
Debugging Standard Document Formats

Nabil Layaïda
INRIA
France

nabil.layaida@inria.fr

Pierre Genevès
CNRS
France

pierre.geneves@inria.fr

ABSTRACT
We present a tool for helping XML schema designers to obtain a
high quality level for their specifications. The tool allows one to
analyze relations between classes of XML documents and formally
prove them. For instance, the tool can be used to check forward
and backward compatibilities of recommendations. When such a
relation does not hold, the tool allows one to identify the reasons
and reports detailed counter-examples that exemplify the problem.
For this purpose, the tool relies on recent advances in logic-based
automated theorem proving techniques that allow for efficient rea-
soning on very large sets of XML documents. We believe this tool
can be of great value for standardization bodies that define specifi-
cations using various XML type definition languages (such as W3C
specifications), and are concerned with quality assurance for their
normative recommendations.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation—
markup languages; D.3.2 [Programming Languages]: Language
Classifications—extensible languages

General Terms
Algorithms, languages, theory, verification

Keywords
XML, schema, format, compatibility.

1. INTRODUCTION
In the document world, a driving concern is the long term ac-

cess to content. That is the need to be able to process content, for
example a web page, a scalable vector graphic, written today, in
say several decades. This major concern gave birth to SGML, and,
more recently to XML, where the idea is to separate data structures
from processor-specific instructions. For this purpose, the essence
of XML consists in organizing information in tree-tagged struc-
tures conforming to some constraints, which are expressed using
standard type definition languages such as DTDs, XML schemas
and Relax NG. A set of constraints define a class of documents.

One major role of organizations such as W3C is to contribute to
the standardization effort leading to a unique widely accepted set of
constraints for a given class of documents. Designing a normative

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

specification is a complex process, which is made even harder by a
few important considerations.

First, when a language is designed, one need to take into account
how future versions of that language can evolve. For a particular
version of a language, not only the schema constraints allowed by
that version need to be considered but also how they can be modi-
fied by future versions. This allows to address how an implemen-
tation of this version should process document variants added by
future schema versions.

Second, specification authors must provide a formal description
of their recommendation as a schema. Such schemas may be writ-
ten in languages such as DTD, XML Schema, or Relax-NG, to
name only the most popular ones. It is common practice to de-
scribe the same structure, or new versions of a structure, in dif-
ferent schema languages. Document formats developed by W3C
provide a variety of examples: XHTML 1.0 has both DTDs and
XML Schemas, while XHTML 2.0 has a Relax-NG definition; the
schema for SVG Tiny 1.1 is a DTD, while version 1.2 is written in
Relax-NG; MathML 1.01 has a DTD, MathML 2.0 has both a DTD
and an XML Schema, and MathML 3.0 is developed with a Relax-
NG and is expected to have also a DTD and an XML Schema.

An issue is then to make sure that schemas written in differ-
ent languages are equivalent, i.e. they describe the same structure,
possibly with some differences due to the expressivity of the lan-
guage for defining tree grammar based constraints [7, 3, 2]. Other-
wise, another issue is to precisely identify the differences between
two versions of the same schema expressed in different languages.
Moreover, the issues raised by forward and backward compatibility
of document instances obviously remain when schema languages
change from a version to another.

Specifically, we identify three different properties for a norma-
tive specification:

• Forward compatibility: All instances of an older specifica-
tion should be valid with respect to newer specifications. This
ensures that a document can still be processed properly with
applications implementing newer specifications.

• Backward compatibility without added elements/attributes:
New combinations of old elements are not supposed to be
introduced in later specifications. Otherwise, an application
implementing an older specification will not able to process
a document that conforms to some future specification, even
if this document does not contain any element or attribute
introduced as extensions.

• Equivalence between schema versions: We expect the differ-
ent schema versions of the same recommendation to define
the same set of documents modulo the expressivity of the
schema language.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1269

An XML schema definition (whether normative or not) often
evolves over time, as new needs often result in new features usually
introduced as new elements and attributes. However we believe that
this normal evolution should not break the three previous proper-
ties. In this paper, we present a tool capable of checking each of
these properties expressed through a predicate language introduced
in the next section.

2. THE PREDICATE LANGUAGE
The demo presented in this paper is a tool which uses predi-

cates offered to XML application and recommendation designers
for assessing the correctness of schema evolutions, with respect to
the properties described above. These predicates can be combined
with logical connectives (e.g. disjunction, conjunction, negation...)
in order to give the focus on particular peculiarities of a schema and
its variants.The demo scenario consists in specifying and testing the
satisfiability of theses predicates applied to W3C Document Rec-
ommendations (XHTML, SVG, MathML and SMIL). An unsatis-
fiable predicate means that the property expressed by that predi-
cate holds, otherwise the system generates automatically a counter-
example document which proves that the property does not hold.

The syntax of the predicate language that can be used for XML
reasoning is shown in Figure 1, where a QName denotes any XML
qualified name. The predicate type("file", QName) allows one
to refer to an existing specification defined in a variety of type def-
inition languages including DTD, XML Schema, and Relax NG.
The first argument of this predicate, file, is a file path to the schema
file and the second argument, QName, is the element name to be
considered as the entry point (root) of the given schema.

The predicate added_element(file, file′, QName) takes three
parameters: file and file′ are file paths to schema specifications, and
QName is an XML element name to be considered as the document
root. This predicate corresponds to the set of all element names de-
fined in file′ but not in file (or in other terms, elements that were
added in file′ compared to file). In a similar manner, the predi-
cate added_attribute(file,file’,QName) defines the set of all
attribute names introduced in file′ compared to file.

The predicate backward_incompatible(file, file′, QName)
takes two type expressions as parameters, where file′ is a new ver-
sion of file. This predicate is unsatisfiable iff all instances of file′
are also valid against file.

The predicate exclude(QName) can be used for excluding a
specific element name. This predicate can also be used for check-
ing properties in an iterative manner, refining the property to be
tested at each step. For example, one can check the backward com-
patibility without added elements with the following formula that
combines two predicates using a simple conjunction:

backward_incompatible(file, file′, QName) &
exclude(QName′)

3. DEMONSTRATION OVERVIEW
The system has been implemented as a Java/JSP web applica-

tion and interaction with the system is offered through a web user
interface in a web browser. The tool is available online from:

http://wam.inrialpes.fr/xml

Our demonstration aims to showcase schema analyses progres-
sively by refining a set of predicates (by combining them with
boolean operators) across a variety of use cases. The user can ei-
ther enter an analysis problem using predicates through area (1) of
Figure 2 or select from pre-loaded analysis tasks offered in area

formula ::=
type("file", QName)

| added_element(file, file′, QName)
| added_attribute(file, file′, QName)

| forward_incompatible(file, file′, QName)
| backward_incompatible(file, file′, QName)

| descendant(QName)
| exclude(QName)

| formula | formula (disjunction)
| formula & formula (conjunction)
| ˜formula (negation)
| formula => formula (implication)
| formula <=> formula (equivalence)
| QName

Figure 1: High-Level Language for XML Reasoning.

(4) of Figure 2. The level of details displayed by the analyzer can
be adjusted in area (2) of Figure 2 and allows to inspect logical
translations and statistics on problem size and the different opera-
tion costs. The results of the analysis are displayed in area (3) of
Figure 2 together with XML counter-examples.

Figure 2: Screenshot of the Solver Interface.

Predicates are in fact translated automatically by our tool to log-
ical formulas used by a solver we developed in an earlier work
(see [5, 1] for the underlying logic and its satisfiability-testing algo-
rithm). As a result, the low level logical formulation and resolution
remain transparent to the XML schema designer. Additional pred-
icates related to the analysis of XPath expressions can be found in
[4]. During the demonstration, we show that the tool works well in
terms of performance on the fairly large schemas such as XHTML,
MathML, and SMIL. Once a counter-example is generated, we pro-
vide it to an external validator [6] together with W3C document
schemas to prove that it corresponds to a genuine bug.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1270

XHTML Basic
The first test consists in analyzing the relationship (forward and
backward compatibility) between XHTML basic 1.0 and XHTML
basic 1.1 schemas. In particular, backward compatibility can be
checked by the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

Executing the test yields a counter example as the new schema con-
tains new element names. The counter example (shown below)
contains a style element occurring as a child of head, which
is not permitted in XHTML basic 1.0:

<html>
<head>
<title/>
<style type="_otherV"/>

</head>
<body/>

</html>

The next step consists in focusing on the relationship between both
schemas excluding these new elements. This can be formulated by
the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

& exclude(added_element(
type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that proves
that XHTML basic 1.1 is not backward compatible with XHTML
basic 1.0 even if new elements are not considered. In particular, the
content model of the label element cannot have an a element in
XHTML basic 1.0 while it can in XHTML basic 1.1. The counter
example produced by the solver is shown below:

<html>
<head>
<object>

<label>
<a>

</label>
<param/>

</object>
<meta/>
<title/>
<base/>

</head>
<body/>

</html>

XTML basic 1.0 validity error: element a is not
declared in label list of possible children

SMIL
The second test consists in analyzing the relationship (forward and
backward compatibility) between several versions of the SMIL stan-
dard1, namely versions 1.0, 2.0, and 3.0. In particular, forward
compatibility between 1.0 and 2.0 can be checked by the following
command:
1The first author was a member of the W3C SMIL working group
and co-author of SMIL 2.0 and 2.1.

forward_incompatible("SMIL10.dtd", "SMIL20.dtd", "smil")

The result of the test shows a counter example document that proves
that there exist valid SMIL 1.0 documents that are not valid any-
more with respect to SMIL 2.0. In fact that is because the con-
tent model of the layout element is defined as any in SMIL 1.0,
whereas it is more restricted in SMIL 2.0. We observe that intro-
ducing any is a choice that has important consequences. Indeed,
a document that was playable with 1.0 implementations may no
longer be playable using 2.0 implementations. The counter exam-
ple produced by the solver is shown below:

<smil>
<head>

<layout>
<meta content="_otherV" name="_otherV"/>

</layout>
</head>

</smil>

SMIL 2.0 validity error:
Element layout content does not follow the DTD,
expecting (region|topLayout|root-layout|regPoint)*,
got (meta)

The lesson here is that introducing very permissive content models
(like any) has to be considered very seriously. Indeed, that means
that all future version of the standard should be at least as permis-
sive. Otherwise, all content produced with earlier (more permis-
sive) versions becomes at risk. Therefore, the initial content model
has to be carefully designed in order to avoid such situations.

The following example is even worse. We check forward com-
patibility between SMIL 2.0 and 3.0:

forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

We obtain the following counter-example:

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>

<switch>
<animateMotion/>

</switch>

</body>
</smil>

This document is valid with respect to SMIL 2.0. However it does
not validate with respect to SMIL 3.0. That is because the content
model for the switch element was set to a more restrictive pat-
tern in version 3.0 compared to 2.0, as the validation error message
suggests below:

SMIL 3.0 validity error :
Element switch content does not follow the DTD,
expecting ((metadata | switch)* , ((((animate | set |
animateMotion | animateColor) , (metadata | switch)*)* ,
(((par | seq | excl | audio | video | animation | text |
... switch)*)+)) | (layout , (metadata | switch)*)*)),

got (animateMotion)

We would like to know if the bug is limited to the occurrence of
the animateMotion element or whether it is more general. To
this end, we progressively exclude elements animateMotion,
set, animateColor, and animate, as follows:

forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

& exclude(animateMotion) & exclude(set)
& exclude(animateColor) & exclude(animate)

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1271

We still obtain the following counter-example (valid w.r.t SMIL 2.0
but not w.r.t SMIL 3.0), which shows that the forward incompati-
bility is not limited to the occurence of the previous elements, but
rather, to severe limitations of the switch content model intro-
duced in 3.0. In other words, switch is an element which under-
mines SMIL forward compatibility.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>
<switch>

<seq/>
<area/>

</switch>
<switch/>

</body>
</smil>

SVG
The SVG test consists in analyzing the relationship (forward and
backward compatibility) between SVG 1.0 et 1.1. In particular, we
examine the differents profiles (tiny, basic and full) from 1.0 and
compared to 1.1 schemas. Backward compatibility can be checked
by the following command:

forward_incompatible("svg10.dtd",
"svg11-flat-20030114.dtd", "svg")

The test is unsatisfiable meaning that SVG 1.1 is formally proven
to be forward compatible with SVG 1.0. This is good news as it
means that all 1.0 documents will be supported with 1.1 conform-
ing implementations, without any exception. In the case where a
1.0 document does not play with a 1.1 implementation, this indi-
cates a bug in the implementation and not in the SVG specification.

We observe here that the common practice of including a sin-
gle doctype declaration within a document is questionable, since a
document is not only valid w.r.t a given schema but also w.r.t to all
future forward-compatible versions. Keeping track of this mapping
between a document and several schemas allows the document to
be supported by a larger set of implementations.

Similar tests on the SVG 1.1 tiny, basic and full also exhibit good
results. This corresponds to the definition of these three profiles as
strict subsets of each other. Furthermore, we believe that the use
of a modularized version of a schema (as opposed to a complete
redefinition) has helped in avoiding compatibility problems.

We now focus on testing the backward compatibility between the
SVG basic 1.1 profile and SVG 1.0 profile. The test fails even if
new features are left aside:

backward_incompatible("svg10.dtd",
"svg11-basic.dtd", "svg")

& exclude(added_element(type("svg10.dtd", "svg"),
type("svg11-basic.dtd","svg")))

& exclude(switch)

This test yields the following counter-example which confirms that
there is actually a flaw in the 1.1 specification:

<svg>

</svg>

as it allows two title elements to occur inside an image ele-
ment, which was not allowed in the 1.0.

MathML
We apply a similar investigation approach to MathML 1.0 and its
newer version 2.0. We formulate a backward compatibility test
without elements that were added in version 2.0. Furthermore, we
want to exclude immediate trivial counter-examples involving the
use of the declare element as well as of the math element oc-
curing within the anootation-xml element. For this purpose,
we use the following formulation:
backward_incompatible("mathml.dtd",

"mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)
& (~descendant(math))

that bans the declare element from occuring in the whole tree
(achieved with the use of the exclude(declare) predicate),
and prevents the math element from ocurring in the root’s sub-
tree (owing to the use of the (˜descendant(math)) predicate)
The following counter-example is produced:
<math>
<apply>

<annotation-xml>
<mprescripts/>

</annotation-xml>
</apply>

</math>

Such backward incompatibilities suggest that applications cannot
simply ignore new elements from newer schemas, as the combina-
tion of older elements may evolve significantly from one version to
another.

4. CONCLUSION
In this demo paper, we illustrated how to use the tool on real-

world XML schema specifications produced by W3C. We show
that the tool can be very useful for designers of normative recom-
mendations, in order to assist them for detecting bugs and enforc-
ing some level of quality assurance. The tool also allows document
authors and content providers to identify language features that are
source of forward and backward compatibility concerns. The demo
also shows the usefulness of new progress made in formal language
theory applied to practical and critical issues such as compatibili-
ties of standard formats. Such issues jeopardize the future access in
the long term to billions of documents written today. If one cannot
fix every broken or non-compliant implementation of standard rec-
ommendations, we now have tools to help the design of compatible
versions of recommendations.

5. REFERENCES
[1] P. Genevès. Logics for XML: Reasoning with Trees. VDM

Verlag, September 2009.
[2] P. Genevès and N. Layaïda. A system for the static analysis of

XPath. ACM TOIS, 24(4):475–502, October 2006.
[3] P. Genevès and N. Layaïda. Deciding XPath containment with

MSO. DKE, 63(1):108–136, October 2007.
[4] P. Genevès, N. Layaïda, and V. Quint. Identifying query

incompatibilities with evolving XML schemas. In ICFP’09.
[5] P. Genevès, N. Layaïda, and A. Schmitt. Efficient static

analysis of XML paths and types. In PLDI’07.
[6] Libxml2. http://www.xmlsoft.org/.
[7] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy

of XML schema languages using formal language theory.
ACM TOIT, 5(4):660–704, 2005.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1272

