
Rants: A Framework for Rank Editing and Sharing
in Web Search

Byron J. Gao
Texas State University-San Marcos

601 University Drive
San Marcos, TX, USA, 78666

bgao@txstate.edu

Joey Jan
Texas State University-San Marcos

601 University Drive
San Marcos, TX, USA, 78666

jj1258@txstate.edu

ABSTRACT
With a Wiki-like search interface, users can edit ranks of
search results and share the edits with the rest of the world.
This is an effective way of personalization, as well as a
practice of mass collaboration that allows users to vote for
ranking and improve search performance. Currently, there
are several ongoing experimentation efforts from the indus-
try, e.g., SearchWiki by Google and U Rank by Microsoft.
Beyond that, there is little published research on this new
search paradigm. In this paper, we make an effort to estab-
lish a framework for rank editing and sharing in the context
of web search, where we identify fundamental issues and pro-
pose principled solutions. Comparing to existing systems,
for rank editing, our framework allows users to specify not
only relative, but also absolute preferences. For edit sharing,
our framework provides enhanced flexibility, allowing users
to select arbitrarily aggregated views. In addition, edits can
be shared among similar queries. We present a prototype
system Rants, that implements the framework and provides
search services through the Google web search API.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Information Storage and Retrieval – Infor-
mation Search and Retrieval

General Terms: Performance, Design, Algorithms

Keywords: Rank editing, Edit sharing, Search interface,
Personalization, Mass collaboration, Social search

1. INTRODUCTION
Recently, several web search giants are experimenting on

a new Wiki-like search interface, where users can edit ranks
of search results directly. For example, SearchWiki [3] by
Google and U Rank [6] by Microsoft. This new search para-
digm is an effective way of search personalization. It is also
a practice of mass collaboration at a world-wide scale that
allows users to vote for ranking of search results and improve
search performance.

SearchWiki and U Rank are under testing, often returning
inconsistent or unintuitive results. It is not revealed what
exactly they aim to achieve and what the approaches are.
Up to our knowledge, there is no published research under
this topic. Thus this paper makes the first effort to estab-
lish a framework by identifying the fundamental issues and
proposing principled solutions for rank editing and sharing.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

The proposed framework features extended functionalities
beyond SearchWiki and U Rank. For rank editing, users can
specify not only relative, but also absolute preferences. For
edit sharing, the notion of aggregation is generalized and
users can select arbitrarily aggregated views. Beyond shar-
ing among users, edits can be transferred to similar queries,
which can be considered sharing among queries.

These extensions generate benefits, as well as non-trivial
technical complications. We deployed a prototype system
Rants [7], that tackles the challenges and implements the
framework, providing web search services through the Google
API [5]. Figure 1 illustrates the interface of Rants.

Rank editing. Existing systems provide two editing op-
erations, promotion and demotion, where a logged-in user
u can promote (move up) or demote (move down) a search
result r for a query q by one or more positions. Let up and
down denote the two operations, where up(r, 2) means to
move r up by 2 positions if possible (it may reach the top
and cannot continue).

How to interpret a move? The user intention behind
a move is unfortunately ambiguous. Aggressively, it may
mean an assertion for the ranking of all results after the
move. Conservatively, it may mean several pairwise prefer-
ences for the involving results only. In our framework, we
take a conservative approach and make the least inferences
from a move. For example, if after up(r, 2) by user u for
query q, r surpassed r′ and r′′, we store two pairs (r, r′) and
(r, r′′), meaning that for q, user u prefers r to appear before
r′ and r′′.

We adopt this least inference principle for the following
reasons. Firstly, it generates the least, if not none, ambigu-
ity. In the above example, although by the same move dif-
ferent users may mean differently, all of them would mean at
least those two pairwise preferences. We do not even infer on
the precedence relationship between r′ and r′′. Secondly, it
well serves the purpose that, given the same list of unedited
search results for query q, the same ranking as edited will be
restored if the inferred pairwise preferences are respected.

Based on this interpretation, up(r, 2) is equivalent to two
consecutive executions of up(r, 1). Thus, in Rants, we only
allow up(r) and down(r), meaning up(r, 1) and down(r, 1),
indicated by the ↑ and ↓ arrows in Figure 1. This is not
a limitation, but an emphasis on primitive functionalities,
instead of syntactic sugars, for conceptual clarity.

The two operations actually map to the same task, a swap
of positions of two results. Let r′ and r be two neighboring
results where r′ is immediately before r. Both up(r) and
down(r′) fire a swap of r′ and r, specifying a preference of

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1245

 r1 3

 r2 3

 r3

 r4

 r5 8

 r6 6

 r7

 r8

 r9

 r10

testAll

 rank editing and sharing Search

You are logged in as test Specify aggregation:

Rants

Figure 1: Interface of Rants.

(r, r′). In Rants, this task is implemented by a primitive
function swap(r′, r).

Extended rank editing. Promotion and demotion spec-
ify relative preferences. There are often situations where
users want to specify absolute preferences as well. For ex-
ample, user u may always want to see result r appear among
top 3 for query q. This cannot be achieved by relative pref-
erences because over time, there would be new results for q
taking the top 3 seats whose pairwise preferences w.r.t. r
were not specified and stored.

Mostly, user u wants to stipulate that result r must appear
among top k, instead of not. We use a pair (r, k) to capture
this absolute preference. As shown in Figure 1, for each q,
k can be entered into the box to the right of the ↓ arrow. In
Rants, this operation is implemented by a primitive function
anchor(r, k).

Edit sharing. Rank edits are user preferences that can
be aggregated and shared among users. Rants utilizes func-
tion aggr(U) to generalize the notion of aggregation. No
matter logged in or out, user u can arbitrarily specify U ,
the set of users whose edits (relative or absolute) are to be
used for aggregation. If U = {u}, the edits from u herself
will be used. If U = All, the (published) edits from all users
will be used. If U = ∅, the original, unedited search results
will be presented without enforcing any stored preferences.

Suppose a same edit is specified by a set U ′ ⊆ U of users.

Then the edit can be shared if |U
′|

|U| ≥ δag, where 0 ≤ δag ≤ 1

is a tunable threshold.

Edit transfer. Rank editing takes user effort. It is
greatly beneficial if we can properly transfer rank edits from
a query to its similar ones. For example, if user u edited the
results for query “David Dewitt”, it is very likely that she
wants to reuse the edits for query “David J. Dewitt”. Edit
transfer can be considered as edit sharing among queries, in
contrast to sharing among users.

Function trans(q) returns a query q′ such that it is ap-
propriate to transfer edits for query q′ to query q. In the
function, two similarity measures are used. wordSim(q, q′)
compares the keywords of q and q′. rankSim(q, q′) com-
pares the ranks of search results of q and q′. Both need to

pass their respective thresholds δws and δrs. Obviously, the
bigger the thresholds, the more conservative the transfer.
Setting the thresholds to 1 shuts down edit transfer.

Constraint enforcement. We take stored rank edits
as user constraints that need to be respected and enforced
in processing query q. In Rants, this is implemented by
functions enfor(R) and enfor(A), which enforce a set of
relative preferences R and a set of absolute preferences A.
R and A are determined by q and a selected aggregation U .

The enforcement adopts a so-called least modification prin-
ciple, where as little as possible modification is used in en-
forcing the constraints, and the degree of modification is
measured by edit distance between the rankings of search
results before and after the enforcement.

In Rants, consistency of relative preferences are main-
tained and they are guaranteed to be completely enforced.
To do so for absolute preferences entails tremendous tech-
nical complications that significantly slow down rank edit-
ing and query processing for a minimal gain. Practically, a
light-weight best-effort approach can achieve complete en-
forcement of absolute preferences in normal cases.

Technical challenges and contributions. In sum-
mary, in this introductory study we consider the following
fundamental issues. How to interpret, capture and store user
preferences? How to keep them consistent and redundancy-
free? How to aggregate them for sharing among users? How
to transfer them to similar queries? How to enforce them in
processing queries?

In response to these questions, we construct the following
functional primitives: swap(r′, r), anchor(r, k), aggr(U),
trans(q), enfor(R) and enfor(A). Their correct and ef-
ficient realization generates non-trivial technical challenges.

Thus, our contributions include the identification of fun-
damental issues involved in the Wiki-like web search para-
digm, the formation of the corresponding functional primi-
tives, the provision of solutions to the associated technical
challenges, and the implementation of these solutions.

2. RELATED WORK
We have not seen published research on rank editing and

sharing. However, web search giants Google and Microsoft
are recently experimenting on this novel search paradigm
through SearchWiki [3] and U Rank [6] respectively. While
their approaches are not revealed to public, we use Rants

to demonstrate a well-defined framework that features ex-
tended functionalities.

Rank editing can be considered as one way of search per-
sonalization. Personalized search allows fine-tuning of search
results based on an individual’s preferences or profile. Both
Google [2] and Yahoo! [8] provide such services. Tradition-
ally, the major source for personalization is search history,
which forms a user profile and can be used to influence all
queries from the user. In Rants, ranks of search results can
be directly edited, and the edits can be used to influence
limited queries, i.e., the query itself and its similar ones.

Edit sharing is a mass-collaboration way of improving
search performance. It is also related to social search. In
contrast to established algorithmic or machine-based ap-
proaches, social search determines the relevance of search
results by considering the interactions or contributions of
users. Example social search engines include Google social
search [4] and “community powered” Eurekster Swiki [1].

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1246

3. ALGORITHM
In this section, we explain the primitive functions that are

used in rank editing, edit sharing, and query processing.

3.1 Rank Editing
Once a user u is logged in, she can edit the search results

for a query q, specifying relative and/or absolute preferences.
Since she needs to monitor her own editing process, the view
must be chosen as U = {u}.

Let RP and AP be hashes storing all the relative and
absolute preferences from u respectively. Then RP (q) and
AP (q) indicate a set of relative preferences and a set of ab-
solute preferences for q from u. For clarity we do not specify
u in the notations.

Let L(q) = (r1, r2, ...) be the list of search results for query
q. For a result r ∈ L(q), we use rank(r) to denote the rank
of r in L(q). Let L0(q) be the list of unedited original search
results. L0(q) may change over time. Some previous results
may disappear. Some new ones maybe added. The content
and ranking of results may change as well.

swap(r’, r). The function handles specification of a rel-
ative preference (r, r′), i.e., rank(r) < rank(r′), for query q.
It is fired either by up(r) or down(r′), resulting in a swap of
positions of r′ and r in the search results.

Relative preferences are transitive. E.g., with (r1, r2) and
(r2, r3), we can infer (r1, r3). All the preference pairs in
RP (q), if consistent, form a partial order. Precisely, it is a
strict partial order, a binary relation that is irreflexive and
transitive, corresponding to a directed acyclic graph (dag).

Example 1. Let L0(q) = (r1, r2, r3, r4). By swap(r1, r2)
and swap(r3, r4), the user specify (r2, r1) and (r4, r3), which
form a partial order. We do not infer the pairwise prefer-
ences for, e.g., r1 and r4. Thus, both (r2, r1, r4, r3) and
(r4, r3, r2, r1) respect the specified preferences.

Due to the dynamic nature of search results and user pref-
erences, RP (q) may receive inconsistent, conflicting prefer-
ences that cannot be enforced simultaneously.

Example 2. At day 1, L0(q) = (r1, r2). swap(r1, r2) adds
(r2, r1) to RP (q), which will be enforced in query processing.
At day 2, the user changed her mind, and swap(r2, r1) would
add (r1, r2) to RP (q), which contradicts with (r2, r1).

Only consistent user preferences can be completely en-
forced. Thus it is essential to maintain the consistency of
RP (q). It is also desirable to keep RP (q) redundancy-free
for improved enforcement efficiency. Addition of a pair may
generate new inferred preferences that are redundant to ex-
isting ones, as demonstrated in the following example.

Example 3. Let RP (q) = {(r1, r3), (r2, r3)}. swap(r2, r1)
adds (r1, r2) to RP (q). Then, (r1, r3) becomes redundant
because it can be inferred by (r1, r2) and (r2, r3).

swap(r′, r) maintains RP (q) as a redundancy-free dag.
We omit the algorithmic details due to the space limit. The
enforcement of the newly added pair (r, r′) is trivial.

anchor(r, k). The function handles specification of an
absolute preference (r, k), i.e., rank(r) ≤ k, for query q.
As consistency of AP (q) is not maintained, adding (r, k) is
trivial. If (r, k) is already in AP (q), update it.

Inconsistency of AP (q) arises in various cases. For exam-
ple, (r, 1) ∈ AP (q) and (r′, 1) ∈ AP (q). AP (q) may not be
compatible with RP (q) either. For example, (r, 1) ∈ AP (q)
and (r′, r) ∈ RP (q). However, since AP (q) is small, such
anomalies would not arise in normal cases. Thus to avoid
the tremendous technical complications, we do not maintain
consistency and compatibility of AP (q).

After the specification of (r, k), we want to enforce it im-
mediately. For this purpose, we call a recursive procedure
climb(r), which is introduced in Section 3.3.

3.2 Edit Sharing
User edits can be shared among users, as well as among

similar queries.

aggr(U). The function performs aggregation of edits for
a chosen user set of U , returning RPU and APU , the aggre-
gated relative and absolute preferences over U . Although U
can be arbitrarily specified, it must be pre-defined so that
RPU and APU can be pre-computed off-line, instead of dur-
ing query processing, for improved response time.

We calculate RPU as follows. For each query q such that
RP (q) 6= ∅ for some u ∈ U , for each pair (r, r′) in RP (q),
let U ′ ⊆ U be the set of users who specified the pair. If
|U′|
|U| ≥ δag, insert (r, r′) into RPU (q), where RPU (q) stores

the set of aggregated relative preferences over U for query
q. Recall that δag, 0 ≤ δag ≤ 1, is a tunable threshold.

We calculate APU in a similar manner with slight mod-
ification. For each query q such that AP (q) 6= ∅ for some
u ∈ U , for each pair (r, k) specifying a preference on r in
AP (q), let U ′ ⊆ U be the set of users who specified the pair.

If |U
′|

|U| ≥ δag, insert (r, k) into APU (q), where APU (q) stores

the set of aggregated absolute preferences over U for query
q, and (k) is the averaged k specifications for r over U ′.

The consistency of RP implies the consistency of RPU .
As in AP , the consistency of APU is not maintained.

trans(q). The function returns a query q′, such that the
edits (w.r.t. a chosen aggregation U) for query q′ can be ef-
fectively utilized by query q. If none of such q′ can be found,
the function returns -1, which means no user constraints will
be enforced in processing query q.

A candidate query q′ must have an entry stored in RPU

or APU . If q itself is such a candidate, then q will be re-
turned. Otherwise, trans(q) searches for some q′ that is
similar enough to q.

As a candidate, query q′ must also have the properties of
wordSim(q, q′) ≥ δws and rankSim(q, q′) ≥ δrs, where δws

and δrs are tunable thresholds. wordSim(q, q′) is a similar-
ity measure comparing the keywords of q and q′. In trans(q),
this comparison is done first to eliminate most of the un-
qualified candidates. rankSim(q, q′) is a similarity measure
comparing the ranks of search results of q and q′, in partic-
ular, L10(q) and L10(q

′), the top 10 unedited results for q
and q′ respectively. In the end, trans(q) returns a qualified
candidate q′ with the largest rankSim(q, q′).

For computing wordSim(q, q′), we treat q and q′ as sets
of keywords and use J(q, q′), the Jaccard index for q and q′,
to measure their similarity. Specifically,

J(q, q′) =
|q ∩ q′|
|q ∪ q′| .

For computing rankSim(q, q′), we have two options. The

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1247

first option is J(L10(q), L10(q
′)), i.e., the Jaccard index for

L10(q) and L10(q
′). The second option is a rank-aware

similarity measure, the Kendall tau coefficient [9], a non-
parametric statistic used to measure the degree of corre-
spondence between two rankings. Specifically,

τ(L10(q), L10(q
′)) =

nc − nd

1
2
n(n− 1)

,

where nc is the number of concordant pairs between L10(q)
and L10(q

′), and nd is the number of disconcordant pairs.
In our case, n = 10, and the denominator is just the total
number of pairs.

To compute rankSim(q, q′), L10(q
′) must be previously

stored. Since it contains unedited results, potentially L10(q
′)

can be shared by all users for space efficiency.

3.3 Query Processing
Different from existing systems, Rants separates editing

from viewing, which means one does not need to log in to
share published user edits. She only needs to select a view,
i.e., a user set U for aggregation.

In processing query q, trans(q) is called first, which re-
turns q′. If q′ = −1, no stored user constraints need to be en-
forced and the unedited result list L0(q) will be presented in-
tact. Otherwise, RPU (q′) and APU (q′) are retrieved. They
contain the relative and absolute preferences to be enforced
on L0(q), the original unedited search results.

L0(q) is dynamic and changes over time. Potentially,
this may cause problems for relative preference enforcement.
Suppose (r1, r2) and (r2, r3) are in RPU (q′). It is possible
that r2 maybe absent from L0(q). Then we need to make
sure that (r1, r3) is enforced.

A relative preference pair (r, r′) ∈ RPU (q′) is applicable
if and only if both results are present, i.e., r ∈ L0(q) and
r′ ∈ L0(q). An absolute preference pair (r, k) ∈ APU (q′)
is applicable if and only if r ∈ L0(q). We use R and A
to denote the applicable subsets of RPU (q′) and APU (q′)
respectively. Then for enforcement purposes, enfor(R) will
be invoked first, followed by enfor(A).

enfor(R). The function enforces the relative preferences
in R on L0(q). Since RPU (q′) is consistent, R ⊆ RPU (q′) is
also consistent and completely enforceable.

As indicated in Example 1, a partial order can be enforced
in different ways, which reflects the fact that a dag can have
many topological orderings.

In graph theory, a topological ordering of a dag is a linear
ordering of its nodes where each node comes before all nodes
to which it has outbound edges. It is a total order that is
compatible with the partial order. Every dag has one or
more topological orderings.

To comply with the least modification principle, we com-
pute a topological ordering T for R that is the closest to
L0(q). Then we iteratively process the edges in T in order.
In more detail, for each (r, r′) ∈ T , if r′ is before r in L(q),
move r′ down to the position immediately after r.

In this process, (r′, k) ∈ A maybe violated. But we do
nothing about it until the next stage.

enfor(A). The function enforces the absolute preferences
in A on LR(q), which is the list of search results returned
by enfor(R). As in APU (q′), A may not be consistent. We
use a best-effort approach to enforce A as much as we can
without violating the already enforced R.

To comely with the least modification principle, we sort
the results in A according to their orders in LR(q). Then
we iteratively process each (r, k) ∈ A in order, by invoking
climb(r).

climb(r) is recursive. If rank(r) > k, it moves r up
by swapping r and r′. If r′ blocks r, it recursively calls
climb(r′). r′ blocks r if (r′, k′) ∈ A or (r′, r) ∈ R is violated
by the planned swapping. climb(r) stops when rank(r) = k,
or no swapping can be conducted, in which case all results
above r (including r) are blocked.

4. DEMONSTRATION
Rants [7] is maintained at a regular desktop PC with In-

tel 3.0GHz Duo processor and 4GB memory. It was imple-
mented using the Google web search API [5]. For illustration
purposes, Rants only retrieves 40 HTML pages from the API
for each query.

Demonstration scenario. As a user, you can visit the
Rants URL to test the system. You can either create an
account to login, or use the given testing account to login.

No matter logged in or out, you can specify the set of
users whose preferences are to be used for aggregation. In
“select search view”, choose“All” for all users. To choose one
or several users, enter a single user ID or a list of user IDs,
e.g., “test” or “test1, test2, test3”, in the edit box and click
the radio button besides it. By leaving the edit box empty,
you choose an aggregation on ∅, in which case the original
unedited search results will be presented.

If logged in, you can issue web search queries and edit the
results by specifying relative or absolute preferences. You
can verify that these preferences are respected the next time
you issue the same queries. To ease the comparison, search
results are marked with their original, unedited ranks, which
you can use as temporary IDs.

Edit transfer among similar queries is performed regard-
less of the login status. However, it is good to login because
you need to create the edits to be transferred. For example,
you can issue a query “David DeWitt” and edit the results.
Then you can issue a similar query “David J. DeWitt” and
see how those stored edits for “David DeWitt” are enforced
in producing the query results for “David J. DeWitt”.

5. REFERENCES
[1] Eurekster Swiki. http://www.eurekster.com.

[2] Google Personalized Search.
http://googleblog.blogspot.com/2007/02/personally-
speaking.html.

[3] Google SearchWiki.
http://googleblog.blogspot.com/2008/11/searchwiki-
make-search-your-own.html.

[4] Google Social Search.
http://googleblog.blogspot.com/2009/10/introducing-
google-social-search-i.html.

[5] Google Web Search API. http://code.google.com/.

[6] Microsoft U Rank.
http://research.microsoft.com/en-us/projects/urank/.

[7] Rants. http://dmlab.cs.txstate.edu/rants.

[8] Yahoo! Personalized Search. http://myweb.yahoo.com/.

[9] W. Kruskal. Ordinal measures of association. Journal
of the American Statistical Association,
53(284):814–861, 1958.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1248

