
Augment browsing and standard profiling
for enhancing Web accessibility

Silvia Mirri

Department of Computer Science
University of Bologna

Via Mura Anteo Zamboni 7
40127 Bologna (BO), Italy
silvia.mirri@unibo.it

Paola Salomoni
Department of Computer Science

University of Bologna
Via Mura Anteo Zamboni 7
40127 Bologna (BO), Italy

paola.salomini@unibo.it

Catia Prandi
Corso di Laurea in Informatica

University of Bologna
Via Mura Anteo Zamboni 7
40127 Bologna (BO), Italy

catia.prandi@studio.unibo.it

ABSTRACT
The opportunity of effectively tailoring Web resources
presentation - depending on each single user needs and
preferences - represents a challenge and a necessity for
accessibility and inclusion. On the Web, customizing means
transcoding content according to some user and/or device
(contextual) settings. Such a profiling refers to devices
constraints, user habits, skills, different needs (or tastes) about
interaction, in order to drive all the necessary procedures for
content (re)shaping. The usual set up that users provide for
assistive tools such as screen readers or speech-to-text
applications, is a common practice (and a typical example) for a
subjective, better enjoyment of resources.
This work describes an augment browsing system, which allows
users to set up their needs and preferences about Web pages
presentation from the browser interface and is capable to
automatically modify (transcode) content, according to such
settings at client-side. The system is based on a widespread Web
browser extension (GreaseMonkey) and well-known standards
have been utilized to represent user’s settings. Finally a case-study
of the system has been assessed on a widespread social network,
also taking into account some evaluations about accessibility by a
group of blind persons.

Categories and Subject Descriptors
H.5.1 [Hypertext/Hypermedia]: User issues; H.5.2 [User
Interfaces]: User-centered design; K.4.2 [Social Issues]:
Assistive technologies for persons with disabilities.

General Terms
Design, Human Factors.

Keywords
Web Accessibility, Web 2.0, Web browser extensions, Augment
Browsing, Users Profiling.

1. INTRODUCTION
During the last years, we have witnessed the birth and triumph of
Web 2.0 technologies and philosophies. They have pushed the
Web onto a new evolutionary stage, by promoting users’ role, by
greatly increasing the interaction among them and with the Web,
as well as by allowing them to easily create and share content on
the Net [15].
From a technological point of view, the novelty of Web 2.0 is the
introduction (or rediscover) of AJAX (Asynchronous JavaScript
and XML) as a client-side development tool/technique for Web
applications. Basically, AJAX programming uses JavaScript to
upload and download new data from the Web server without
reloading the entire page [9]. Indeed, as it concerns to the server
side, Web 2.0 uses the same technologies as Web 1.0 did, without
introducing any significant novelty.
As it has often happened, the introduction of newer and more
interactive technologies has affected accessibility for users who
enjoy the Web by using assistive technologies [29], [11]. In
particular, the partial download of new data, the continuous
refreshing and the massive use of scripting represent significant
barriers for those users who navigate the Web by means of a
screen reader.
Besides content dynamics and high interaction, Web 2.0
applications have shown a more and more massive presence of
multimedia (or rich media) content. Once again, this aspect has
deeply affected Web accessibility and it fed a plethora of research
projects about content transcoding and adaptation systems.
Despite the plenty of efforts, such systems [6], [17], reveal
limitations related to several aspects, such as the necessity of a
pre-defined set of available content (which could not meet all the
users’ needs [6], [17]), the lack of a profile which clearly
describes users’ needs and preferences, the
architectural-dependent approach (e.g. a host machine is needed
[6], [17]) or the functional-dependent one (e.g. a specific platform
must be used).
In this scenario, our idea is to exploit a Web 2.0 characteristic
(which seems to be a weakness in terms of Web accessibility) as a
tool for enhancing it: using scripts at client-side to provide a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2011 – Technical Paper, March 28-29, 2011, Hyderabad, India.
Co-Located with the 20th International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 /...$5.00.

content transcoding system which adapts Web pages in order to
meet each user’s preferences and needs.
In this paper we present GAPforAPE (GreaseMonkey And
Profiling for Accessible Pages Enhancement), a system which is
based on a set of Web browser extensions with the aim of
improving Web page accessibility. GAPforAPE has been
designed with the idea in mind that “one Web content for
everyone” is not as effective as “the best Web content for each
one” [23]. Concepts and techniques of content transcoding and
new Web 2.0 technologies has introduced the opportunity of
providing the same Web page to any user, but in an adapted and
optimized version, according to some user’s profile in terms of
needs and preferences [2]. Thus, we have equipped GAPforAPE
with a user profiling system, based on the well-known IMS
ACCLIP standard [13].
The main idea is modifying Web content by using client-side
scripting languages, the well-known GreaseMonkey augment
browsing [10] and the AccessMonkey Framework [2] [3]. Our
system has been designed in order to be a set of Web browser
extensions which includes a profiling system and a client side
content transcoding one, based on a collection of scripts. In order
to enhance the accessibility of Web content and to provide the
best adaptation to each user by meeting his/her needs and
preferences, our scripts allow the transcoding of Web pages, by
modifying the CSS rules, the HTML DOM and also other scripts
which are used on them.
One of the notable differences among our proposed system and
other well-known Web browser extensions, such as
GreaseMonkey and AccessMonkey, is the use of a profiling
system, in order to better describe users’ preferences and needs.
Moreover, since it is not possible to automatically identify and
modify AJAX scripts in a feasible and effective way, we have
designed our system so that is capable to recognize the Web
application and to apply the adequate scripts transcoding, just like
well-known screen readers (i.e. Jaws [16]) acts with desktop
applications. This permits our system to effectively improve the
accessibility of Web applications which are strongly based on
Web 2.0 technologies, such as Facebook and other famous and
widely used social networks. To reach this goal the main and most
common social networks have been analyzed and some scripts
have been designed and developed to provide suitable adaptations
as it is described in the following Sections.
In particular, our system applies a specific set of scripts devoted to
a given Web application, when such scripts are available, and a
default set of scripts otherwise. Transcoding activities are
performed on the client-side: a Web page is delivered to any user,
but our system adapts it (by transcoding Web content, CSS rules,
and scripts). Thus the transcoding system can answer to the need
of automatically identifying and adapting AJAX scripts, on the
contrary of the default scripts set.
This paper presents a use case to enhance the accessibility of one
of the most common and widely used Web 2.0 social network:
Facebook [8]. In order to design and develop scripts which
improve its accessibility, some people with disabilities have been
invited to report how they use their assistive technologies/tools
while navigating Facebook. This group of users has been involved
during the scripts design phase and also during the testing one.
The reminder of this paper is organized as follows. In Section 2
we outline the main background related to the use of
GreaseMonkey to improve the accessibility and Section 3
discusses on main design issues and system architecture. Section 4

presents our prototype implementation and Section 5 shows a use
case of our system, applied to one of the most common and
widely used Web 2.0 social network: Facebook. Section 6
proposes a comparison between our system and some works with
similar aims. Finally, Section 7 concludes the paper.

2. BACKGROUND
Research projects in the field of content transcoding and user
profiling have not really fallen out on augment browsing. The
most part of scripts based on GreaseMonkey and other similar
browser extensions do not apply any advanced mechanism for
content adaptations.
The use of GreaseMonkey to improve Web content accessibility is
quite common and several scripts are devoted to this goal as
reported in the following Subsection 2.1. This subsection presents
also AccessMonkey, a common scripting framework that web
users and developers can use to collaboratively improve
accessibility. This project represents one of the most significant
research activity on accessibility based on client-side on-the-flight
adaptation. Subsection 2.2 briefly introduces accessibility issues
in main social networks and describes some basic solutions
provided to overcome them. Finally this subsection presents the
well-known research and some application issues on user
profiling.

2.1 GreaseMonkey and Accessibility
GreaseMonkey is a browser extension that allows users to install
scripts which make on-the-fly changes to HTML web page
content [10], [22]. Since the first release, GreaseMonkey was used
to support web users in automatically transcode web pages for
accessibility purposes. Many scripts are available to improve
accessibility features of pages, through different script repositories
[5], [26]. Main solutions provided through GreaseMonkey scripts
for accessibility issues are:

• Alteration of pages that improve accessibility such as
adding headers or removing conflicting among
keyboard shortcuts.

• Adaptations useful to specific subsets of site users, i.e.
augmenting contrast of colors or enlarging fonts for
people with low vision. Most part of the scripts are
devoted to support visitors of the site who use a screen
reader or more generally have a visual disability.

• Improvement or solutions for accessibility that Web
developers have not included, e.g. the support for access
keys or proper table annotation.

• Overcoming significant barriers to accessibility as, for
example, trying to solve or remove CAPTCHAs.

Many of these scripts are used to solve single issues on specific
web pages or services. They are organized in repositories not
necessarily limited to accessibility purposes, but they are not
structured as a whole corpus of code.
To overcome the lack of portability of this approach and enhance
the integration among different scripts, in [2] Bigham and Ladner
define and implement a framework, called AccessMonkey,
devoted to support the development of accessible GreaseMonkey
scripts. Through the AccessMonkey Framework, users can edit
web pages using JavaScript. This framework is derived by the
GreaseMonkey Firefox extension [10] that allows users to inject
their own scripts into arbitrary web pages and these scripts can
then alter Web pages automatically. AccessMonkey natively

supports web accessibility by providing Web developers with
appropriate mechanism for editing, approving and saving changes
that have been made to web pages by user scripts [3]. The system
offers some browser plugins to automatically retrieve user scripts
from a common repository and apply helpful transformations to
the pages visited by users, in particular:

• the end user interface allows both users and developers
to create and share new improvements.

• The developer interface is used by content creators to
edit and save changes the scripts made to Web content.

2.2 Social Networks accessibility and Profiling
Accessibility limitations of main social networks is a widely
known issue that found just few and partial solutions in the last
years [1]. For example, Facebook accessibility is addressed in a
very simple and partial way, mainly on the mobile version of the
system. Analogously Twitter, MySpace and other widely used
social networks are not accessible in conformance to any national
regulation or W3C guidelines and present significant accessibility
barriers. An accessible version of Twitter was implemented with
the idea to offer an alternative access to the platform [18]
Accessible Twitter uses a consistent layout for simple navigation
in which all text features and color contrast options are optimized
for screen readers and audio cues alert the user when nearing the
character limit [18]. Advanced issues like the management for
content volume and content update or improvements on script
dynamics are far from being solved.
Social networks provide users’ customization as the possibility of
changing few layout characteristics, such as color background or
text size. Usually, these modifications are bound to the only user
profile page and they have to be manually specified by the user
without any support by some profiling tool.
Equipping these platforms with adaptation systems (which were
capable to answer any standard profile description) would actually
be helpful for accessibility improvements. Profiling user’s
preferences and needs, as well as device characteristics is a
common and useful feature in projects devoted to content
adaptation. There are several, different standards which can be
used to describe both these sets of capabilities.
Different standardized methods are devoted to profile devices.
The most prominent ones are mainly based on RDF (Resource
Description Framework) profiles, such as the Composite
Capabilities/Preference Profile (CC/PP) [27] and User Agent
Profile (UAProf) [21]. These are two related standards,
recommended by the W3C and the Open Mobile Alliance (OMA).
As the diversity of devices increases, device capabilities and
preferences for profiling devices must be known. The goal of
these profiles is to allow client devices to inform servers of their
capabilities. The CC/PP and UAProf data formats exploit two-
level hierarchies, consisting of components and attributes. CC/PP
and UAProf are also useful for device independence, content
negotiation and adaptation, as they allow different devices to
specify their capabilities in a uniform way. CC/PP provides a
standard way for devices to transmit their profiles when
requesting Web content. Servers and proxies can then provide an
adapted content, which is appropriate to that particular device
[27]. A CC/PP vocabulary is defined by using RDF and specifies
components and their attributes, to be used by the application to
describe a certain context. Three main components specify the
hardware platform (which describes hardware characteristics, such
as display dimensions, boards presence, media support, keyboard

type, etc.), software platform (which describes software
capabilities, such as operating system name, version, tools and
players support, etc.) and browser user agent (which describes
capabilities such as user agent name, version, scripting support,
CSS support, etc.). UAProf is defined as a standard between WAP
devices and servers. The profile can be used for better content
adaptation for different types of WAP devices [21]. Some projects
have been involved CC/PP and UAProf standards in order to
profile devices. The Sun Microsystems Inc. has defined a
specification which details a set of APIs for processing CC/PP
information, in order to enable interoperability between Web
servers and access mechanism, facilitating device independent
web applications development [25]. DELI [7] is an open-source
library developed at HP Labs, which provides an API to allow
Java servlets to determine the delivery context of a client device
using CC/PP or UAProf. The Java servlets resolve HTTP requests
containing delivery context information form CC/PP or UAProf
capable devices and query the resolved profile, replacing
proprietary delivery context descriptions with standardized CC/PP
descriptions, if it is necessary.
One of the main standard devoted to profile users’ accessibility
constrains is the IMS ACCessibility for Learner Information
Package (ACCLIP) [13]. IMS ACCLIP is a specific part of the
IMS Learner Information Package (IMS LIP) specification [14],
which has been defined with the aim of addressing
interoperability issues among Internet-based learner information
systems. The intent of this specification is to define a set of
packages that can be used to import (extract) data into (from) an
IMS compliant e-learning platform. ACCLIP describes the user in
terms of accessibility needs by using a XML-based syntax.
Basically, it enables the description of user preferences (visual,
aural or device), which can be usefully exploited for tailoring
learning contents (e.g., preferred/required input/output devices or
preferred content alternatives). In other words, such a personal
profile provides a means to describe how users interact with an e-
learning environment, by focusing on accessibility requirements.
The ACCLIP specification defines the required elements to
represent accessibility preferences, which can be grouped into the
following sections:

• display information, which describe how the user
prefers to have information displayed or presented; for
example, it is possible to define preferences related to
cursor, fonts and colors characteristics. In addition, it is
possible to declare the need of using a screen reader,
specifying the interaction preferences, such as the
speech rate, its pitch and is volume, or the need of
visual alerts instead of aural ones;

• control information, which define how a user prefers to
control the device; for example, it is possible to define
preferences related to standard keyboard usage. In
addition, it is possible to declare the need of using non
typical control mechanisms, such as an onscreen
keyboard, an alternative keyboard, any mouse
emulation, an alternative pointing mechanism and any
voice recognition;

• content information, which describe what enhanced,
alternative or equivalent content the learner requires; for
example, it is possible to define how to present visual,
textual and auditory contents in different modalities
and the need of personal style sheets;

• accommodations, which allow recording of requests for
and authorization of accessibility accommodations for
testing or assessment; for example, it is possible to
declare the request for accommodations and the
accommodation description.

IMS ACCLIP standard is adopted by several and different
projects with the aim of profiling accessible users’ needs and
preferences, as described in [24], [20] and [19].

3. DESIGN ISSUES AND SYSTEM
ARCHITECTURE
The main goal of GAPforApe is enhancing accessibility of Web
pages by dynamically and automatically modifying them at the
client side. Parameters about how and where pages will be altered
before being presented are based on the user’s profile, which is set
up as a set of preferences/needs through a suitable interface of the
browser.
The design of GAPforApe has been driven by the idea that “one
Web content for everyone” is not the same, or is not as effective as
“the best Web content for each one” [23]. Since the early birth of
Web accessibility principles, using parallel Web pages (often
created as text-only content) has been intended as a discriminating
and segregation factor for people with disabilities [4]. On the
other hand, it is worth noting that a unique accessible Web page
offers an accessible content which could not be the best one for
each user [23]. Concepts and techniques for content transcoding
have introduced the opportunity of providing the same Web page
to any user in an adapted and optimized version, thereby meeting
subjective user’s needs and preferences in a suitable way [2].
Besides such opportunities, assistive technologies can generally
be configured to tailor content access and navigation to the user’s
experience, skill, knowledge or simply his/her taste. Content
transcoding and assistive tools customization imply any form of
profiling (to report user’s preferences and device constraints), by
typically using attributes and corresponding values. In our system,
we have taken into account such an essential common feature, by
adopting a significant part of a well-known standard, the IMS
ACCLIP (Accessibility for Learner Information Package [13]). As
described in the previous Section, IMS ACCLIP is a part of IMS
LIP [14] and it has been originally devoted to describe learners’
accessibility constraints [12]. Hence, ACCLIP describes the user
in terms of accessibility needs, without considering the device
characteristics. In particular, ACCLIP enables the description of
user preferences (visual, aural or device) that can be exploited for
tailoring content (e.g. preferred/required input/output devices or
preferred content alternatives).
In our system we have taken into account only attributes
belonging to the display information, the control information and
the content information sections. In particular, our profiling
system groups the preferences and needs information into Text,
Color, Audio, Visual and General sets.
Once users have set up their profile, GAPforAPE is capable to
modify contents, by adapting them to the chosen features. Indeed,
let us state that the core feature of our system is content
transcoding. In general, four categories should be mentioned,
which represent the most significant, proposed solutions for
content transcoding [6], [17], i.e.:

1. client-side approach: the transcoding process is in
charge of the client application. Client-side solutions

can be classified into two main categories with different
behaviors: (i) the clients receive multiple formats and
adapt them by selecting the most appropriate one to
play-out, or (ii) the clients compute an optimized
version from a standard one. This approach suggests a
distributed solution for managing heterogeneity,
supposing that all the clients can locally decide and
employ the most appropriate adaptation to them;

2. server-side approach: the server (that provides
contents) performs the additional functions of content
adaptation. In such an approach, content adaptation can
be carried out in an off-line or on-the-fly fashion. In the
former, content transcoding is performed whenever the
resource is created (or uploaded on the server) and a
human designer is usually involved to hand-tailor the
contents to different specific profiles. Multiple formats
of the same resources are thus stored on the server and
they are dynamically selected to match client
specifications. In all the on-the-fly solutions, adapted
contents are dynamically produced before delivering
them to the clients;

3. proxy-based approach: the adaptation process is carried
out by a node (i.e. the proxy) placed between the server
and the client. In essence, the proxy captures replies by
the server to the client requests and performs three main
actions: (i) it decides whether performance
enhancements are needed; (ii) it performs content
adaptations; (iii) it sends the adapted contents to the
client. To accomplish this task as a whole, the proxy
must know the target device, the user capabilities (this
information must be received from the client) and a
“full” version of the original contents (this data must be
received from the server). As a consequence, the use of
network bandwidth could be intensive in the network
link between the proxy and the server;

4. service-oriented approach: the dynamic nature of
adaptation mechanisms together with opportunities
offered by the Web Service technologies, provide an
approach of service-oriented content adaptation. The
philosophy at the basis of this approach is
fundamentally different from those ones previously
described, since the transcoding and the adaptation
activities are organized according to a service-oriented
architecture. Indeed, the number of content adaptation
typologies, as well as the set of multiple formats and
related conversion schemes is still increasing. This
dynamism is one of the reasons that makes difficult
developing a single adaptation system that can
accommodate all the types of adaptations; therefore,
third-party adaptation services are important.

The opportunities of directly operating changes and adding
extensions to traditional Web browsers pushed us in taking into
account a client-side transcoding system.
The main idea is to modify Web content by using client-side
scripting languages, like the well-known GreaseMonkey extension
[10] and the AccessMonkey Framework [2], [3]. Thus, our system
has been designed in order to be a set of Web browser extensions
which includes a profiling system and a client-side content
transcoding one, based on a collection of scripts.

Profiling system

Content
transcoding

system

GAPforAPE

Web browser

Figure 1. GAPforAPE architecture.

In order to enhance the accessibility of Web content and to
provide the best adaptation to each user, by meeting his/her needs
and preferences, our scripts allow the transcoding of Web pages
by modifying the CSS rules, the HTML DOM and also Web 2.0
scripts. Modifications applied by our scripts will be described
more in details in the following Section 4.
Figure 1 depicts the architecture of our system, which is mainly
based on a Web browser extension, composed by a profiling
system and content transcoding system.
The main differences among our proposed system and other well-
known Web browser extensions, such as GreaseMonkey and
AccessMonkey are the use of a profiling system (in order to better
describe users’ preferences and needs) and the modification of
Web pages script. This permits our system to improve the
accessibility of Web applications which are strongly based on
Web 2.0 technologies, such as Facebook and other famous and
widely used social networks. The use of Web 2.0 technologies
really affects the accessibility of such Web applications, as it is
illustrated in [29] and [11].
It is worth noting that it is not always possible to automatically
recognize and adapt any AJAX script in a feasible and effective
way. Hence, we have designed our system so as to identify the
Web application and to transcode it by using a specific set of
scripts. This behavior has been inspired by the way the
well-known screen readers (i.e. Jaws [16]) acts with desktop
applications. In particular, we have exploited a two-layer system
which applies a specific set of scripts which are devoted to a given
Web application (when such scripts are available), otherwise a
default set of scripts is used. Hence, a Web page is delivered to
any user, but our GAPforAPE adapts it on the client-side (by
applying the above mentioned transcoding activities, e.g.
transcoding HTML code, CSS rules, scripts). The two-layer
solution allows the transcoding system answering to the need of

automatically identifying and adapting AJAX scripts, on the
contrary of the default scripts set.
In this way, our proposed system could provide benefits to user
with disabilities in enjoying any Web content, including also Web
2.0 social networks. To reach this goal we have studied the main
and most common social networks and we have designed and
developed sets of scripts to enhance the accessibility of such Web
2.0 applications.

4. IMPLEMENTATION
Currently, a prototype of our GAPforAPE system has been
implemented and it has been tested by a group of users with
disabilities. The whole system will be implemented as a set of
Web browser extensions, so as to enhance the accessibility of
Web pages each user navigates.
Our first extension has been developed for Mozilla Firefox, on the
basis of the same mechanism of the GreaseMonkey extension
[10]. The user can improve his/her navigation by defining his/her
needs and preferences through the Preferences Panel. Such a
Panel is available as a menu choice in the Firefox interface and it
is provided to users as a window which is displayed over the
browser one. Such a window has been created by using XUL
(XML User Interface Language) [28], an XML user interface
markup language developed by the Mozilla Project. XUL is a
Mozilla’s XML-based language that allows building feature-rich
cross platform applications which can be customized with
different text, graphics and layout. Applications written in XUL
are also based on other W3C standard technologies, such as
HTML 4.0, CSS 1 and 2, DOM Levels 1 and 2, JavaScript 1.5,
including ECMA-262 Edition 3 (ECMAScript). Moreover, XUL
takes into account also the W3C eXtensible Bindings Language
(XBL), a markup language which defines special new elements, or
“bindings” for XUL widgets. XBL enables developers to extend
XUL by customizing existing tags and creating new ones. This
way, developers can create tailored user interface widgets. One of

the main advantages of XUL is its provision of a clear separation
among the client application and programmatic logic (consisting
of XUL, XBL and JavaScript), presentational aspects (consisting
of CSS and images) and language-specific text labels (consisting
of DTDs). Hence, the layout and appearance of XUL applications
are independent from the application definition and logic. This
allows us to create a Preferences Panel (PP) which is accessible
itself. The PP organizes all the configurable characteristics into
the following sets: Text, Color, Audio, Visual and General.
Figure 2 and Figure 3 show screenshots taken from the Color and
the Visual Tabs of the Preferences Panel.

Figure 2. The Preferences Panel: the Color Tab.

Figure 3. The Preferences Panel: the Visual Tab.

Through the Preferences Panel, the user can also choose and fix
traditional browser preferences. This way, the user can have a

more complete view of all the kind of customizations he/she could
enjoy and can configure a wide set of characteristics, by using
only one tool. Such a mechanism allows users to choose and set
just once (for instance, during the browser installation) his/her
preferences and needs, so as to enjoy adapted and accessible Web
content anytime he/she access the browser. Obviously, through
the Preference Panel, the user can change his/her preferences
whenever he/she wants. Such new preferences will be
immediately available. User’s configurations are set through
JavaScript and saved by the Preferences Storage System [28].
The content transcoding system of the Firefox extension prototype
is based on a set of scripts which have been developed by using
JavaScript. Such scripts interact with the Web page DOM and
they add, remove or change elements, on the basis of users’
preferences. For instance, it is possible to remove links or images
or any other kind of visual elements such as advertisements, to
change the links text, to show the alternative descriptions instead
of the related images or to add it and show it close to the related
images. Moreover, also changes to the CSS are applied by using
JavaScript. Some scripts can directly modify single CSS rules,
while some others create a new CSS file, by implementing the
user’s preferences and needs, and then they substitute the old CSS
with this new one in the HTML code of the Web page. With this
kind of scripts it is possible to change the colors used in the Web
page or the font family. Finally, also script transcoding is
implemented by using JavaScript. Some of this kind of scripts are
developed in order to automatically change Web 2.0 scripts (for
instance to avoid automatic refreshing and updating of the Web
page), while some others are designed to be performed only with a
proper Web application, since it is not always possible to
automatically identify and modify AJAX scripts in a feasible and
effective way. This means that our prototype applies adequate
scripts in order to transcode specific Web application pages (in
particular when the users request Web 2.0 social networks content
and services), as screen readers act with desktop applications.

5. USE CASE: IMPROVING
FACEBOOK ACCESSIBILITY
In this Section we are going to describe the use of our prototype
with the most famous and widespread Web 2.0 social network:
Facebook. We will illustrate how we have designed and
implemented the scripts which enhance Facebook accessibility
and we will show results for some kinds of user profiles.
First of all, we have analyzed Facebook characteristics which
affect its accessibility and we have identified main problems and
their solutions. Such solutions have been applied by developing
scripts for our browser extension GAPforAPE, in order to
increase Facebook accessibility. Our analysis has begun with the
study of how people with disabilities use assistive technologies to
navigate the Web and, in particular, Facebook [8]. A discussion
group of people with disabilities has been involved, answering to
some interviews and participating in the design phase. A second
group of users with disabilities has been engaged to test the
system. Such testing phase is still an ongoing activity.
It is worth noting that each user has got a proper way to navigate
the Web and to use his/her own assistive technology. Let us take
into account blind users: they subjectively enjoy the features of
screen readers, depending on their experiences, their skills, their
knowledge about such tool and the frequency they use it. From a
sample of 16 blind users who have been interviewed about how
they navigate the Web through a screen reader, we know that:

• all of them use the combination of TAB key and arrows
keys;

• only six of them are used to search text by using the
combination of CTRL key and F key;

• only one of them uses the combination of INS and F6
keys to obtain a list of the headings in the Web page;

• 10 of them use the combination of INS and F7 keys to
obtain a list of all the links in the Web page.

In general, blind users who navigate Facebook pages through a
screen reader face different levels of barriers and meet different
problems. Some of these main problems can be summarized as
follows:

• The chat is not accessible.
• Headings are not well-organized and their hierarchy is

not clear.
• Some links provide a cyclic navigation, without a clear

destination.
• Some important and useful features and parts of the

content are difficult to be reached.
• Useless information and images makes the navigation

difficult and heavy.
• Some text links are ambiguous.
• Some links and some information are redundant.
• Some useful features are read as simple text instead of

button titles, links or labels (e.g. the “Comment”
feature).

• There are some difficulties in finding friends when
coincidences of names happen.

• Each update refreshes the whole page.
To improve Facebook accessibility we have designed and
implemented a set of several scripts which face such problems and
in particular they:

• Label text links in a correct way, so that none of them is
ambiguous.

• Remove redundant links and information (in particular
into Users’ profile pages).

• Label form elements.
• Remove useless images from Users’ profile pages and

from the Wall.
• Provide a more accessible chat.
• Block the automatic updating and allow users to choose

when refresh the pages.
• Assign and reorganize the headings hierarchy.
• Reorganize lists and nested list items.
• Reorganize the whole layout of the page, grouping in a

fixed area all the advertisements and all the information
which makes heavy the navigation with a screen reader.

• Provide a facilitated chat, on the basis of WAI-ARIA
live regions roles (adequately added by our transcoding
system).

When a blind user declares his/her preferences through the
GAPforAPE Preferences Panel, he/she could choose to substitute
images with textual alternatives or which is the preferred kind of
alternative (textual, auditory, etc.). Figure 4 shows a screenshot of
the original Facebook wall, while Figure 5 depicts the same wall
with the application of GAPforAPE scripts.

Now let us consider users with low vision. They face different
problems and it is very difficult to meet their needs, since there
are several kinds and levels of this visual disability. The
Preferences Panel allows users to set a wide group of
configurations in a very detailed manner, so as to better adapt the
Web pages and to better meet users’ needs.

An accessible version of Facebook User’s Profile page is shown
in Figure 6: through our GAPforAPE scripts the user has set
different text and background colors with a high contrast and a
bigger text size. In fact, the original color contrast is not enough
for user with low vision, while black background and yellow texts
provides a good level of contrast. Finally, Figure 7 shows another
accessible version of the same Facebook User’s Profile depicted
in Figure 6. The scripts applied in this case increase the text size
dimensions, without changing any color, and reorganized the Web
page layout so as to provide a simpler and easier to navigate
interface.

Figure 4. The Facebook wall.

Figure 5. The accessible Facebook wall.

Figure 6. The Facebook user’s profile adapted for low vision.

Figure 7. The Facebook user’s profile adapted for low vision.

6. RELATED WORKS
Other works have been conducted with the aim of improving the
accessibility of Web 2.0 applications and Web content developed
with AJAX technologies. This section is devoted to describe a
brief comparison between our proposed system and main related
works in this context.
In [30] the authors present an improvement of SADIe, a system
original developed to transform static Web pages (by
manipulating the DOM of the pages) with the aim of providing
content that can be better exploited by screen readers. The
proposed SADIe improvement uses CSS annotations to describe
the roles of Web page elements and to generate AxsJAX
framework code and insert it into Web pages. Thus assistive
technologies can interact with dynamic content, making it more
accessible to users with disabilities.
The authors of [31] propose the adoption of WAI-ARIA into the
Web-based eBuddy Instant Messaging platform (by using live
regions). The paper describes two configurations of live regions:

A. Configuration A announces all updates with a polite
priority for all marked live region DOM updates. Thus,
all intended visual updates in the client were exposed to
the user’s assistive technology in the order they were
received by the client. This solution is affected by the
provision of many unrelated updates without any

mechanism devoted to the identification of update
priority.

B. Configuration B solves the problem of many unrelated
updates by introducing a tally queue, with the aim of
filtering updates.

Main similarities and differences between these projects and our
proposed system are listed as follows:

• Our system applies content transcoding operations on
the basis of a user’s profile. This allows meeting users’
preferences and needs, with the aim of maximizing
their inclusion in enjoying Web 2.0 applications.

• Our system adapts Web content by transcoding the
DOM page, the CSS rules and Web page scripts.

• Our system adapts CSS rules, but it does not consider
CSS annotations in order to identify Web pages
elements roles and then to adapt the content on the
basis of them.

• Our system acts like a screen reader: when available, it
applies specific scripts to transcode a specific
application, otherwise it transcodes Web content on the
basis of a default set of scripts.

• Our system operates on live regions in a way which is
similar to the Configuration B proposed in [31].

7. CONCLUSION AND FUTURE
WORKS
GAPforAPE is a system based on a set of Web browser
extensions, with the aim of providing a content transcoding
system which adapts Web pages in order to meet each user’s
preferences and needs, enhancing Web accessibility.
GAPforAPE exploits scripts at client-side to provide “the best
Web content to each user”: the same Web page is delivered to any
user, but our Web browser extensions adapt it (transcoding Web
content, modifying CSS rules, the HTML DOM and also Web
pages scripts), so as to meet user’s needs and preferences. The
main idea is based on the GreaseMonkey extension and the
AccessMonkey Framework, but our system is enriched with a user
profiling system, which is based on the well-known standard IMS
ACCLIP, in order to clearly and deeply describe user’s needs and
preferences with the aim of better adapting the Web content.
Another improvement introduced by our system is the
identification of the requested Web application, so as to apply to
its content the adequate scripts transcoding. This allows to
effectively improving the accessibility of Web applications which
are strongly based on Web 2.0 technologies, such as Facebook
and other famous and widely used social networks. Indeed, it is
not always possible to automatically identify and modify AJAX
scripts in a unique, feasible and effective way. The idea of ad hoc
scripts has been inspired by the behavior of well-known screen
readers, such as Jaws.
This paper presents a use case of GAPforAPE in enhancing the
accessibility of one of the most common and widely used Web 2.0
social network: Facebook. In order to design and develop scripts
which improve its accessibility, it has been analyzed how people
with disabilities use their assistive technologies while they
navigate Facebook. This group of users has been involved during
the design phase and also during the testing one.

Some people with disabilities have been invited to report how
they use their assistive technologies/tools while navigating
Facebook and which barriers they have to face during this
activity. A second group of users with disabilities have been
involved in the test of ad hoc scripts to surmount barriers on this
Social Network. This test phase is still ongoing.
Future works will be mainly addressed to the integration of our
system into a wider set of browsers (including Chrome) and to the
definition of Web services which provide automatic content
transcoding, involving also multimedia ones, in order to overcome
JavaScript limits in providing complex content transformation.

8. ACKNOLEDGEMENTS
The authors wish to thank Ludovico Antonio Muratori and
Giorgia Cucchiarini for their precious support.

9. REFERENCES
[1] AbilityNet Web Accessibility Team. State of the eNation web
accessibility reports: Social Networking Websites. Available
from:
http://www.abilitynet.org.uk/docs/enation/2008SocialNetworking
Sites.pdf, 2008.
[2] Bigham, J.P., and Ladner, R.E. AccessMonkey: A
Collaborative Scripting Framework for Web Users and
Developers. In Proceedings of the 2007 international cross-
disciplinary conference on Web accessibility (W4A2007) (Banff,
Alberta, Canada, May 2007). ACM Press, New York, NY, 2007,
25-34.
[3] Bigham, J.P. AccessMonkey: enabling and sharing end user
accessibility improvements. ACM SIGACCESS Accessibility and
Computing - ASSETS 2007, No. 89 (Sep. 2007), 3-6.
[4] Bohman. P. Introduction to Web Accessibility. Available
from: http://www.webaim.org/intro/, 2003.
[5] Codeidol. Thinking about GreaseMonkey – Accessibility.
Available from:
http://codeidol.com/internet/Greasemonkey/Accessibility, 2011.
[6] Colajanni, M. and Lancellotti, R.. System Architectures for
Web Content Adaptation Services. In IEEE Distributed Systems
online, Vol. 5, No. 5, IEEE Communications Society, May 2004.
[7] DELI: A Delivery Context Library For CC/PP and UAProf.
Available from: http://delicon.sourceforge.net/, 2007.
[8] Facebook. Available from: http://www.facebook.com/, 2011.
[9] Garrett, J.J. AJAX: A new approach to Web applications.
Available from:
http://www.adaptivepath.com/ideas/essays/archives/000385.php,
2005.
[10] Greaspot. GreaseMonkey Firefox Extension. Available from:
http://greasemonkey.mozdev.org/, 2011.
[11] Hailpern, J., Guarino-Reid, L., Boardman, R., Annam, S.
Web 2.0: blind to an accessible new world. In Proceedings of the
18th International Conference on World Wide Web (WWW ‘09)
(Madrid, Spain, April 2009). ACM Press, New York, NY, 2009,
821-830.
[12] Harrison, L., and Treviranus, J. Accessible E-Learning -
Demystifying IMS Specifications. In Proceedings of World
Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education (ELEARN 2003) (Phoenix,
Arizona, USA, 2003). In A. Rossett (Ed.), 2000-2003.

[13] IMS Global Learning Consortium. IMS Learner Information
Package Accessibility for LIP. Available from:
http://www.imsglobal.org/specificationdownload.cfm, 2002.
[14] IMS Global Learning Consortium. IMS Learner Information
Profile (LIP). Available from:
http://www.imsglobal.org/specificationdownload.cfm, 2002.
[15] Isaías, P., Miranda, P., Pífano, S. Critical Success Factors for
Web 2.0 --- A Reference Framework. In Proceedings of the 3rd
International Conference on Online Communities and Social
Computing: Held as Part of HCI International 2009 (OCSC '09)
(San Diego, California, USA, Jul. 2009). Lecture Notes in
Computer Science, Springer, Berlin, Germany, 354-363.
[16] Freedom Scientific. JAWS for windows. Available from:
http://www.freedomscientific.com, 2011.
[17] Laakko, T., and Hiltunen, T. Adapting Web Content to
Mobile User Agents. IEEE Internet Computing, Vol. 9, No. 2,
IEEE Communications Society, March-April 2005, 46-53.
[18] Lembree, D. Accessible Twitter: Articles and Feedback.
Available from:http://www.accessibletwitter.com/articles.php,
2011.
[19] Mirri, S., Salomoni, P., Roccetti, M., Gay, G.R. Beyond
Standards: Unleashing Accessibility on a Learning Content
Management System. Transactions on Edutainment V, LNCS
6530, Springer, Berlin, Germany, Feb. 2011.
[20] Nevile, L., Cooper, M, Health, A., Rothberg M., and
Treviranus, J. Learner-centred Accessibility for Interoperable
Web-based Educational Systems. In Proceedings of the 14th
International World Wide Web Conference (WWW ‘05) (Japan,
May 2005). ACM Press, New York, NY, 2005.
[21] Open Mobile Alliance (OMA). User Agent Profile v. 1.1
Approved Enabler. Available from:
http://www.openmobilealliance.org/release_program/uap_v11.htm
l, 2002.
[22] Pilgrim, M. GreaseMonkey Hacks: Tips & Tools for
Remixing the Web with Firefox. O’Reilly Media, 2005.
[23] Salomoni, P., Mirri, S., Ferretti, S., Roccetti, M. A
multimedia broker to support accessible and mobile learning
through learning objects adaptation. ACM Transactions on
Internet Technology (TOIT) , Vo. 8 No. 2, ACM Press, Feb.
2008, 9-23.
[24] Santos, O. C., and Boticario, J. G. Improving learners’
satisfaction in specification-based scenarios with dynamic
inclusive support. In Proceedings of the 8th IEEE International
Conference on Advanced Learning Technologies (ICALT '08)
(Santander, Spain, Jul. 2008). IEEE Press, New York, NY, 2008,
491-495.
[25] Sun Microsystem Inc. JSR 188: CC/PP Processing. Available
from: http://www.jcp.org/en/jsr/detail?id=188, 2007.
[26] Userscripts.org. Power-ups for your browser: scripts tagged
accessibility. Available from:
http://userscripts.org/tags/accessibility, 2011.
[27] World Wide Web Consortium. Composite
Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0. Available from:
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115,
2004.

[28] Mozilla Developer Network. XML User Interface Language
(XUL). Available from: https://developer.mozilla.org/En/XUL,
2011.
[29] Zajicek, M. Web 2.0: hype or happiness? In Proceedings of
the 2007 International Cross-Disciplinary Conference on Web
Accessibility (W4A2007) (Banff, Alberta, Canada, May 2007).
ACM Press, New York, NY, 35-39.
[30] Lunn, D., Harper, S. and Bechhofer, S. Combining SADIe
and AxsJAX to Improve the Accessibility of Web Content. In

Proceedings of the 2009 International cross-disciplinary
conference on Web accessibility (W4A2009) (Madrid, Spain,
April 2009). ACM Press, New York, NY, 2009, 75-38.
[31] Thiessen, P., and Hockema, S. WAI-ARIA Live Regions:
eBuddy IM as a Case Example. In Proceedings of the 2009
International cross-disciplinary conference on Web accessibility
(W4A2010) (Railegh, North Carolina, USA, April 2010). ACM
Press, New York, NY, 2010.

