
QuickSuggest: Character Prediction on Web Appliances

Ullas Gargi
Google, Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043

ullas@google.com

Rich Gossweiler
Google, Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043

rcg@google.com

ABSTRACT
As traditional media and information devices integrate with
the web, they must suddenly support a vastly larger database
of relevant items. Many devices use remote controls with on-
screen keyboards which are not well suited for text entry but
are difficult to displace. We introduce a text entry method
which significantly improves text entry speed for on-screen
keyboards using the same simple Up/Down/Left/Right/Enter
interface common to remote controls and gaming devices
used to enter text. The paper describes QuickSuggest’s novel
adaptive user interface, demonstrates quantitative improve-
ments from simulation results on millions of user queries
and shows ease of use and efficiency with no learning curve
in user experiments.

Categories and Subject Descriptors
H.5.2 [Information Systems]: Information Interfaces and
Presentation; H.3.3 [Information Systems]: Information
Search and Retrieval; H.3.4 [Information Systems]: Sys-
tems and Software—Performance evaluation (efficiency and
effectiveness)

General Terms
Algorithms, Human Factors, Measurement.

1. INTRODUCTION
With internet appliances there are many situations where

a standard or touch keyboard is not available – internet-
capable televisions, gaming consoles etc. Often the surrogate
is an Up-Down-Left-Right (UDLR) keypad and an on-screen
keyboard. The difficulty of entering text restricts the fluid
dialog between the device and the person. As devices pro-
vide more services and more content (e.g. televisions with
access to the WWW and online video content), the sud-
denly vastly larger vocabulary for search exacerbates the
text-entry task.

Given a standard Up-Down-Left-Right remote control and
an on-screen keyboard such as shown in Figure 6, our goal
was to improve the experience and the time it takes to enter
text, especially considering a large vocabulary (see Figure 1
for an example). If we move the onscreen characters that
are likely to be typed to be closer each time the user types
a character [1], then we improve the mechanical entry but

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

increase the visual search cost – users don’t become familiar
with the layout even after repeated use. But if we do not
adjust the layout, navigating the onscreen keyboard using a
keypress for every letter traversal can make entry arduous.

Our solution was to implement predictive text entry at
the character level and suggest four characters as a ring-
like overlay inserted around the current character with min-
imum distortion(Figure 6). This model allows the person
to rapidly get to the most likely character and, if entering
an unlikely character, only cost one extra click while not
significantly distorting the keyboard layout (Figure 1).

2. RELATED WORK
Improving the speed and ease of text input on constrained

devices has been an active research area, mostly targeted to-
ward mobile devices. The TNT system [2] uses a two-level
grid and two keypresses select a character. The popup menu
proposed by Isokoski [3] is closer to our proposed method
but assumes a stylus. The popup menu does not displace
the existing layout. The Dasher system [6] is philosophically
similar to ours in the sense of ordering next letters in the
order of probabilities. Constraining the available choices
of letters on a touchscreen soft keyboard is an approach
used by some automobile GPS navigation devices. Unlike
some previous approaches, our adaptive interface does not
require any learning on the part of the user. It evolves natu-
rally from the existing input paradigm. In addition we have
performed larger scale simulations on real user-entered text
strings than most studies.

3. MODELING AND PREDICTION
QuickSuggest’s language modeling is patterned after the

PPM family of text compressors [5]. Given a corpus of text
to train on, for every input character, we build up an array of
contexts of various lengths (up to a parameter maximum, 7
in our experiments) with their associated occurrence prob-
abilities. Optionally, we allow a popularity multiplier for
every input string. We use a compact trie to store contexts
and occurrence counts.

During prediction at runtime, the model loaded into mem-
ory is queried with the currently entered text. All context
lengths are searched for matching contexts. We can either
stop when we have sufficient predictions or aggregate proba-
bilities for all possible next letters across all context lengths
with a weight for each context. In that case the predictions
we return are:

argmax Pp(Lj |Xm) =
X

Pm(Lj |Xm) ∗ Wm, m = 1...M

where Pp is the predicted probability of letter Lj given the

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1249



Figure 1: Navigating to enter “BRADY BUNCH”
on a normal vs. QuickSuggest onscreen keyboard.

contexts Xm, Pm is the m-length–context probability of Lj ,
M is the maximum context length we use, Wm is the weight
we assign to contexts of length m (longer contexts have
higher weight) and Lj ∈ V , the vocabulary.

4. ADAPTIVE TEXT INPUT INTERFACE
Given a function that accepts a string prefix and returns

an ordered list of next-occurring characters by probability,
we developed a prediction-ring user interface. The goal was
to move the most likely characters closer (reducing physical
effort) without introducing significantly greater cognitive or
visual search effort. Consider the navigation path required
to enter the term ”BRADY BUNCH” on an alphabetic on-
screen keyboard. It takes 57 clicks for the 11 character term,
as shown in Figure 1. With the predictive ring overlay, the
click count was reduced to 25 clicks (the minimum possible
is 2 clicks per character, 22 clicks). Figure 1 shows this in
operation for the last 3 characters in “BRADY”.

5. EXPERIMENTS AND RESULTS
We conducted two experiments to measure the utility of

QuickSuggest. In both experiments we compared entering
text on a non-predictive layout versus inserting the Quick-
Suggest predictive ring model. We chose the TiVo DVR
layout as a baseline, which lays out the keys in a standard
alphabetical pattern. Of course, QuickSuggest can be over-
laid on any keyboard layout.

5.1 Simulator Experiment and Results
The first experiment simulates millions of queries from

actual users using lines from query logs or lines from entire
datasets as input strings. This allowed us to test a very large
vocabulary range with a very large sample set.

5.1.1 Experimental setup
We trained a model on one of several corpora and tested

the model on different sets of possible user inputs. The test-
ing system works by passing the set of user input strings
through a simulator. The simulator implements both the

the baseline system (the default onscreen keyboard layout
without prediction) and our prediction-augmented Quick-
Suggest keyboard.

Our metric is the number of keyclicks or button presses
required to enter a string. For the default onscreen keyboard
without prediction (the baseline) we have a static measure
of the keypress distance between letters (this is the cityblock
distance between them). The cost to enter a string with n

letters Li i = 0...n − 1 is:

Cnopred =
X

i

d(Li, Li+1) i = 0...n − 2

where Li is the current letter, Li+1 is the next letter, and
d(Li, Li+1) is the number of key clicks needed to move from
letter Li to letter Li+1 on the onscreen keyboard. For exam-
ple, in the alphabetical layout we used shown in Figure 6,
d(′F ′,′ T ′) = 5. For our proposed system, we predict the
next letter for every letter in the input string and see if the
actual next letter is in our predictions or not. The estimated
cost in clicks to enter a string with n letters using Quick-
Suggest is the sum of costs when we are right and when we
are wrong:

Cpred = C
right

pred + C
wrong

pred

These costs are:

C
right

pred =
X

i

Pr(Li+1|L0..Li), i = 0..n − 1

C
wrong

pred =
X

i

Pw(Li+1|L0..Li) × (1 + d(Li, Li+1)), i = 0..n−1

where Pr is the probability that Li+1 is a right prediction
(i.e. one of our top (4) predictions) incurring a cost of 1,
and Pw is the probablity that all our predictions are wrong,
necessitating the default cost to move from Li to Li + 1
imposed by the keyboard layout plus a penalty of 1 to skip
over our prediction ring. Note that an extra click to select
the letter is always required.

To evaluate the amount of improvement or worsening we
used the gain (loss), defined as the ratio of the decrease
(increase) in the number of clicks needed with prediction
for a particular string, to that without prediction for that
same string. Another widely-used metric is Key Strokes
Per Character metric (KSPC) [4] which we also measured
in our large-scale experiments. The number of keypresses
required is a good indicator of the motor load. The ex-
periments varied in the training and testing data sets used.
The datasets we used were: TV corpus (US TV show names
and metadata), YouTube Titles (we sampled from approxi-
mately 3.7 million popular YouTube video titles), YouTube
Queries (a set of completely anonymized user search queries
on YouTube.com), and Google Queries (a set of completely
anonymized user search queries on google.com.

5.1.2 TV corpus train, TV corpus test
In this experiment we trained a language prediction model

on the TV corpus and also tested it on input strings (2–14
characters) from the same corpus. This was useful to mea-
sure the system performance on a somewhat narrow target
domain where user queries are likely to be drawn from the
same set.

Table 1 lists the proportions of input strings which were
improved, worsened or unchanged by using QuickSuggest.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1250



Table 1: Prediction Impact By Corpus.
Impact TV YouTube Google

Count % Count % Count %
Positive 62283 82% 67M 78% 536K 53%
Negative 9036 11% 16M 19% 400K 39%
Neutral 4375 7% 3M 3% 77K 8%
Total 75694 100% 86M 100% 1015K 100%

Figure 2: Distribution of gain and loss for
positively– and negatively–impacted TV corpus in-
puts.

For the inputs which were positively (negatively) impacted,
the gain (loss) had the distribution shown in Figure 2. It
can be seen that the gain for positively–impacted inputs is
substantially greater than the loss for negatively–impacted
inputs. For a sample of 3,072 8-character strings, the cu-
mulative cost to enter letters at each of the 8 positions with-
out prediction shows a linear relationship as expected (Fig-
ure 3). With prediction however, we pay an initial penalty
when our predictions are wrong for short contexts and the
curve is above the baseline; then as we have greater con-
text, the curve improves to below the baseline; it saturates
to a length of 7 (our maximum predictive context length)
and then becomes linear again as we lose predictive power.
The overall KSPC without prediction was 4.438. Using pre-
diction, it dropped to 4.157. The minimum theoretically
possible KSPC is 2. Automatically moving the cursor to
the top prediction dropped the KSPC to 1.605.

Figure 3: Cumulative cost (clicks) for a sample of
8-character strings in the TV corpus.

Figure 4: Distribution of gain for positively– and
negatively–impacted YouTube queries.

5.1.3 YouTube Titles train, YouTube Queries test
We used a model trained on 1 million popular YouTube

video titles. We improved 78% of the queries and made 19%
of the queries worse (Table 1). Gains on positively–impacted
queries were larger than losses on negatively–impacted queries,
as before (Figure 4) The KSPC metrics were 4.49, 4.10,
and 1.58, for baseline, QuickSuggest, and QuickSuggest’s
top prediction auto-selection, respectively.

5.1.4 TV corpus train, Google Queries test
Even with a model not optimized for the domain, Quick-

Suggest shows significant improvement although not as marked
as in our other experiments. The KSPC improved from 4.46
for the baseline system to 4.43 for QuickSuggest and 1.68
when auto-selecting the top prediction.

5.1.5 Discussion of simulator experiment results
In all three experiments, over large sets of user input text,

the number of key presses required was decreased by using
QuickSuggest. Even when text entry was made worse, the
loss was less than the gain in those inputs that were im-
proved. QuickSuggest initially incurs a penalty for short
strings where there are too many possibilities for the short
context; but then offers an improvement for longer strings.
One possible modification is to turn on QuickSuggest only
when sufficient text has been input. Automatically moving
the cursor to the top predicted letter also lowered the KSPC
substantially. Training the language model on the same do-
main as the expected user input was also shown to have an
impact on performance.

5.2 Informal User Study Method and Results
The second study was an informal, within-subject user

study with 10 people. This allowed us to see how the hu-
man element reacts to the new method. This was with a
small population and over a small set of terms, so we view
this as an informal, initial observation of how real people
react to the new method. Ten subjects, five males and five

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1251



Figure 5: Distribution of gain and loss for
positively– and negatively–impacted Google queries.

Figure 6: Remote control and on screen display used
in the user study.

females, were asked to participate in a simple within-subject
experiment. Half of the subjects owned a DVR. The sub-
jects were given a remote control and sat in front of a 23-inch
LCD screen. Half were asked to enter five shows using the
standard TiVo layout and then the same five terms using the
predictive ring layout and the other half did the predictive
model first. We timed their button click rate, overall term
entry speed and interviewed them about the two methods.
The experiment presented a show term (e.g. ”LOST”) and
an onscreen keypad that they could navigate with the remote
control. They were asked to enter the show. When they
completed the show, they pressed ”OK” on the remote and
then went on to the next term. We presented the following
shows: LOST, BRADY BUNCH, ENTOURAGE, FAMILY
GUY, and HOUSE. The first show, LOST, was a practice
term and was discarded.

When the person was done, we asked them three questions
to elicit feedback: Did they own a DVR? What were their
thoughts on the two methods? Which would they prefer to
have?

5.2.1 Results and Observations
As Figure 7 implies, the predictive model generally re-

duces the term-entry time. While the predictive ring re-
duced the number of clicks to get to a letter, it did in-

Figure 7: Comparison of navigation times for novice
users.

crease the time per click since the user had to scan the ring.
The non-predictive click time was approximatey 0.5 seconds
while the predictive time was approximately 0.9 seconds.
Nine of the ten people strongly prefered the predictive model
while one preferred the non-predictive layout. One person
commented that “It seemed like it predicted the next letter
as the ’up’ [position on the ring] and so it was really easy to
just go up up up.” One person did not like it and commented
that the ring was distracting and got in the way.

Several people commented that when they selected an
item on the ring, they really liked that it automatically
jumped to that letter’s position on the keypad. We believe
this helped ground them, making the keypad consistent and
the ring feel as if it were a short-cut.

6. CONCLUSIONS
Based on both the informal user studies and large-scale

statistical experiments on real user queries, QuickSuggest’s
predictive model shows merit as a light-weight ”short cut”
mechanism for character based entry when using web-enabled
devices. Many appliances may want to have a simple input
device rather than a full keyboard but still provide access to
a large corpus of content. The predictive ring model helps
balance visual search costs while reducing the distance to
the target to reduce physical effort (Fitt’s law).

7. REFERENCES
[1] T. Bellman and I. S. MacKenzie. A probabilistic

character layout strategy for mobile text entry. In
Graphics Interface ’98, 1998.

[2] M. Ingmarsson, D. Dinka, , and S. Zhai. TNT - a
numeric keypad based text input method. In Human
Factors in Computing Systems (CHI), pages 639–646.
ACM, 2004.

[3] P. Isokoski. Performance of menu-augmented soft
keyboards. In Human Factors in Computing Systems
(CHI), pages 423–430. ACM, 2004.

[4] I. S. MacKenzie. KSPC (keystrokes per character) as a
characteristic of text entry techniques. In Fourth
International Symposium on Human-Computer
Interaction with Mobile Devices, pages 195–210, 2002.

[5] A. Moffat. Implementing the PPM data compression
scheme. IEEE Transactions on communications, 38(11),
Nov 1990.

[6] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay.
Dasher - a data entry interface using continuous
gestures and language models. In UIST, 2000.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1252


