
AJAX Time Machine

Andy Brown and Simon Harper
School of Computer Science

University of Manchester
Manchester, UK

[andrew.brown-3 | simon.harper]@manchester.ac.uk

ABSTRACT
Many modern Web pages update parts of their content, and
this is often automatic. This allows a ‘clean’ user-interface
and information-rich pages. Keeping up with updates or re-
covering from mistakes can be a problem, however, as it is
often not possible to revert a page to a previous state. This
can be particularly problematic for users with poor literacy
or cognitive disabilities, the elderly, or for users of assistive
technologies. For pages that use these technologies to be
truly accessible for all, they must afford users sufficient con-
trol over updates, to allow them to read and use the informa-
tion available before it disappears forever. While applying
good practice during page design and implementation can
provide this, there are many pages for which information
changes too rapidly for the user. We propose to supplement
assistive technologies with a Web page ‘time machine’ that
will allow users to review all the states a page has been in,
and to step backwards or forwards through these states at
their own pace.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/ Machine Systems—
human factors, human information processing ; H.5.4 [
Information Interfaces and Presentation]: Hypertext/
Hypermedia—user issues, navigation; K.4.2 [Computers
and Society]: Social Issues—assistive technologies for per-
sons with disabilities

General Terms
Human Factors

Keywords
Web 2.0, AJAX

1. INTRODUCTION
Updating pages are now a well-established feature of the

Web. Users are expected to cope with them, indeed embrace

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2011 - Communication, March 28-29, 2011, Hyderabad, India. Co-
Located with the 20th International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 ...$5.00.

them and benefit from them, and many do. For others, how-
ever, these features have the potential to be confusing and
make it difficult for them to complete their tasks.

Chadwick-Dias et al examined the issues faced by older
users with Web 2.0 [1]. One of the problems they identi-
fied was that “there is much inconsistency in how links and
other elements look and act”, and older users “often had no
idea what is actionable on a page”. They also found prob-
lems with the controls embedded in Web 2.0 pages: “many
widgets have small controls (arrows, +/−, etc.) that are
often very difficult to see and with which to interact”, and
noted a general hesitancy about the way in which these peo-
ple used the Web. Hesitancy was also noted in older users
by Lunn and Harper [3], and is indeed a behaviour typical
of older people [4], who also show difficulty in maintaining
attention, focus, and concentration on tasks where there is
a lot of distracting information [2].

Zajicek looked at the potential impact of Web 2.0 on
accessibility in general [6]. While many of the problems
she identified with AJAX are being improved with improve-
ments in screen readers and the use of WAI-ARIA markup,
these clearly remain an issue for many users, particularly
those who do not have the money, time, or know-how to
keep upgrading to the latest software. She also identifies
the problem of remembering new features, a problem which
relates to both the functionality of the pages themselves and
the additional commands required to handle dynamic con-
tent with a screen reader.

The issues of identifying and using controls correctly ap-
plies not only to older users, but to many others, includ-
ing those using screen readers, and people with cognitive
or motor impairments [5]. It is clearly difficult for many
people to use Web applications, and it is unsurprising that
their behaviour has been described as hesitant. We propose
that part of the reason for this is an inability (or at least
a perceived inability) to undo many actions. Currently, a
wrongly-remembered action or an input error can lead to
changes to a page that are difficult, or perhaps impossi-
ble, to undo. Problems with automatic updates can also be
identified — in these cases, sections of a page change con-
tent without any input from the user, e.g., to give a running
commentary on a sports fixture. In this situation, it is likely
that users who cannot process the information in sufficient
time will not benefit fully from the page.

We may now list several ways in which different users may
benefit from the ability to undo or review changes to a dy-
namic Web page:

• The ability to undo the effects of remembering and using

the wrong action, or activating a control by mistake.
• The ability to follow a series of automatic changes at a

pace set by the user.
• Providing accessible notification of changes.
• A potential decrease in users’ hesitance.

In this paper we present a brief analysis the problem and
describe an implementation we are in the process of build-
ing. First we consider what the requirements of such a sys-
tem are: what must it be able to do to help a range of
users cope with dynamic content (section 2)? Second, we
describe our prototype, giving an overview of its design and
current capabilities (section 3), and finally outline our plans
for development (section 4).

2. REQUIREMENTS
From the understanding of the problems faced by users

and the potential benefits offered by an undo/replay sys-
tem for dynamic pages, it is possible to enumerate a set of
requirements. Such a system must:

1. Not interfere with normal page operation.
2. Keep the user informed of the status of the page or region:

have there been any updates, and if so, how many?
3. Handle updates as perceived by the user, i.e., at a high-

level.
4. Record all the content, including that input by the user.
5. Enable output in different forms, to suit different types

of user.

In addition, we note that it is also highly desirable that
the system can retain interactivity during replay (i.e., fully
revert to a previous state). However, several issues make
this a difficult proposition, and a system that does not have
this ability could still benefit users.

3. PROTOTYPE
Our implementation, known as the AJAX Time Machine,

is a prototype of a system that we intend to fulfil many or all
of the requirements outlined above. It currently takes the
form of an extension to the Google Chrome browser, and its
primary aim is currently to test the mechanisms for record-
ing and replaying updates. As such, its rendering is aimed
only at sighted users, and its user-interface is a simple one
using the mouse.

In outline, the AJAX Time Machine works by enabling
users to select regions of a page for update recording. When
this is done, a small visual user-interface is injected into the
page. This contains links that control the content of the
region, showing how many updates have occurred and al-
lowing users to step backwards and forwards through them.
A browser toolbar button also opens a popup showing a
summary of all updates on a page — Figure 1 shows the
updates that occurred as a result of clicking the ‘News’ tab
on the Yahoo! UK home page.

3.1 User Interface
Despite the fact that the user interface is not yet optimised

for those who would most benefit from such technology, de-
scribing it will make the explanations of the techniques used
for recording and replaying updates clearer. The GUI region
(shown in Figure 2) contains 4 sections:

• A left arrow. Clicking on this changes the region content
back one state (unless viewing the original version).

Figure 1: The update summary popup: the user
has clicked the News tab on the Yahoo home page.

Figure 2: The GUI of the prototype. The user is
viewing the page as it was after the second of three
updates.

• Context information. The total number of states that
have occurred is displayed, together with the number of
the one currently being displayed. State 1 is the region as
it was when the user started recording.

• A right arrow. Clicking on this changes the region content
forward one state (unless viewing the most recent version).

• Close button. Clicking this resets the region to its most re-
cent state, stops recording and removes the user interface.

Scrolling the mouse wheel while the pointer is over the
GUI region will also move the user backwards and forwards
through the page history.

3.2 Initiation
Although we are investigating the possibility of automati-

cally identifying and recording updating regions, the AJAX
Time Machine prototype currently works by allowing users
to specify regions to record. This is done using a right click
on the page, upon which the region clicked on is highlighted
briefly, and the user is given the option to add it as a live
region. If the user opts to do this, then a new HTML <div>

element (the ‘container <div>’) is inserted into the DOM
tree between the live region node and its parent (see figure
3). This is styled with a border, to show the user which
region has been selected, and contains not only the content
(within its own <div> — the ‘live content <div>’), but also
a GUI <div> (as described in section 3.1). Once the DOM
has been suitably modified, the current content of the region
is recorded. If the close button on the region user interface
is activated, the DOM tree reverts to its original structure,
but with the latest content. Styling is achieved with CSS
injected into the <head> element.

3.3 Recording Updates
Updates are detected using the DOMMutationEventLis-

teners: Listeners for DOMNodeInserted, DOMNodeRemoved

(a) Initial DOM (b) DOM after GUI insertion

Figure 3: DOM modification to show a user interface, and enable manipulation of the updating content
element.

and DOMCharacterDataModified events are added to the
document. Each time an update occurs it is handled by
these listeners, which test if the changes have occurred in
any of the recording regions and test if the changes are
meaningful. Meaningful updates are considered to be those
where a typical user would identify a change, so do not in-
clude modifications to comment nodes, hidden nodes (i.e.,
parts of the document which are styled to be invisible, such
as style=‘‘display: none’’), changes in white space, or
updates that do not actually change the content (e.g., a reg-
ularly updating sports score, where the score does not nec-
essarily change for each update). The content is recorded by
simply storing the HTML and the input values. A short de-
lay between receiving the DOMMutationEvent and record-
ing the event helps group the low-level updates into changes
as they appear to the user (see section 4.1.2).

3.4 Replaying Updates
Replaying is controlled by the GUI, as described in sec-

tion 3.1. Currently, the AJAX Time Machine displays old
states of a page region by simply replacing the content of
the ‘content <div>’ with the HTML and input area values
recorded for a given state. Thus, the user is able to view the
original state in the context of the whole page. Note that
if there are multiple updating regions selected on the page,
the user replays them independently.

The AJAX Time Machine continues to monitor for up-
dates while the user is browsing. This is potentially valuable
for automatic updates where the user needs to read a whole
sequence but, for example, cannot read quickly enough to
keep up to date. In these cases the new content is recorded,
while the region continues to display the state specified by
the user. This requires some careful design, as content re-
placement caused by browsing the history triggers DOM-
MutationEvents, which have to be distinguished from those
that are caused by genuine updates.

4. DISCUSSION AND FUTURE WORK
This prototype demonstrates that it it technically feasible

to record a page as it updates, and allow the user to review
the changes. There remain many challenges, however, both
technical and relating to presentation, in particular how the
recordings may be presented best to users who will benefit

most. In this section, we discuss these problems, and pro-
pose some ideas that should improve the accessibility of this
type of information.

4.1 Technical and Design Challenges

4.1.1 Defining regions to record
Manual selection of a region is a surprisingly difficult task,

as users must click on an area of the page that contains the
target region, but not on any of its children. A second issue
with manual selection is that it will not capture unexpected
updates, which are probably those that will most need to
be reviewed. There are two alternative solutions to these
problems: record the entire page, or automatically detect
and record individual regions. The former has the advan-
tage of recording changes in context, e.g., if updates are
inter-related, and simpler user interaction (only one set of
controls), while the latter allows for situations where users
may want to review one section of a page while editing (e.g.,
completing a form) another. Disadvantages of these ap-
proaches include more demand on the computer (memory
and processor), which may prove problematic on complex
pages and/or for users with older hardware. This may be
reduced for the approach of recording regions by asking the
user if a region should be recorded, but this comes at the
expense of considerable interruption to the user.

4.1.2 Chunking Updates
‘Chunking’ is the term we use to describe the process of

combining low-level updates into coherent units, as would be
perceived by users. The problem arises because DOMMu-
tationEvents are generated for each leaf node in the DOM,
while these are usually invisible (and irrelevant) to users.
For example, removal of a section of page generates events
for each paragraph removed and for each white space node
between paragraphs, while the user perceives the section
vanishing as a single event. This poses difficulties when de-
veloping a tool such as the AJAX Time Machine, as users
will want to replay the changes as they perceived them, not
in micro-steps as detected by the DOM, so it is necessary to
group the changes.

The only information that is available to do this is the
time of the update and the region of the tree it affected.

The approach in the prototype is to pause briefly (currently
100ms) after an event is detected before recording. This
allows related events to occur and captured as one chunk;
the remaining low-level events from the change are ignored
as no changes are detected. This approach is effective for
DOMNodeRemoved events, as these occur in close succes-
sion, but DOMNodeInsertion events may be delayed by fac-
tors such as download time, so a more effective system may
be necessary.

4.1.3 Presentation
One further technical challenge is to present the user with

controls that are clear, understandable, and usable, while
not interfering with the underlying page. The current im-
plementation, with a small GUI inserted into the page is
relatively clear in how it should be used, but the simple
CSS used to generate it does not always display it correctly
on ‘real-world’ pages. It also has the potential to obscure
important information. Development of a more robust user
interface is necessary. It should be noted that this problem
is simplified if the whole page is recorded (see the discussion
in section 4.1.1), as a single set of controls will suffice, and
may be located off the page.

4.1.4 Reverting Changes
While many updates are simple changes to the DOM, oth-

ers involve changes that are difficult to identify or revert,
e.g,. information may have been updated on the server. Al-
though reverting to an earlier state of the page that is fully
interactive is not likely to be achievable, it may be possible
to identify when this is the case, and inform users that it is
only possible to review earlier states.

4.2 Supporting Users
The premise behind this development is that some users

find it difficult to use pages with dynamic content, and that
the ability to review or return to previous states of the page
would be useful. As discussed in the introduction, those
users most in need of this type of assistance are likely to
be those with other needs, such as users of screen-readers
or screen magnification tools, cognitively impaired users or
the elderly. A tool such as this must therefore support these
users in the way it presents information and in the design
of its user interface. The key aims are to:

• Make it clear that updates have occurred.
• Enable users to review previous states of a page.
• Make previous states fully interactive, i.e., behave as if

they had never left that state.

4.2.1 Apply WAI-ARIA markup
WAI-ARIA is a collection of markup from the World Wide

Web Consortium (W3C) Web Accessibility Initiative (WAI)
that can be applied to Web applications to make them more
accessible. The principle is that the markup makes the be-
haviour of the application explicit, where it might otherwise
be implicit. For example, standard HTML components may
be made to behave like a tree using styling and scripting, and
while this may be obvious when presented as intended it is
not otherwise (e.g., in audio); WAI-ARIA gives developers
a method for making the role of the components explicit.
Applying ARIA markup to the injected code will make it
easier for screen reader users to understand when changes
have occurred (on pages that don’t use ARIA), as well as to

control and explore the replays.

4.2.2 Keyboard controls
Although the prototype UI is mouse-only, keyboard con-

trol is essential for many types of user. This is simple to
achieve, but complications may arise. For example, rich
internet applications will typically have keyboard controls
built in, and using simple, consistent controls for the AJAX
Time Machine, while avoiding conflict with pages may prove
difficult.

4.2.3 Presentation
While the current implementation replays updates by sim-

ply replacing the current state of a region with a previous
state. Understanding updates with a more narrative struc-
ture, however, might be supported better by showing all
versions of a section together. Additional support could be
provided by making the changed parts of a region more ex-
plicit using some form of highlighting.

5. CONCLUSION
Many different types of users can potentially benefit from

the ability to undo actions on a page, or review previous
states. We have built a prototype that demonstrates the
idea, and shows that it is feasible. We have also identified
several areas for development — moving the implementation
to record the page as a whole appears to be necessary. Fur-
ther work is required to implement these, and to undertake
user testing.

6. ACKNOWLEDGEMENTS
This work is funded by a Google research award.

7. REFERENCES
[1] A. Chadwick-Dias, M. Bergel, and T. Tullis. Senior

surfers 2.0: A re-examination of the older web user and
the dynamic web. In C. Stephanidis, editor, Universal
Acess in Human Computer Interaction. Coping with Di-
versity, volume 4554 of Lecture Notes in Computer Sci-
ence, pages 868–876. Springer Berlin / Heidelberg, 2007.

[2] C. J. Ketcham and G. E.
Stelmach. Age Related Declines in Motor Control. In
J. E. Birren and K. W. Schaie, editors, The Handbook
of Psychology and Aging, chapter 13, pages 267–287.
Academic Press Inc, London, UK, 5th edition, 2001.

[3] D. Lunn and S. Harper. Using Galvanic Skin Response
Measures to Identify Areas of Frustration for Older Web
2.0 Users. In W4A ’10: Proceedings of the 2010 Interna-
tional Cross Disciplinary Conference on Web Accessibil-
ity, pages 1–10, New York, NY, USA, May 2010. ACM.

[4] D. Memmert. The Effects of Eye Movements,
Age, and Expertise on Inattentional Blindness.
Consciousness and Cognition, 15(3):620–627, 2006.

[5] S. Trewin, S. Keates, and K. Moffatt. Developing
steady clicks: a method of cursor assistance for people
with motor impairments. In Assets ’06: Proceedings
of the 8th international ACM SIGACCESS conference
on Computers and accessibility, pages 26–33, 2006.

[6] M. Zajicek. Web 2.0: hype or happiness? In
Proceedings of the 2007 international cross-disciplinary
conference on Web accessibility (W4A), W4A
’07, pages 35–39, New York, NY, USA, 2007. ACM.

