
On Web Accessibility Evaluation Environments

Nádia Fernandes, Rui Lopes, Luís Carriço
LaSIGE/University of Lisbon
Campo Grande, Edifício C6
1749-016 Lisboa, Portugal

{nadia.fernandes,rlopes,lmc}@di.fc.ul.pt

ABSTRACT
Modern Web sites leverage several techniques (e.g. DOM
manipulation) that allow for the injection of new content
into their Web pages (e.g., AJAX), as well as manipulation
of the HTML DOM tree. This has the consequence that
the Web pages that are presented to users (i.e., browser
environment) are different from the original structure and
content that is transmitted through HTTP communication
(i.e., command line environment). This poses a series of
challenges for Web accessibility evaluation, especially on au-
tomated evaluation software.
This paper details an experimental study designed to un-

derstand the differences posed by accessibility evaluation in
the Web browser. For that, we implemented a Javascript-
based evaluator, QualWeb, that can perform WCAG 2.0
based accessibility evaluations in both browser and com-
mand line environments. Our study shows that, in fact,
there are deep differences between the HTML DOM tree
in both environments, which has the consequence of having
distinct evaluation results. Furthermore, we discovered that,
for the WCAG 2.0 success criteria evaluation procedures we
implemented, 67% of them yield false negative answers on
their applicability within the command line environment,
whereas more than 13% of them are false positives. We dis-
cuss the impact of these results in the light of the potential
problems that these differences can pose to designers and
developers that use accessibility evaluators that function on
command line environments.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia—User issues; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Evaluation/
methodology ; K.4.2 [Computers and Society]: Social Is-
sues—Assistive technologies for persons with disabilities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2011 - Technical Paper, March 28-29, 2011, Hyderabad, India. Co-
Located with the 20th International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 ...$5.00.

General Terms
Measurement, Human Factors.

Keywords
Web Science, Web Accessibility, Web Accessibility Evalua-
tion Environments, Automated Evaluation.

1. INTRODUCTION
Accessibility on the Web is often framed in a tripartite

way: Web page semantics, assistive technology (AT), and
Web browser capabilities. Given an arbitrary Web page, its
content is exposed by the Web browser in such a way that
AT aids users with disabilities understanding and interact-
ing with it. Existing best practices for Web accessibility
adequacy are based on these two factors: WCAG [4] defines
best practices for Web page semantics, whereas UAAG [6]
dictates how Web browsers must be implemented in order
to leverage AT.
These best practices can also be applied as checklists for

evaluation. In the case of WCAG, they can be used to as-
sess how accessible a Web page is. This evaluation procedure
can be performed (1) with users, such as usability tests, (2)
through expert analysis, and (3) with the aid of automated
evaluation software. While usability tests and expert analy-
sis are focused on the rendered state of the Web page within
the browser, most implementations of automated evaluation
just focus on the Web page content that is sent through the
first HTTP request.
With the ever growing dynamics of Web pages (e.g., AJAX

and other Javascript techniques), the state of a Web page’s
content, structure, and interaction capabilities are becom-
ing different in what regards to their initial HTTP com-
munication. Several dynamic content techniques allow for
displaying/hiding information, injecting new content, and
even removing content from Web pages. Since AT is capa-
ble of interacting with this kind of content through modern
Web browsers, it is imperative for automated evaluation to
be applied to the content Web browsers display.
Following this line of thought, this paper presents an ex-

perimental study on automated evaluation of Web accessi-
bility at two different evaluation environments: Command
Line – representing the typical environment for automated
evaluation, which includes existing evaluators that can be
accessed online – and Browser, the environment where users
interact with the Web. Our study centres on the appli-
cation of the same implementation techniques for evaluat-
ing a representative subset of WCAG 2.0, to understand

the impact of evaluating the accessibility of Web pages in
the browser environment. Next, we discuss the typical Web
browsing process that happens when end-users interact with
Web pages.

2. WEB BROWSING PROCESS
As of today, the dynamics of Web pages centre around a

sequence of communication steps between the Web browser
and Web servers, as depicted in Figure 1.

Browser Server

Request Web page

Web page

time
Request resources

Resources

...

AJAX Request

Response

Figure 1: Web Browsing Resource Interaction

This communication takes the form of request-response
interactions, focusing in three main areas:

• Web page: this is the main resource that defines the
skeleton of the content that is being presented in the
Web browser;

• Resources: these complementary resources include im-
ages and other media, stylesheets, and scripts that are
explicitly specified in the Web page’s structure (i.e.,
with proper HTML elements);

• AJAX : these resources are transmitted during or after
the browser triggers the loading events for a Web page.

This is a mixture between the architecture of the Web
(request-response nature of Web pages and Resources) and
theWeb page loading process within a browser (e.g., AJAX).
Next, we further detail these aspects.

2.1 Architecture of the Web
The architecture of the Web [9] is composed by servers,

URIs, and user agents. User agents (such as Web browsers)
communicate with servers to perform a retrieval action for
the resource identified by the URI. A server responds with a
message containing a resource representation. As depicted
in Figure 1, in the case of Web browsers, a Web page is
represented not just by its HTML content, but also by a set
of ancillary resources. Due to this increased complexity on

handling resources and their representation for users, Web
browsers process all the resources through adequate tech-
nologies (e.g., executing Javascript), which results in the
transformed HTML document that is presented to users.

2.2 Web Page Loading Process
After all resources are successfully delivered to the Web

browser, four steps are sequentially executed before users are
able to interact with the Web page, as depicted in Figure 2:

Requests Parsing DOM
Ready

DOM
Load

Page
Available

Figure 2: Web Page Loading Process

The first step in the Web page loading process, Requests,
concerns getting all resources that compose the Web page.
After that, the Web browser parses these resources, i.e.,
build the HTML DOM tree, the CSS object model, and con-
structing the execution plan based on the existing scripted
behaviours. Afterwards, the browser triggers two events in
sequence: DOM Ready and DOM Load. The former is trig-
gered when the HTML DOM tree is ready, whereas the sec-
ond is triggered after all resources are ready (CSS, images,
etc.)
Web pages typically attach a set of behaviours to these

events. This way, scripts are executed before the user gets
the chance to start interacting. Since the HTML DOM tree
is available for manipulation by these scripts, they can po-
tentiate the addition/removal/transformation of this tree.
Consequently, the Web page a user is presented might be
from slightly too heavily different from the URI’s resource
representation that is initially transmitted to the browser
from the Web server.

2.3 Research Hypothesis
In the light of the way browsers interpret Web pages, as

detailed above, and taking into account that users with dis-
abilities interact with these Web resources through browsers
and AT, we devised the following research hypothesis that
serves as the basis for our experimental study:

Evaluating Web content in the browser provides
more accurate and more in-depth analysis of its
accessibility.

To investigate the outcome of this hypothesis, we estab-
lished the following assumptions: (1) there is the need for
understanding what are the differences in the HTML be-
tween environments; (2) discover the limitations of acces-
sibility evaluation in different environments; (3) evaluation
procedures must be the same in all environments for we can
compare them.
Next, in the light of this hypothesis and corresponding

assumptions, we present the related work on Web accessibil-
ity evaluation particularly focusing on automated evaluation
procedures, as well as in-browser evaluations.

3. RELATED WORK
To help create accessible Web pages, WCAG define guide-

lines that encourage creators (e.g., designers, developers) in

constructing Web pages according to a set of best practices.
If this happens, a good level of accessibility can be guaran-
teed [8, 11]. Although these guidelines exist and are sup-
posed to be followed by the creators, most Web sites still
have accessibility barriers making its utilization very diffi-
cult or even impossible for many users [8]. Thus, WCAG can
also be used as a benchmark for analysing the accessibility
quality of a given Web page.
Web Accessibility Evaluation is an assessment procedure

to analyse how well the Web can be used by people with dif-
ferent levels of disabilities [8]. Optimal results are achieved
with combinations of the different approaches of Web acces-
sibility evaluation, taking advantage of the specific benefits
of each of them [8]. Therefore, conformance checking [2],
e.g., with the aid of automated Web accessibility evaluation
tools can be an important step for the accessibility evalua-
tion.

3.1 Automated Accessibility Evaluation
Automated evaluation is performed by software, i.e., it is

carried out without the need of human intervention, which
has the benefit of objectivity [11]. However, this type of
assessment has some limitations as described in [10]. To
verify where and why a Web page is not accessible it is im-
portant to analyse the different resources that compose the
Web page. This analysis brings the possibility of measur-
ing the level of accessibility of a Web page, with the aid of
automated Web accessibility evaluation software. Examples
include Failure Rate [12], UWEM [13], and WAQM [14].

3.2 Accessibility Evaluation in the Browser
In the past, the predominant technologies in the Web were

HTML and CSS, which resulted in static Web pages. To-
day, on top of these technologies, newer technologies appear
(e.g., Javascript), and, consequently, the Web is becoming
more and more dynamic. Nowadays, user actions and/or
automatically triggered events can alter a Web page’s con-
tent. Because of that, the presented content can be different
from the initially received by the Web browser.
However, automatic evaluations do not consider these changes

in the HTML document and because of that results could
be wrong and/or incomplete. Since expert and user evalu-
ation are performed in the browser, they do not suffer with
these changes. To solve this problem, the accessibility eval-
uation should be applied to new environments, i.e., in the
Web browser context.
The importance of the Web browser context in the evalu-

ation results is starting to be considered and is already used
in three tools named Foxability, Mozilla/Firefox Accessibil-
ity Extension, WAVE Firefox toolbar [7] and the list of tools
provided by Web Accessibility Initiative (WAI) [1]. How-
ever, these tools focus only evaluating Web pages according
to WCAG 1.0. Furthermore, since the fist three evaluation
procedures are embedded as extensions, they become more
limited in terms of their application in the command line
environment.
Also, since these tools focus on providing developer-aid

on fixing accessibility problems, the resulting outcomes from
evaluations are user-friendly, thus less machine-friendly. There-
fore, if taking into account the proposed goal of this paper,
it becomes cumbersome to define an experiment that can
leverage the evaluation knowledge embedded in these tools.
This browser paradigm – as called in [7] – is still nascent.

Until now, to the best of our knowledge, differences between
results in different evaluation environments are not clear.
To perform correct comparisons, it must be guaranteed that
tests are implemented in different environments in the same
way, by reducing implementation bias.
Furthermore, we wanted to make a fair comparison be-

tween HTML pre and pos-processors evaluators. Having a
single framework, provided that capability.

4. WEB ACCESSIBILITY EVALUATION
ENVIRONMENTS

Our study is emphasized in two main environments: Com-
mand Line, and Browser. In the Command Line environ-
ment, evaluation is performed on the HTML document that
is transmitted initially in an HTTP response, whereas in the
Browser environment, evaluation is targeted at the trans-
formed version of the HTML document.
Consequently, to better grasp the differences between these

environments, we defined an architecture that allows for
leveraging the same evaluation procedures in any environ-
ment, as detailed below. Afterwards, we explain how we im-
plemented the ideas from this architecture, as well as how
it was validated.

4.1 Architecture
The architecture of the evaluation framework is composed

by five components, as depicted in Figure 3: the QualWeb
Evaluator, Environments, Techniques, Formatters, and Web
Server.

QualWeb
Evaluator

Environments

Techniques Formatters

WCAG 2.0 EARL

... ...

Command Line Browser

Web
Server

Figure 3: Architecture of the Evaluation Framework

The QualWeb Evaluator is responsible for performing the
accessibility evaluation of Web pages, through the features
provided by the Techniques component (e.g., implementa-
tion of WCAG 2.0 techniques); it uses the Formatters com-
ponent to tailor the results into specific serialisation formats,
such as EARL reporting [3]. Finally, the QualWeb Evalua-
tor is applied in the different Environments.
Finally, the Environments component instantiates the types

of environments that can leverage the QualWeb evaluator.
In the case of the Browser environment, we specified the re-
quirement for a Web Server component, to allow for trans-
mitting all evaluation assets (e.g., scripts) that are to be
applied in the currently selected Web page, as well as to
gather the evaluation results at a well-known point within
the server.

4.2 Implementation
To facilitate the accurate replication of the experiment

and to provide in-depth guidance on how to implement such
evaluators we provide a high detail of the implementation.
In order to compare the proposed evaluation environments,

we must use the same accessibility evaluation implemen-
tation. Given that one of the environments is the Web
browser, we have a restriction on using Javascript as the
implementation language. Thus, to develop the Command
Line version of the evaluation process, we leveraged Node.js1,
an event I/O framework based on the V8 Javascript engine2.
In addition to standard Node.js modules, we used several
other ancillary modules3, including:

• Node-Static, which allowed for serving static files into
the browser environment;

• Node-Router, a module that supports the development
of dynamic behaviours, which we used to implement
the retrieval and processing of evaluation results, and

• HTML-Parser, which provides support for building
HTML DOM trees in any environment.

Besides these standard modules, we also implemented a
set of modules for our evaluation framework, including:

• EARL module, which allows for the creation of EARL
documents with the defined templates and parse EARL
files using the Libxmljs library, and

• Evaluator module, which performs the accessibility eval-
uation with the implemented techniques.

Next, we present additional details on how we implemented
both evaluation environments, as well as report generation
and processing capabilities.

4.2.1 Command Line Environment
This environment obtains the HTML document from a

URL using an HTTP request, executes the QualWeb eval-
uator on the HTML DOM tree, and serialises its outcome
into EARL. All of these processes are implemented with a
combination of the HTML-Parser, EARL, and Evaluator
modules, executed from a command line.
1Node.js: http://nodejs.org
2V8 Javascript engine: http://code.google.com/p/v8/
3GitHub modules: https://github.com/ry/node/wiki/
modules

4.2.2 Browser Environment
This environment uses a bookmarklet (Figure 4) to trigger

the execution of the evaluation within the browser. Book-
marklets are browser bookmarks that start with the Javascript:
protocol. In front of this, pure Javascript commands follow.
When a user activates the bookmarklet, these commands
are run.

Figure 4: Evaluation execution example on Browser

In the case of our evaluator, this bookmarklet injects the
necessary functions to obtain the HTML DOM tree of the
current Web page, executes the QualWeb evaluator, and
sends the evaluation results to a server component. These
results are transformed in the EARL serialisation format,
and subsequently stored. To implement this browser-server
execution and communication mechanism, we used the fol-
lowing modules:

• Bootstrap, to import the required base modules, and

• LAB.js, to inject all of the evaluation modules into the
browser’s DOM context.

4.2.3 Report Generation and Processing
Finally, to generate the evaluation reports containing the

accessibility quality results, we used the following modules:

• Node-Template, to define EARL reporting templates,

• Libxmljs, to parse EARL reports, and

• CSV module, to recreate a comma-separated-values (CSV)
counterpart from a given EARL report. This module
allowed for a better inspection and statistical analysis
with off-the-shelf spreadsheet software.

While the EARL format allows for the specification of
evaluation results, we had to extend EARL with a small set
of elements that could allow for the analysis of the resulting
outcomes from our experiment. Hence, we defined a Meta-
data field that supports the specification of HTML element
count, as well as a Timestamp to state the specific time when
the evaluation was performed.
The EARL reports served as the basis for generating CSV

reports. Due to the extensiveness of EARL reports gener-
ated by our evaluator, specially in what respects to parsing
and consequent memory consumption provided by generic
DOM parsers, we implemented the EARL-CSV transforma-
tion procedures with SAX events.

4.3 Testability and Validation
We developed a test bed comprising a total of 102 HTML

documents, in order to verify that all the WCAG 2.0 imple-
mented techniques provide the expected results. They were
based on documented WCAG 2.0 techniques and ancillary
WCAG 2.0 documents. Besides, each HTML document was
carefully hand crafted and peer-reviewed within our research
team, in order to guarantee a high level of confidence on the
truthfulness of our implementation. Success or failure cases
were performed for each technique, to test all the possible

techniques outcomes. To get a better perspective on the
implementation of our tests, we leveraged the examples of
success or failure cases described for each WCAG 2.0 tech-
nique.
The graph depicted in Figure 5 shows the number of

HTML test documents defined for each technique that was
implemented in the QualWeb evaluator.

Figure 5: Number of Test Documents per Technique

We opted for having the same HTML documents, so that
we could ensure that the evaluation outcomes aren’t mod-
ified when changing evaluation environments. To test the
proper application of the implemented techniques in the two
evaluation environments, we defined a small meta-evaluation
of our tool. This meta-evaluation consisted on triggering the
evaluation on the command line with a small automation
script, as well as opening each of the HTML test documents
in the browser, and triggering the evaluation through the
supplied bookmarklet.
Afterwards, we compared the evaluation outcome (warn/-

pass/fail by technique) for all HTML test documents and
compared their results with the previously defined expected
results. Since all of these HTML tests do not include Javascript-
based dynamics that transform their respective HTML DOM
tree, we postulated that the implementation returns the
same evaluation results in both evaluation environments.

5. EXPERIMENTAL STUDY
We devised an experimental study on the home pages

from the Alexa Top 100 Web sites4. This study centred
on analysing how Web accessibility evaluation results in dif-
ferent outcomes for the Command Line and Browser envi-
ronments.
Next, we detail the setup of this experiment, followed by a

description of how data was acquired and processed. Finally,
we present the most significant results from our experiment.

5.1 Setup
We started by checking if each Web site could be reached,

and if we got an HTTP response with its corresponding
home page. In one of the cases, the domain is being used for
serving ancillary resources for other Web sites. Other Web
sites were also unavailable, for unknown reasons. Finally, we
filtered the Web sites that were blocked from the university
network (mostly illegal file sharing or adult content services).
The resulting set of Web sites that were to be evaluated

comprises a total of 82 reachable home pages.
4Alexa Top 100: http://http://www.alexa.com/topsites

5.2 Data Acquisition and Processing
We accessed the Web pages and saved the original HTML

documents (through the command line environment) and
the transformed HTML documents (through the browser en-
vironment), so we could repeat the assessments with these
documents, if necessary. We performed the evaluations in
both environments sequentially to the same Web page, and
with little temporal differences. This way we avoided the po-
tential content differences between the HTTP responses in
both environments, which could lead to incorrect evaluation
results. The resulting time delta between the evaluations in
both environments averages at 89.72 seconds, σ = 69.59.
In some cases on the browser environment, we were faced

with strong safeguards that deflected our ability to inject
our evaluation procedures into the HTML document (often
implemented as safeguards for cross-site scripting attacks).
For these cases, we eliminated these restrictions and success-
fully evaluated the documents afterwards.
On browser’s partial fixing of HTML, we want to take that

into account in the comparison of evaluation environments,
since users are faced with the fixed content.
Finally, with all evaluations finished, we transformed all

EARL results into corresponding CSV format for subsequent
analysis, as detailed in the implementation Section.
Our evaluation yielded differences in the size of the HTML

documents, both in terms of absolute bytes and HTML el-
ements, when comparing these numbers between evaluation
environments. The average difference on the byte size of
the documents is 2885 bytes, σ = 51181.63, which supports
the idea that Web pages can have several transformations in
their content between environments. In terms of HTML el-
ement count, there is an average difference of 72.5 elements,
σ = 693.56. These results indicate that, in fact, there are
differences in the HTML between these two environments.
We investigated further these numbers, in order to under-

stand if there were any cases where the size of the docu-
ments, in bytes and number of HTML elements, increase or
decrease in absolute values. These results are depicted in
Figures 6 and 7, respectively.
In terms of absolute byte size for the evaluated Web pages,

the command line environment yields an average of 69794
bytes, σ = 95358.67, while averaging at 81007.02 bytes in
the browser environment, σ = 126847.75. This scenario re-
peats for HTML elements, where the command line clocks
at 915.71 elements on average, σ = 1152.11, and 1154.72 ele-
ments on average for the browser environment, σ = 1565.87.
This outcome reflects the underlaying assumption made

in the hypothesis, i.e., that the difference between HTML
documents in both environments is real, and very significa-
tive. Based on this, we present in the next Section an anal-
ysis on how accessibility evaluation – based on WCAG 2.0
– becomes evident on the command line and browser envi-
ronments.

5.3 Results
We focused our study in two main set of results: first,

the difference of evaluation outcomes (fail, pass, warning)
between both environments; and second, what outstanding
Web accessibility evaluation criteria are able to characterise
the differences between evaluating in each environment. The
next Sections detail our corresponding findings.

5.3.1 Evaluation Outcomes

Figure 6: Comparing size in bytes in both environments

We have detected that there are significant differences in
the number of HTML elements detected by by Web acces-
sibility evaluation procedures between both environments.
In Figures 8, 9, and 10 we present how the three evalua-
tion outcomes (fail, pass, warn, respectively) differ between
environments. A failure occurs in the cases where the evalu-
ator can automatically and unambiguously detect if a given
HTML element has an accessibility problem, whereas the
passing represents its opposite. Warnings are raised when
the evaluator can partially detect accessibility problems, but
which might require additional inspection (often by experts).
Inspecting these results with additional detail, the Web

pages have the following evaluation outcomes:

• Pass: an average 9.67 elements pass their respective
evaluation criteria (σ = 19.12) in the command line
environment. However, this number highly increases in
the browser environment to an average 272.78 elements
(σ = 297.10), ie, 46%;

• Fail : an average 47.44 elements fail their respective
evaluation criteria (σ = 70.82) in the command line
environment. This number increases in the browser en-
vironment to an average 90.10 elements (σ = 125.93),
ie, 12%;

• Warn: an average 425.02 elements pass their respec-
tive evaluation criteria (σ = 682.53) in the command
line environment. This number increases in the browser
environment to an average 685.21 elements (σ = 1078.10),
ie, 45%.

Next, we detail how evaluation criteria differentiate be-
tween both evaluation environments.

5.3.2 Evaluation Criteria
WCAG 2.0 defines a set of evaluation criteria for each of

its general accessibility guidelines. Our experimental study
resulted in several interesting outcomes from the accessibil-
ity evaluation. As it can be grasped from Figure 11 (log-scale
on HTML Elements count), each one of the implemented
criteria is invariantly applied more times in the browser en-
vironment than in the command line environment.
However, these results still mask an important detail about

criterion applicability: there might be Web pages where any
given criterion could be applied in the command line en-
vironment, but dismissed in the browser environment (i.e.,
false positives). Likewise, the opposite situation can also

Figure 11: Browser vs Command Line per criterion
(log-scale on HTML Elements count)

arise (i.e., false negatives). In other words, false negatives
and false positives occur due to the differences between eval-
uation results of both environments, for instance, failing on
Criterion 1.1 (i.e., alternative texts) in command line eval-
uation, but passing in the browser (e.g., a script introduced
alternative texts for images). This is a false negative yield
by command line evaluation, since users are faced with its
browser counterpart.
Consequently, in this analysis, we discovered some cases

where specific criteria in fact resulted in both false positives
and false negatives, when using the command line environ-
ment results as the baseline for comparison. This resulted
in the outcomes depicted in Table 1.
This analysis shows that, in fact, nearly 67% of the cases

(10 criteria out of the 15 that were implemented) in the
command line environment yield false negatives, i.e., were
unable to be applied. The occurrence of false positives, i.e.,
when a Web page version for the command line environment
triggered the application of criteria but not on the browser
environment, was substantially lower, though.
Next, we delve into four WCAG 2.0 criteria that reflect the

different evaluation natures that emerge from the compari-
son of the outcomes from the two evaluation environments:
1.1.1, 1.2.3, 2.4.4, and 3.1.1.

5.3.2.1 WCAG 2.0 Criterion 1.1.1.
Criterion 1.1.1 is the poster child of Web accessibility ade-

quacy (both in engineering and evaluation terms). It reflects

Figure 7: Comparing size in HTML Elements count in both environments

Figure 8: Number of HTML Elements that Passed

Figure 9: Number of HTML Elements that Failed

Figure 10: Number of HTML Elements that had Warnings

Table 1: False positives and false negatives in crite-
ria applicability on command line environment

Criterion False positives False negatives
1.2.3 11%
1.2.8 2% 12%
1.3.1 27%
3.1.1 6%
3.2.2 9%
3.2.5 1% 5%
3.3.2 9%
3.3.5 6%
4.1.1 1%
4.1.2 37%

the necessity for content equivalence, thus enabling content
understanding no matter what impairment a user has. For
instance, the existence of alternative textual descriptions for
images. Thus, we analysed individually this criterion, as de-
picted in Figure 12.
For a significant number of the Web pages we analysed,

there is a high increase of situations that could be detected
in the browser context. A brief glance at these differences
showed the dynamic injection of images at either the DOM
Ready or DOM Load browser rendering events. This kind
of disparity on the results is the one that occurs more often
for all of the implemented criteria.

5.3.2.2 WCAG 2.0 Criterion 1.2.3.
Criterion 1.2.3 depicts, in Figure 13, one case of the afore-

mentioned false negatives. Almost all of the detected appli-
cability occurred in the browser environment.

5.3.2.3 WCAG 2.0 Criterion 2.4.4.
In the case of Criterion 2.4.4, as depicted in Figure 14,

most of the results are typical. However, as identified in the
graph, there is a Web page where the command line environ-
ment detects a substantially bigger amount of problems for
this criterion. While not all of those cases disappear in the
browser environment, it shows that even when no false pos-
itive is raised for a criterion’s applicability, there are cases
where dynamic scripts remove detectable accessibility issues.

5.3.2.4 WCAG 2.0 Criterion 3.1.1.
Finally, Criterion 3.1.1, as depicted in Figure 15, allows

for the detection of the (un)availability of form submission
buttons. This could not be detected in the command line
environment (i.e., the missing gaps in the graph), as these
buttons were dynamically injected into the Web page.

6. DISCUSSION
Our study on the resulting outcomes from evaluating Web

accessibility in the command line and browser environments
has yielded an interesting amount of insights, respecting to
automated Web accessibility evaluation practices. In the
light of the results presented in the previous Section, we
revisit the research hypothesis that initiated our study:

Evaluating Web content in the browser provides
more accurate and more in-depth analysis of its
accessibility.

In the next Sections, we discuss how Web accessibility can
be evaluated in the browser, and finish with a discussion of
the limitations of our experimental setup.

6.1 Web Accessibility Evaluation in the Browser
Our expectations with regards to the raised hypothesis

were confirmed. Indeed, there are deep differences in the ac-
cessibility evaluation between the command line and browser
environments. This is reflected not just in the additional
amount of processable HTML elements, but on the rate of
false negatives and positives yielded by command line envi-
ronment evaluations as well.
Hence, it is important to stress that evaluating the accessi-

bility of modern Web pages in a command line environment
can deliver misleading paths for designers and developers
due to the following reasons:

• There are significant differences between the structure
and content of Web pages in both evaluation environ-
ments. Thus, for dynamic Web pages, developers and
designers can be faced with evaluation results that re-
flect different HTML DOM trees. This fact, on its
own, can often provide confusion and result on difficul-
ties of detecting the actual points where accessibility
problems are encountered;

• False positives at the command line environment pro-
vide another point that can confuse designers and de-
velopers that are faced with these accessibility evalua-
tion results, since they become invalid in the browser
environment (e.g., corrected with the aid of Javascript
libraries);

• Finally, false negatives are more critical, since a lot
of potential accessibility problems are simply not de-
tected in the command line environment. Consequently,
an evaluation result might pass on 100% of accessibil-
ity checks, but the HTML DOM tree that is presented
to end-users faces severe accessibility problems.

We believe that these results show that, in fact, it is of the
most importance to evaluate the accessibility of Web pages
in the environment where end-users interact with them. The
often proposed methodology of building Web pages in a
progressive enhancement fashion (where scripts insert ad-
ditional content and interactivity) do guarantee neither the
improvement, nor the maintenance of the accessibility qual-
ity of any given Web page.

6.2 Limitations of the Experiment
Our experiment has faced some limitations, both in terms

of its setup, as well as on the type of results that can be
extrapolated, including:

• Data gathering : since we gathered all Web pages in
the two environments at different instants, we could
not guarantee 100% that Web page generation arte-
facts were not introduced between requests for each of
the evaluated Web pages. Furthermore, the presented
results are valid for the sample set of Web pages that
were selected. However, we believe that these pages
are representative of modern Web design and develop-
ment of front-ends;

Figure 12: Browser vs Command Line for criterion 1.1.1

Figure 13: Browser vs Command Line for criterion 1.2.3

Figure 14: Browser vs Command Line for criterion 2.4.4

Figure 15: Browser vs Command Line for criterion 3.1.1

• DOM trees: while the QualWeb evaluator takes a DOM
representation of the HTML, we only analysed the
profusion of Web accessibility inadequacies in term
of HTML elements, leaving out other potential fac-
tors that influence the accessibility of Web pages (e.g.,
CSS), and we did not save iFrames in the Web pages,
but ultimately did not influence the evaluation because
we do not look to their content;

• Comparison of DOM trees: our experimental setup
did not provide enough information to pinpoint what
transformations to the HTML DOM were made at
both DOM Ready and DOM Load phases;

• Script injection: we encountered some cases (notably,
facebook.com) where the injection of accessibility eval-
uation scripts was blocked with cross-site scripting (XSS)
dismissal techniques. In these cases, we hand crafted
minimal alterations on these Web pages, in order to
disable these protections. Nevertheless, none of these
alterations influenced the outcome of the accessibility
evaluations performed in these cases;

• Automated evaluation: since this experiment is centred
on automated evaluation of Web accessibility quality,
it shares all of the inherent pitfalls. This includes the
limited implementation coverage of WCAG 2.0.

7. CONCLUSIONS AND FUTURE WORK
This paper presented an experimental study of automated

Web accessibility evaluation in the context of two environ-
ments: command line and browser. For this experiment, we
analysed the accessibility quality of the home pages of the
100 most visited Web sites in the world. We provided ev-
idence that the significant differences introduced by AJAX
and other dynamic scripting features of modern Web pages
do influence the outcome of Web accessibility evaluation
practices. We showed that automated Web accessibility
evaluation in the command line environment can yield incor-
rect results, especially on the applicability of success criteria.
Facing with the obtained results, and based on the imple-

mentation of the QualWeb evaluator and environment eval-
uation framework, ongoing work is being conducted in the
following directions: (1) Implementation of more WCAG 2.0
tests based on the analysis of CSS, especially in the post-
cascading phase, when all styling properties have been com-
puted by the Web browser; (2) Continuous monitoring of
changes in the HTML DOM, thus opening the way for de-
tection of more complex accessibility issues, such as WAI
ARIA live regions [5]; (3) Detecting the differences in DOM
manipulation, in order to understand the typical actions per-
formed by scripting in the browser context; (4) The imple-
mentation of additional evaluation environments, such as
developer extensions for Web browsers (e.g., Firebug5), as
well as supporting an interactive analysis of evaluation re-
sults embedded on the Web pages themselves.

8. ACKNOWLEDGEMENTS
This work was funded by Fundação para a Ciência e Tec-

nologia (FCT) through the QualWeb national research project
PTDC/EIA-EIA/105079/2008, the Multiannual Funding Pro-
gramme, and POSC/EU.
5Firebug: http://getfirebug.com/

9. REFERENCES
[1] S. Abou-Zahra. Complete list of web accessibility

evaluation tools, 2006. Last accessed on February
11th, 2011, from
http://www.w3.org/WAI/ER/tools/complete.

[2] S. Abou-Zahra. Wai: Strategies, guidelines, resources
to make the web accessible to people with disabilities -
conformance evaluation of web sites for accessibility,
2010. Last accessed on November 11th, 2010, from
http://www.w3.org/WAI/eval/conformance.html.

[3] S. Abou-Zahra and M. Squillace. Evaluation and
report language (EARL) 1.0 schema. Last call WD,
W3C, Oct. 2009. http://www.w3.org/TR/2009/
WD-EARL10-Schema-20091029/.

[4] M. Cooper, G. Loretta Guarino Reid,
G. Vanderheiden, and B. Caldwell. Techniques for
WCAG 2.0 - Techniques and Failures for Web Content
Accessibility Guidelines 2.0. W3C Note, World Wide
Web Consortium (W3C), October 2010. Last accessed
on November 26th, 2010, from
http://www.w3.org/TR/WCAG-TECHS/.

[5] J. Craig and M. Cooper. Accessible rich internet
applications (wai-aria) 1.0. W3C working draft, W3C,
Sept. 2010. http://www.w3.org/TR/wai-aria/.

[6] K. Ford, J. Richards, J. Allan, and J. Spellman. User
agent accessibility guidelines (UAAG) 2.0. W3C
working draft, W3C, July 2009.
http://www.w3.org/TR/2009/WD-UAAG20-20090723/.

[7] J. L. Fuertes, R. González, E. Gutiérrez, and
L. Martínez. Hera-ffx: a firefox add-on for
semi-automatic web accessibility evaluation. In W4A
’09: Proceedings of the 2009 International
Cross-Disciplinary Conference on Web Accessibililty
(W4A), New York, NY, USA, 2009. ACM.

[8] S. Harper and Y. Yesilada. Web Accessibility.
Springer, London, United Kingdom, 2008.

[9] I. Jacobs and N. Walsh. Architecture of the World
Wide Web, Volume One. W3C Recommendation,
World Wide Web Consortium (W3C), Dec 2004. Last
accessed on November 9th, 2010, from
http://www.w3.org/TR/webarch/.

[10] R. Lopes and L. Carriço. Macroscopic
characterisations of Web accessibility. New Review of
Hypermedia and Multimedia, 16(3):221–243, 2010.

[11] R. Lopes, D. Gomes, and L. Carriço. Web not for all:
A large scale study of web accessibility. In W4A: 7th
ACM International Cross-Disciplinary Conference on
Web Accessibility, Raleigh, North Carolina, USA,
April 2010. ACM.

[12] T. Sullivan and R. Matson. Barriers to use: usability
and content accessibility on the web’s most popular
sites. In CUU ’00: Proceedings on the 2000 conference
on Universal Usability, New York, USA, 2000. ACM.

[13] E. Velleman, C. Meerveld, C. Strobbe, J. Koch, C. A.
Velasco, M. Snaprud, and A. Nietzio. Unified Web
Evaluation Methodology (UWEM 1.2), 2007.

[14] M. Vigo, M. Arrue, G. Brajnik, R. Lomuscio, and
J. Abascal. Quantitative metrics for measuring web
accessibility. In W4A ’07: Proceedings of the 2007
international cross-disciplinary conference on Web
accessibility (W4A), pages 99–107, New York, NY,
USA, 2007. ACM.

