
WAI-ARIA Live Regions and HTML5
Peter Thiessen

eBuddy B.V.
Amsterdam, The Netherlands

thiessenp@acm.org

ABSTRACT
The W3C Web Accessibility Initiative - Accessible Rich Internet
Applications (WAI-ARIA) and HTML5 are exciting and
relatively new specifications with many new semantics that
together help describe the complex desktop like behavior found in
many Web applications. One aspect of ARIA, Live Regions,
define markup that an Assistive Technology can use to understand
how to treat a Document Object Model (DOM) update. Past work
has been done showing live regions effectively expose DOM
updates. However, little testing has been done on the combination
of HTML5 elements with live region attributes. Test cases as well
as the results of the test cases and vendor support are discussed in
this paper.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/ Machine Systems—
human factors, human information processing; K.4.2 [
Computers and Society]: Social Issues—assistive technologies
for persons with disabilities

General Terms
Human Factors, Design, User Agents

Keywords
Accessibility, Usability, Web 2.0, AJAX, ARIA, User Agents,
Blind Users, Dynamic Content, Screen Readers.

1. INTRODUCTION
The W3C Web Accessibility Initiative - Accessible Rich Internet
Applications (WAI-ARIA) [6] is an exciting and relatively new
specification that allows a developer to add semantics that help
describe the complex desktop like behavior found in many Web
applications. A section of ARIA, live regions, deals with
describing DOM mutations. For example, adding an aria-
live=polite attribute to a Web stock ticker widget would allow
any stock updates to be exposed to an Assistive Technologies
(AT) and be announced to the user. Throughout the development
of ARIA, live regions have undergone several changes.

WAI-ARIA became a draft in September 2006 originally with an
XML Name Space (NS) that allowed developers to extend and

customize the pre-defined roles. For example, a live region
attribute would be define as aaa:live=”polite”. At this point,
live regions had in increasing priority: off, polite, assertive, and
rude properties. Additionally, a channel property allowed
developers to map live region updates to different AT devices. In
2008, based on user feedback, it was decided that a majority of
Web developers were not comfortable with XML and HTML
attributes should be used instead. At this time, a live region
attribute would be defined as live=”polite”. In 2009, the
ARIA specification added an aria prefix to many elements, live
regions included. Fore example, a polite live region is currently
defined as aria-live=”polite”. Additionally the live region
rude property was removed as well as the channel property in an
effort to help simplify the number of live region settings. More
recently WAI-ARIA advanced to become a Candidate
Recommendation (CR). As a CR, developers are now encouraged
to use ARIA in their Web applications and can expect few future
changes to the specification.

During the development of WAI-ARIA, an up and coming
specification was also being developed, HTML5. The beginnings
of HTML5 began outside of the W3C but in 2007 the Web
Hypertext Application Technology Working Group (WHATWG)
began work on the W3C HTML5 specification. HTML5 adds
many exciting new elements and attributes that help better
describe a Web page or application. Additionally the specification
includes instructions for how vendors should implement new
technologies such as geolocation, web workers, local storage, and
so on. A growing concern among the ARIA community has been
the semantic conflicts [8] between HTML5 and WAI-ARIA. The
current strategy to deal with these conflicts has been to identify
the conflicts, and outline HTML5 to ARIA mappings. The
mappings can be found on the W3C HTML5 API Map site [7].

The HTML5/ARIA conflicts are of little concern to live regions
specifically, as no related conflicts exist. Additionally, despite the
many new technologies in HTML5, DOM mutation events will
continue to be exposed to browsers and consequently AT the same
as in HTML4. The reason for this consistency is the W3C DOM3
specification that maps out how events, such as dynamic
insertions, should be handled by a browser. This means that the
same dynamic Web page techniques for adding, removing and
modifying content used in HTML4 can be confidently used in
HTML5 documents. It is possible that in the future DOM
mutation events will be handled differently in HTML5 as
discussed on the WHATWG list [5] but as the specification now
stands; dynamic insertions are treated the same way in HTML4
and HTML5.

Neither of HTML5 nor ARIA are finalized specifications but
some vendors have begun supporting both specifications. At the
time of writing this paper no browser fully supports HTML5. To
better understand the current state of vendor support a set of test
cases have been created and is the major contribution of this
paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2011 – Communıcation, March 28-29, 2011, Hyderabad, India.
Co-Located with the 20th
International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 ...$5.00.

2. ARIA and HTML5 Support
As mentioned, neither ARIA nor HTML5 are a finalized
specification. Some vendors however have become early adopters
and are currently adding support for these specifications to their
applications.

2.1 Browser Support
Both HTML5 and ARIA are individually supported by most
recent browsers, or at least partially. The combination of the two
specifications, as mentioned, poses problems where semantics
conflicts exist. Both the Paciel Group [3] and the W3C [7] have
created convenient tables that help identify how the conflicting
semantics in HTML5 and ARIA can be mapped. With the
mapping of conflicts identified, browsers “simply” need to add the
related logic to their application code to expose this information to
AT. Mozilla for example, has already begun adding these maps by
adding landmark role maps [10] between HTML5 and ARIA to
Firefox 4 (FF4). Consequently, FF4 will be the focus of the Test
Cases discussed later in section 3 and 4.
As a side note, HTML5 has new elements that aid in accessibility.
The Paciel Group has created a convenient table that identifies the
related accessibility elements and the current state of browser
support for these elements. The table is available at:
http://www.html5accessibility.com.

2.2 Screen Reader Support
Screen reader support is even more limited than browser support
for HTML5 and ARIA. Screen reader vendors however have a
good excuse, screen readers depends on browsers to expose
accessibility semantics. As mentioned, browser support for
HTML5 and ARIA is only available in FF4. Information on what
screen readers are early adopters of HTML5 and ARIA is limited
and as a result will be left to manual testing and summarized in
section 4.

2.3 Library Support
Some JavaScript (JS) libraries and more specifically JS User
Interface (UI) libraries, add a layer of abstraction above manually
adding ARIA syntax. This abstraction allows a developer to add a
new widget to a Web application and have the related ARIA
attributes automatically added to that widget. Additionally, the
abstraction provides more convenient methods for setting and
getting ARIA attributes. Currently JQuery UI [2] and Dojo Dijit
[1] have ARIA support for many UI widgets. Unfortunately
neither UI library currently has support for ARIA and HTML5
elements.

The JQuery UI progress bar widget for example, adds all the
related ARIA attributes to an element but for that element to
receive the default styling information it must be a div element.
Replacing the div element with an HTML5 progress element
and manually adding styling information can easily solve this
problem. However, with the combination of semantics, ARIA and
HTML5 attributes could potentially conflict. The HTML5
attribute value could conflict with the ARIA aria-valuenow,
and the HTML5 attribute max could conflict with the ARIA
attribute aria-valuemax. These conflicts could cause
unexpected behavior in a browser.

Consequently, since no JS UI library has support for HTML5 and
ARIA at the time of writing this paper, no library will be used or
discussed in section 3 of the test cases.

3. TEST CASES
The test cases can be found at http://overscore.com/testcases and
include the core basic live region features including nesting,
prioritization, update relevance and atomic updates.

Past work on live region test cases has been by Charles Chen [4]
and is available at http://accessibleajax.clcworld.net. For a more
complete set of ARIA test cases beyond live regions, visit the
iCITA ARIA examples site at http://test.cita.uiuc.edu/aria.
Additionally, Jason Kiss has created a set of test cases specific to
HTML5 and ARIA landmarks and is available at
http://www.accessibleculture.org/research/html5-aria.

The scope of the test cases involve simple dynamic updates with
live region properties that are designed to test whether the update
is announced as expected. Each live region is contained within an
HTML5 element that has a mapping to an ARIA landmark role as
discussed in section 2.1. By combining live regions and HTML5
elements it will be possible to determine whether dynamic content
is currently accessible in the latest available technology.

Nesting or inheritance is an important live region feature that
allows developers to have child live region properties that either
inherit or overwrite parent live region properties where the closest
property to the update is given precedence. The nesting example
takes a parent section element with a polite property, along with
child a nav element aria-live=off attribute, and a second child
article element with an aria-live=assertive property.
Dynamic updates counting from 1 to 10 continuously occur in the
two child elements. Only the child element with an assertive
element should be announced. This example tests whether either
child will incorrectly inherit the polite property from the parent.

The ability to prioritize live region updates is an important feature
allowing a developer to customize how important an update is.
The prioritization example has three article elements each with a
different live region property of off, polite, and assertive. Three
counters counting from 1 to 10 dynamically update the three live
regions. This test is somewhat subjective but there should be
enough updates to determine whether the assertive updates are
announced before the polite updates and that the off updates are
not announced.

Not all live region updates are desirable to be announced such as
the removal of content. The aria-relevant attribute allows a
developer to set the type of updates to be announced including
text, removals, and additions. The relevant example has an
assertive live region contained in a section element. A form
with checkboxes is made available to allow a user to customize
the relevant properties on the live region. Once the user clicks the
Run Test button, the live region is populated with a roster of
users, then a few seconds later the status text of each user in the
roster is updated, and the test ends with the each user being
removed from the roster. Only the related type of live region
updates should be announced.

The surrounding text of a live region update is sometimes
important and aria-atomic allows a developer to specify this.
An aria-atomic=true property will treat updates to the live
region as a whole and not just the updated area. The atomic
example has two polite live regions contained in an article
element, each with a different team and related score. A form with
a true and false radio box allows a user to set whether the updates
should be treated as atomic or not. If the user set atomic to true,
then the team name and the new score for each update should be

announced. If the user set atomic to false, then only the score
should be announced.

For a complete set of ARIA specific test cases visit the CodeTalks
set of ARIA test cases available at http://wiki.codetalks.org.

4. TEST CASE RESULTS
The test cases were against FF4 beta using a combination of Jaws
12, Windows Eyes7, and NVDA 2010. FF4 was chosen because
as of its partial support for HTML5 and ARIA mappings. The
mentioned screen readers were chosen based on their popularity.
For each test case I followed the instructions on each test cases
listening for the order of elements and updates announced or
depending, not announced. The table 1 below gives a summary of
the test results.

Table 1. Screen Reader Support with FF4 beta
 NVDA 2010 Jaws 12 Window-

Eyes 7
Inheritance partial partial fail
Prioritization fail fail fail
Relevant partial partial fail
Atomic partial pass fail

The left most column identifies the related test case and the top
row identifies the related screen reader for a run test case. No
screen reader combination with FF4 fully supports the new
HTML5 to ARIA mappings. These tests cases did not test whether
the semantic mappings are accurate but whether an AT could
simply understand a live region update within the new HTML5
elements. Also note that the table appears to be pointing solely to
an AT for a pass/fail but rather; the table should be read as the
combination of FF4 with that screen reader has a pass/partial/fail
result.

Both NVDA and Jaws announced a majority of the dynamic
updates regardless of the live region settings. Both screen readers
had issues with nesting, prioritization, and the relevant property.
In the nesting test cases, neither AT took the closest defined aria
live region property but instead inaccurately kept the parent
aria-live=polite property. The prioritization test case caused
both NVDA and Jaws to fail. The updates would only be
announced if the aria-live attribute was moved from the child
element to the parent element. The aria-relevant test case caused
both screen readers to fail when announcing removals of
elements. Other combinations with text and additions were
successfully announced. A note to developers: be careful to trim
any trailing white space within the aria-relevant value as this
caused AT to ignore the related properties. For the aria-atomic
test case, only Jaws successfully announced the entire region
where an aria-atomic=true update occurred.

Windows Eyes 7 did not pass any of the test cases.

The take away from the test results should be that support for
HTML5 and ARIA live regions is currently at an early stage.
However, all the needed technology in place and the
specifications are ready for early adopters to begin developing
accessible HTML5 applications.

5. CONCLUSION
The test cases cover live region settings and are intentionally
simple to help isolate whether basic updates are announced by
vendors. Additionally the HTML5 elements used in the test cases
are restricted by the currently available HTML5 to ARIA mapped
elements.

More advanced test cases are in the works that will focus on
heuristics. One example is a chat test case that intentionally
overloads an AT with different priority updates. This test will help
determine how well the ARIA specification and AT handle floods
of information updates. Another test case will be an automated
form input with new HTML5 form elements/attributes that
simulates a user entering data with error message updates. This
test case will help test the accessibility of the new form elements.

As mentioned in the results of section 4, the test cases show the
combination of HTML5, ARIA, browsers, and screen readers are
at an early stage of development. The vendor combinations
resulted in most test cases failing. Though, this failing of some
properties should not deter adoption of ARIA live regions as basic
DOM updates were shown to continue to be announced accurately
by AT. Hopefully developers will begin implementing accessible
HTML5 applications with live regions and help reveal edge cases
in the WAI-ARIA 1.0 CR specification.

Internet Explorer 9 was ignored in the test cases but should not be
ignored in the future when running test cases. IE9 RC was
recently released and is a more standards compliant browser than
previous versions of IE. For example IE9 currently supports the
W3C DOM event model that will simplify cross-browser
development. It is hard to say whether or not IE9 will follow a
similar HTML5 to ARIA semantics mapping strategy to FF4.
Regardless, the future of accessibility support in IE9 looks very
promising.

6. ACKNOWLEDGMENTS
My thanks to eBuddy for supporting my work and having an open
mind about accessibility in a highly competitive market. I also
thank David Sloan for helping me come up with the idea for this
paper.

7. REFERENCES
[1] Dojo Toolkit. “Rich UI Widgets”. 18 February 2011.

<http://dojotoolkit.org/widgets>
[2] JQuery User Interface. 18 February 2011.

<http://jqueryui.com>
[3] Paciel Group. "HTML5 Accessibility Support Work

Arounds". 18 February 2011.
<http://www.html5accessibility.com/index-aria.html>

[4] Thiessen, Peter, Chen, Charles. “Ajax Live Regions: Chat as
a Case Example”. Proceedings of the 2007 international
cross-disciplinary workshop on Web accessibility (W4A),
2007.

[5] WHATWG Public Mailing List. “public-webapps@w3.org
from April to June 2009 by date”. 4 January 2011
<http://lists.w3.org/Archives/Public/public-
webapps/2009AprJun>

[6] World Wide Web Consortium (W3C). “Accessible Rich
Internet Applications (WAI-ARIA) 1.0: W3C Candidate
Recommendation 18 January 2011”. 4 January 2011
<http://www.w3.org/TR/wai-aria/>

[7] World Wide Web Consortium (W3C). "HTML to Platform
Accessibility APIs Implementation Guide". W3C Editor's
Draft, 17 February 2011. 18 February 2011.
<http://dev.w3.org/html5/html-api-map/overview.html>

[8] World Wide Web Consortium (W3C). “HTML5: Editor's
Draft 18 January 2011: 3.2.7 Annotations for assistive
technology products (ARIA)”. 4 January 2011
<http://dev.w3.org/html5/spec/Overview.html#annotations-
for-assistive-technology-products-aria>

[9] World Wide Web Consortium (W3C). “HTML5: Editor's
Draft 18 January 2011”. 4 January 2011
<http://dev.w3.org/html5/spec>

[10] Zeh, Marco. "New accessibility support for HTML5
elements and attributes". 18 February 2011.
<http://www.marcozehe.de/2010/11/09/new-accessibility-
support-for-html5-elements-and-attributes>

