in scoring
emails [16].

In order to share information in a collaborative scheme,
efficient search and dissemination mechanisms are crucial.
Since the performance of a search algorithm heavily depends
on the network’s topology, it is important to know of the
topology information in order to understand search algo-
rithms. It has been reported that Gnutella networks and
email networks have power-law degree distributions. Recent
analysis of a blog network in Poland also reveals that the
degree distributions of blog networks follow power-law with
exponents between 2 and 3 for both the incoming and out-
going edges [17].

Various search algorithms have been suggested for P2P
systems. Gnutella, one of the oldest P2P file sharing pro-
grams, operates on a query flooding protocol, and scales
poorly, as the network size grows. Alternatively, a random
walk, iterative deepening, and a percolation search method
have been suggested as a mitigating solution to heavy traffic
from flooding [18–21]. The random walk algorithm gener-
ates much less traffic than flooding, but the success rate is
rather low and also has a large variance. The iterative deep-
ening, a variant of flooding, certainly reduces the traffic of
original flooding, but is ineffective in that it has to visit a
large number of peers. The percolation search algorithm
utilizes the content replication strategy in P2P systems for
both the content and the query [21,22]. It is also known to
exploit the property of scale-free networks that percolation
takes place with a very low percolation probability [23].

The percolation search consists of three key concepts: con-
tent implantation, query implantation, and bond percola-
tion. Every node in a network takes a short random walk
and caches desired information to be shared on the visited
nodes (i.e., content implantation). When a node initiates

a query, it first executes a short random walk and implants
the query to each visited node (i.e., query implantation). Fi-
nally, parallel probabilistic broadcasts are started with the
implanted queries (i.e., bond percolation); when a peer re-
ceives a query, it forwards the received query to all its neigh-
bors with probability p (see Figure 1(a)), except to the one
who sent the query. When p is larger than the percolation
threshold, pc, the query propagates through the entire net-
work; when p < pc, the query dies out before reaching the
entire network. In power-law networks of a finite size, the
percolation threshold approaches 0. The percolation thresh-
old, pc, can be calculated from a degree distribution, as

pc = 〈k〉

〈k2〉−〈k〉
. Here, k stands for the degree of a node, and

the notation 〈...〉 means the average over the degree distri-
bution [24].

2.2 Existing Solutions to Fight Blog Spam
There are more than 20 plug-ins to identify spams in

WordPress [25] and several solutions for MovableType [26],
two of the most popular blog platforms. For example, re-
quiring login before writing comments, Captcha turing test,
HashCash [27], a Bayesian filter, blacklisting or whitelist-
ing, and language model approach [28] have been proposed
to block blog spam.

Some of them, such as Captcha turing test, are very suc-
cessful for now, but the bottom line for these stand-alone
spam filters is that it is possible to break down these system
in principle. Moreover, since there are ambiguous spams
that should be determined by a human, although a stand-
alone spam filters is almost perfect, people will not be freed
completely from the spam deletion process. In contrast, each
user’s intervention can be reduced to negligible amount if the
number of users in the collaboration becomes very large in
collaborative scheme. In ideal case, only one user’s man-
ual identification of a spam should set all others free. In
other words, the collaborative method adds another dimen-
sion that cannot be achieved by stand-alone methods.

3. SYSTEM DESIGN & PROTOCOL
Our blog spam filtering method is based on manual iden-

tification of link spam and sharing this newly acquired in-
formation with others through a network of trust.

3.1 Link Spam Identification
In our scheme, a spam is first identified by a user manually

and then stored in individual databases of blogs. When blog
owners sees spams in their blog, they select spam links in the
message, and then the IP addresses of spam links is stored.

3.2 Adaptive Percolation Search (APS)
When a new comment or trackback is added to a blog, it

triggers the blog system to send out a query to its neighbors.
This query propagates the blog network according to our
new adaptive percolation search. The performance of the
original percolation search (PS) is very dependant on the
percolation probability. If the percolation probability is set
too high above the percolation threshold, the entire network
is flooded with search traffic. In order to prevent overloading
the network with search traffic, the complete node degree
distribution of the network must be known before the search,
and percolation threshold must be calculated. A relevant
work is done by Kong et al. [14], where they search for the

correct percolation probability in unit increment starting
from a very small percolation probability. However, their
algorithm is dependent on the magnitude of unit increment
for speed and accuracy, and cannot achieve both.

We suggest adaptive modification called adaptive per-
colation search (APS). It takes advantage of well-controlled
traffic in the random walk based algorithms and the effec-
tiveness and tunability of the percolation search algorithms.
In contrast to a static percolation probability as in the sim-
ple PS, a peer with degree k in APS forwards a query with
probability α

k−1
(α is a tunable constant usually set to 1)

to its neighbors except to the one who has sent the query.
Each peer receiving a query will forward it to its own peers.
However, the query forwarding probability is adjusted at
every node according to the node degree. This adaptive
nature of our algorithm allows percolation without global
knowledge about the network and with zero probability for
broadcast-like traffic. We compare the PS with our method
experimentally later in §4.2.

Another property is self-avoiding dynamics. If a query
arrives at a blog peer, which has already received the same
query before, the peer drops the query. Thus, we prevent
our network from flooding without resorting to Time To Live
(TTL)1-based approach. One drawback of the self-avoiding
walk is its attrition of paths [29], but we believe the im-
plantation process and periodic query compensates for this
weakness. Furthermore, our algorithm’s performance can
be finely tuned using α, in contrast to random walk based
algorithms. Here, α represents the average number of new
queries forwarded from a single query. We can increase the
reliability of query delivery in the presence of off-line peers.
APS might require more hops than PS until it reaches a
node that has information about the identified spam, which
may result in increased time to detect a spam. However,
such a delay in blog spam identification is permissible and
not as detrimental as in the case of file sharing which needs
immediate responses.

3.3 Trust Management
For our APS, we have assumed a undirected (or bidirec-

tional) network of trusted users. In cyber communities,
such as Orkut2 and Cyworld3, online friendships are bidi-
rectional; both users must acknowledge the friendship.

Most blog platforms provide a feature called blogroll (or
blog link), which enables a blogger to add a link toward a
friendly blog in his or her blog. A blogroll reflects a real trust
relation unlike comments or trackbacks where a random set
of blogs may have links between them. However, percolation
search schemes are known to work poorly in directed graphs.
Moreover, trust in a collaborative system should be mutual,
i.e., if A believes B, then B should also believes A.

Thus we propose a new relation, trustroll. Unlike blogroll
which is directional, trustroll is undirectional, established
manually by each other’s acceptance. Additionally, each
blogger can manage the number of neighbors and the amount
of traffic because of undirectionality of the relation. Al-
though there is no such relation as a trustroll currently, we
expect that it can be easily constructed between peers that
already have a blogroll, as existing online relationships al-

1The TTL value can be thought as an upper bound of hops
on the forwarding of query.
2Orkut. http://www.orkut.com
3Cyworld. http://cyworld.nate.com

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

k

P
(k

)

degree distribution
cumulative

2.2

Figure 2: Degree distribution of the Egloos blogroll
network.

ready manifest the characteristics.
Trustroll relations are assumed to be transitive: if A trusts

B and B trusts C, then A does C. Note that the transi-
tive relation cannot be assured to be concrete for the dis-
tant pairs. Several approaches may assist our trustroll. We
may use whitelist or blacklist approach to allow a predefined
set of links as benign (or malicious), or introduce a higher
threshold in determining spams. In this paper, we limit our-
selves to the simplest case where we trust any blogs from the
trustroll network.

3.4 Periodic and Asynchronous Query Schemes
A blog system is always on, thus collaboration among the

peers is possible at all times. If a peer sends a query only
once upon the arrival of a message, the query might reach
other blogs before any blogger has identified the identical
message as a spam.

Therefore, queries should be sent periodically, or all the
blogs should keep received queries in their own database for
a while. We choose to use periodic queries, intermediate
peers drop queries after checking and forwarding it.

In an asynchronous scheme, intermediate peers keep every
query for a certain period of time or until the answer to the
query is made available.

Each blog which received a query, only if the link of the
query is identified as spam, sends reply to the blog who
sent out the query originally. Then, the blog which sent the
query originally, collects those replies, and if the number of
replies exceeds a threshold, classify the queried message as
a spam.

In order to reduce the communication overhead, multiple
queries can be put together into a single request.

4. SIMULATION
In this section, we evaluate our blog spam filtering method

based on the following three metrics: the mean and the max-
imum times to identify and delete a spam, the percentage of
spams deleted automatically by our method without blog-
gers’ intervention, and the communication overhead from
collaboration.

As there does not exist a good publicly available blog net-
work, we have used a crawler to capture a popular portal-site

0 0.5 1 1.5 2 2.5

x 104

10−2

10−1

100

Login Number

C
D

F

Average log−in frequency
 : about 4 hours per login

Figure 3: CDF of number of users versus the number
of logins in the telnet-based private board system in
KAIST from 2003 to 2005.

blog network called Egloos4 in South Korea. The crawling
is based on the snowball sampling technique. The basic idea
of snowball sampling is to randomly select a seed node and
follow blogrolls of the seed node, then their neighbors, until
all the neighbors are visited. We only focus on the blogs
that are in the same cluster as the seed node.

As the blogroll network is a directed graph and we need
an undirected graph for our collaborative blog spam filter-
ing method, we convert the directional edges to undirected
edges and create a trustroll network. To check whether this
procedure is relevant or not, we calculate the link reciprocity.
Link reciprocity estimates the extent of the network’s links
which are bidirectional in comparison with a random net-
work with the same link density [30]. The link reciprocity
of captured network is 0.4. Although it is not near 1.0, it is
larger than that of the email network made by the address
books.

The numbers of blogs and undirected edges in the cap-
tured Egloos blog network are 14, 738 and 109, 531, respec-
tively. The node degree distribution is shown in Figure 2,
which roughly follows a power-law distribution. Such a find-
ing is consistent with the result from a blog network in
Poland [17].

While we are able to capture a blog network in use, we
have no data on bloggers’ behavior (e.g., how often bloggers
log in, check updates on their blogs, and remove spam com-
ments or trackbacks). For realistic representation of blog-
gers’ behavior, we use login statistics of a telnet-based bul-
letin board system (BBS), loco.kaist.ac.kr, from KAIST. In
the pre-blog days, the Loco BBS provided private bulletin
boards to thousands of individuals and played a similar role
as today’s blog system. Figure 3 plots the cumulative distri-
bution function of the number of logins per each user during
a two-year time period from 2003 to 2005. The figure shows
that the login frequency follows an exponential distribution,
which is later used in our simulation.

4.1 Simulation Setup
We begin with a blog network of size N = 14, 738. We as-

sume that a certain ratio of blogs, Ps, are initially spammed

4OnNet Co., http://www.egloos.com

Table 1: Parameter settings for simulation
Parameter Notation Default Value

Density of identical spams Ps 0.05
Average checking time h 4 hours
Query period q 20 minutes
Threshold for hit counts th 1
Limit of checking time T 24 hours

0 0.02 0.04
0

2

4

6

8

10

12

14

A
ve

ra
ge

 D
et

ec
tin

g
Ti

m
e

(p
er

io
ds

)

Percolation Probability
0 0.02 0.04

0

1

2

3

4

5

6

7
x 105

Percolation Probability

E
st

im
at

ed
 M

ax
im

um
 T

ra
ff

ic

PS
APS

PS
APS

Figure 4: Comparison between PS and APS in terms
of the average spam detecting time and the esti-
mated traffic overhead versus percolation peroba-
bility.

with an identical link spam; spams are only assigned at time
t = 0 and are not assigned after then. There are two spam
deletion processes. One is a manual deletion by individual
bloggers, and the other is by our collaborative spam filter
automatically.

At every time tick (1 minute in our simulation), each blog-
ger i is assumed to log in and delete spams at regular inter-
vals, hi, of which period is determined from the empirical
exponential distribution in Figure 3. This process mimics
manual deletion of spams.

On the other hand, our collaborative spam filter works
as follows. At time t = 0, blogs, upon receiving a suspi-
cious comment or a trackback, initiate a periodic query to
its neighbors to verify whether the received message is in-
deed a spam. To verify a message as a spam, our spam filter
requires at least th number of peers who return acknowledge-
ments (hit messages). Initial starting time of the periodic
query is randomly chosen between 0 and q − 1, where q is
the query period. The message is considered as a non-spam
message and the spam filter stops generating queries about
it, if it is undetermined until time T passes. At the end
of the simulation, we count the number of nodes with any
spam message in their blogs, which are false negative cases
(i.e., automatic spam filter has not yet identified and deleted
the spam). The smaller this number is, the more effective
our spam filter.

Every simulation is averaged 100 to 1, 000 runs. The de-
fault parameters used in our simulation are shown in Table 1.

4.2 Analysis

Table 2: Maximum and average times to detect
spam (min)
Period w/o col 5 10 20 30 40

Max 78935 60.0 109.8 196.8 273.4 324.1
Avg 2160 7.4 12.2 20.8 28.6 35.7

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Period (Min)

po
rt

io
n

of
 n

od
es

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ps

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Ti
m

e(
m

in
)

Spam Detection
Aided Portion

Spam Detection
Aided Portion

Avg. Detecting Time

(a) (b)

Figure 5: (a) The covering performance of our APS
algorithm vs. quering period. We measure the spam
detection ratio, the number of detected spams di-
vided by total number of spams, and the portion
of aided nodes, the portion of blogs in which the
spam is deleted by our system not by the blogger
of the blog. (b) Our algorithm’s performance under
various number of identical spams in the network.
Note that the spam detection rate is always 1, and
the performance also increases while the number of
spams increases.

Figure 4 shows the contrast between APS and the sensi-
tivity of PS to the percolation probability p. In Table 2, we
compare our scheme’s performance to the case that no col-
laboration is used and each blogger has to identify a spam
individually. We note that average spam detection time is
reduced by three orders of magnitude when the periodic
query is sent out every five minutes. Even when the query
is sent out every 40 minutes, we still observe two orders of
magnitude reduction in the average and maximum time of
detection.

Figure 5 presents the percentage of total detected spams
and automatically detected spams, as we vary the query
period and the spam density. Throughout wide parameter
range, most of the spams are detected and at least 80% of
spams are automatically deleted by our spam filter. The rest
of the spams are deleted manually. This is due to the fact
that there are users who visit their blogs very frequently,
leaving no time for our automatic spam filter to delete the
spam. Since collaborative scheme exploits the abundance
of spams, our methods works better for spams with higher
density.

As we assume that everyone in our trustroll network re-
ports spams correctly, there is no false positive case in our
simulation results.

In order to estimate the communication overhead, we count

the number of messages including queries and hit messages
that are used by collaborative spam filter. When 18.6%5

nodes send out queries at the same time, the number of
messages at the most crowded node was 158.85 per second
at the peak. If we assume the query size is 1KB, this up-
per bound traffic load is equivalent to 0.158Mb/s. Since the
length of IP address is 32bits, the query size might be a
lot less than 1KB. For a typical fast internet connection of
100Mb/s, this represent 0.16% bandwidth cost. The aver-
age traffic was less than 1Kb/s, substantially lower than the
upper bound.

5. CONCLUSION AND DISCUSSION
In this paper, we have introduced a new collaborative

spam filtering scheme to block link spams in user-hosted
blog systems, which is based on a simple trust management
scheme and (periodic or asynchronous) querying called by
an effective adaptive search algorithm. All collaborative
schemes including our approach can work as an augmen-
tation of any other stand-alone methods. We have shown
the efficiency of our scheme by numerical simulations car-
ried on a real-world blog network constructed by blogroll.
Our approach is easy and straightforward to implement as
a plug-in to any existing blog platforms.

We note that our approach has a limitation in that it
is only adequate for user-hosted blogs (e.g., WordPress or
Movabletype), but not for developer-hosted blogs (e.g., Blog-
gers or LiveJournals). A developer-hosted blog system can
be assisted with spam filters that directly check the central
blog database and detect spams based on the occurrence of
identical messages in the hosted blogs. However, we think
that our trust building scheme can be also applied to those
blog systems.

As future work, we plan to do more explicit mathematical
analysis of adaptive percolation search and implement our
algorithm for popular blog systems.

6. ACKNOWLEDGEMENTS
This work was supported by grant No. R01-2005-000-

1112-0 from the Basic Research Program of the Korea Sci-
ence & Engineering Foundation. We thank Meeyoung Cha
for valuable comments and careful proofreading.

7. REFERENCES
[1] J. Postel. On the junk mail problem. RFC706, 1975.

[2] Messagelabs. http://messagelabs.com.

[3] Wikipedia. http://en.wikipedia.org/wiki/blog.

[4] Technorati. http://technorati.com.

[5] Z. Gyöngyi and H. Garcia-Molina. Link spam
alliances. In Proceedings of VLDB, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Computer
Networks and ISDN Systems, 30(1–7):107–117, 1998.

[7] Nofollow.
http://googleblog.blogspot.com/2005/01/preventing-
comment-spam.html

[8] Nonofollow. http://nonofollow.net.

[9] SpamProbe. http://spamprobe.sourceforge.net.

5From a survey on Egloos blogs, 18.6% nodes received at
least one comment or trackback in a day.

[10] SpamAssassin. http://spamassassin.apache.org.

[11] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. P2P-based collaborative spam detection
and filtering. In Proceedings of Peer-to-Peer
Computing, 2004.

[12] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D.
Joseph, and J. Kubiatowicz. Approximate object
location and spam filtering on peer-to-peer systems. In
Proceedings of Middleware, 2003.

[13] SpamNet. http://cloudmark.com.

[14] J. S. Kong, P. O. Boykin, B. A. Rezaei, N. Sarshar,
and V. P. Roychowdhury. Let your cyberalter ego
share information and manage spam, 2005.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in P2P networks. In Proceedings of WWW, 2003.

[16] J. Golbeck and J. Hendler. Reputation network
analysis for email filtering. In Proceedings of the First
Conference on Email and Anti-Spam , 2004.

[17] W. Bachnik, S. Szymczyk, P. Leszczynski,
R. Podsiadlo, E. Rymszewicz, L. Kurylo,
D. Makowiec, and B. Bykowska. Quantitive and
sociological analysis of blog networks, in preprint,
2005.

[18] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and
B. A. Huberman. Search in power-law networks.
Physics Review E, 64, 2001.

[19] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In Proceedings of the international
conference on Supercomputing, New York, NY, USA,
2002. ACM Press.

[20] B. Yang and H. Garcia-Molina. Efficient search in
peer-topeer networks. In Proceedings of IEEE ICDCS,
2002.

[21] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury.
Percolation search in power law networks: Making
unstructured peer-to-peer networks scalable. In
Proceedings of Peer-to-Peer Computing, 2004.

[22] Z. Jia, B. Pei, M. Li, and J. You. A comparison of
spread methods in unstructured P2P networks.
ICCSA (3), 2005.

[23] S. Bornholdt and H. G. Shuster. Handbook of Graphs
and Networks. WILEY-VCH, 2003.

[24] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45(2):167–256, 2003.

[25] WordPress. http://wordparess.org.

[26] MovableType.
http://www.sixapart.com/movabletype/.

[27] HashCash.
http://elliottback.com/wp/archives/2005/10/23/wordpress-
hashcash-30-beta/.

[28] G. Mishne, D. Carmel, and R. Lempel. Blocking blog
spam with language model disagreement. In
Proceedings of AIRWeb, 2005.

[29] C. P. Herrero. Self-avoiding walks on scale-free
networks. Physical Review E, 71, 2005.

[30] D. Garlaschelli and M. I. Loffredo. Patterns of link
reciprocity in directed networks. Physics Review
Letter, 93, 2004.

