
Exploit Sequencing Views in Semantic Cache to
Accelerate XPath Query Evaluation

Jianhua Feng, Na Ta, Yong Zhang, Guoliang Li
Department of Computer Science and Technology

Tsinghua University, Beijing 100084, China
{fengjh, liguoliang}@tsinghua.edu.cn, dan04@mails.thu.edu.cn, zhangy@tsinghua.org.cn

ABSTRACT
In XML databases, materializing queries and their results into
views in a semantic cache can improve the performance of query
evaluation by reducing computational complexity and I/O cost.
Although there are a number of proposals of semantic cache for
XML queries, the issues of fast cache lookup and compensation
query construction could be further studied. In this paper, based
on sequential XPath queries, we propose fastCLU, a fast Cache
LookUp algorithm and effiCQ, an efficient Compensation Query
constructing algorithm to solve these two problems. Experimental
results show that our algorithms outperform previous algorithms
and can achieve good performance of query evaluation.

Categories and Subject Descriptors
H.2.4 [Systems] Subjects: Query processing

General Terms: Algorithms, Performance, Languages

Keywords: XML, XPath, Query Evaluation, Semantic Cache

1. INTRODUCTION
The popularity of XML inspires the need to quickly retrieve XML
data. In XML databases, a semantic cache of materialized views,
which are queries combined with their result nodes, can help
accelerate the process of evaluating XML queries in that when
there is a cache hit, there is no need to evaluate the query against
the whole database and retrieve the result from lower storage, the
cached data can accomplish the task simply.

We study a group of XPath queries in XPath fragment XP{/, //, [], *},
which contains four features: child axes (/),descendant axes (//),
wildcards (*) and predicates ([]). There are two steps in exploiting
the semantic cache of an XML database to answer queries: cache
lookup and compensation query construction for evaluation. We
propose algorithm fastCLU to accomplish the first step based on
Basic Path and Predicate Condition Sets of sequential XPath
queries. A view V can answer Q if there exists another query CQ
which gives the result of Q when queried against the result of V.
CQ is the compensation query and usually has less executing cost
than Q. V is the matching view of Q. The other algorithm effiCQ
constructs the compensation query efficiently for the second step.
For example, suppose there are three views: V1=
a[[b[k<100]][j]]/f/g[c[d][.//e]], V2=a[b/c]/u//v, V3=a[b[k<50]]/*/x,
and a query: Q1=a[[b[k<100]][j]]/f/g[c[d][e]][h]. Q1 can be
answered by view V1 by restricting the e node in V1 to be the
child of the c node and the output g node to have an h child. Thus
compensation query CQ1=g/[c/e][h].

2. Problem Definition
Generally an XPath query can be modeled as a tree pattern
composed of a node set, an edge set of child and descendant
edges, a root node and an output node. To simplify the cache
lookup process, we convert an XPath query into an equivalent
sequential representation which has a Basic Path and a Predicate
Condition Set. The Basic Path of an XPath query Q is the path
containing all nodes from Q’s root node to Q’s output node.
Nodes in the Basic Path the path nodes and other nodes are
referred to as predicate nodes. The number of nodes in a Basic
Path BP is the depth of BP, denoted as dBP. Child and descendant
axes in a Basic Path are denoted explicitly by “/” and “//”.

For each path node nBP of an XPath query Q, suppose there are nc
leaf nodes {ln1, ln2, ..., lnc}, which are leaves of sub-trees of nBP
whose root nodes are not path nodes, we call them predicate leaf
nodes. For all the predicate leaf nodes of nBP, we construct a
including nc path expressions rooted at nBP and ended at one of the
nc predicate leaf nodes, we call this set the Predicate Condition
Set of nBP and denote it as PCSN(nBP)={pci | 1≤i≤nc, pci is a path
from nBP to the i-th predicate leaf node of nBP }. The set of all of
Q’s path nodes’ Predicate Condition Sets is the Predicate
Condition Sets of Q and is denoted as PCSQ(Q).

The homomorphism from one query pattern to another ensures the
containment relationship the other way round. In other words, for
two query patterns P1 and P2, if there is a homomorphism from P1
to P2, P2 is contained in P1[3]. Thus a materialized view V can
answer a query Q if Q is contained in V. Sequential representation
of XPath queries can help reduce the time cost of homomorphism
mapping checking from queries to views.

Figure 1 gives examples of tree patterns and homomorphism. The
Basic Paths of P1, P2 and P3 are a/d//e, a/d/e/f and a/d/k/e
respectively. The depth of a/d//e is 3. There is a homomorphism
from P1 to P2 in Figure 1(a).

a

* d

c e
p1

a

* d

c

fp2

e

a

* d

c e

p1

a

* d

c

ep3

k

(a) (b)
Figure 1. Homomorphism and containment of queries

Definition 1. Basic Path Containment: for two XPath queries Q1
and Q2, let their corresponding Basic Paths be BP1=n1n2...nl1 and
BP2=n1’n2’...nl2’ respectively, BP2 is contained in BP1 if (1) l1≤l2
and (2) for any pair of symbols si, si’ (1≤i≤l1) at the i-th position of
BP1 and BP2 respectively, one of the following conditions is
satisfied: (a) si’.tagName=si.tagName, (b) si=“*”, (c) si’=si=“/”,
(d) si’=“/” or “//” while si=“//”.

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: XML

1337

Definition 2. PCSN Containment: for two path nodes n1 and n2,
PCSN(n1)={pi | 1≤i≤np1, np1 is the number of predicate leaf nodes
of n1}, PCSN(n2)={pj | 1≤j≤np2, np2 is the number of predicate
leaf nodes of n2}, PCSN(n2) is contained in PCSN(n1) if (1)
np1≤np2; (2) for each path expression p=s1s2...sl1 in PCSN(n1),
there is p’=s1’s2’...sl2’ in PCSN(n2), such that l1≤l2 and p is
segmented by “//”into k parts which do not contain “//” and have
exactly the same occurrences in p’, and the “//” symbols in p are
mapped to “/”, “//” or path fragments in p’ between k segments.

Definition 3. PCSQ Containment: for two queries Q1 and Q2
PCSQ(Q1)={PCSN(ni)|1≤i≤dBP1,ni∈BP1}, PCSQ(Q2)={PCSN(nj’)
| 1≤j≤dbp2, nj’∈BP2}, PCSQ(Q2) is contained in PCSQ(Q1) if (1)
BP2 is contained in BP1; (2) PSCN(n)=PCSN(n’) for all of P1’s
path nodes n except P1’s output node no; and (3) let no maps to no’
in Q2, PCSN(no’) is contained in PCSN(no).

Since PCSQ containment actually requests Basic Path
containment, therefore, the criteria of query/view answerability
can be put as follows: if PSCQ(Q) is contained in PCSQ(V) for a
query Q and a view V, V can answer Q. This makes the
foundation of our algorithms.

3. Algorithms: fastCLU and effiCQ
FastCLU runs like this: First find a set of candidate views whose
Basic Paths contain the Basic Path of the input query Q, and rank
the candidate views by depth of the Basic Paths, views with
greater Basic Path depth precede views with smaller Basic Path
depth. Then check Predicate Condition Sets containment between
Q and the current view in candidate set. If a matching view is
found, this view is passed to algorithm effiCQ to construct
compensation query. If none of candidate views contains Q, there
is a cache miss and Q has to be evaluated against data in lower
storage. Note that although [1] also uses string matching in cache
lookup, it considers a view in the cache as a whole, and its
matching process involves a time-consuming predicate condition
set generation and containment test. Meanwhile, our algorithm
does not require such a generate-and-test course and does not need
the superset of Q’s predicate conditions, which makes it more
time efficient. Due to space limit, details of fastCLU is omitted.
EffiCQ is outlined as follows to present it clearly.

Algorithm effiCQ: compensation query construction

Input: Q, an XPath query; V, a matching view of Q

Output: CQ, the compensation query of Q

Let BPQ=n1/(or//)n2/(or//).../(or//)nd, BPV=n1/(or//)n2/(or//).../(or//)ndV

1: BPCQ=nk/(or//)nk+1/(or//)... ndV/(or//).../(or//)ndQ;

 /* nk is the node before the first different axis symbol of BPQ and
BPV if there is any, otherwise it is the output node of V */

2: for each path expression PEj in PCSN(ndV) of Q do {

3: if (PEj is contained in but not equal to some path expression PEj’
of PCSN(ndV) of V) OR (PEj is not contained in any path expression
PEj’ of PCSN(ndV) of V)

4: put PEj into PCSN(ndV) of CQ; }

5: if (ndV is not the output of Q)

6: attach the predicate conditions of ni+1, ni+2, ..., ndQ to ni+1, ni+2, ...,
ndQ to CQ;

7: return CQ;

As presented, EffiCQ constructs the compensation query CQ to
answer a query Q by its matching view V found by fastCLU. CQ
is queried against V to return result of Q.

4. EXPERIMENTAL EVALUATION
We compare our algorithms with the view selection method in [1],
which is based on string matching and referred to as algSM, and
the naive semantic cache, which requires exact equivalence of
view and query. We used a 300 MB XML document generated by
the XMark [2] generator. Testing programs run in Windows 2000
system with 768MB memory.

Cache Lookup Performance. Figure 2 shows how the hit rate
varies with the zipf exponent z used for creating attribute
predicates. Hit rate of fastCLU is 1.29 and 7.48 times of that of
algSM and the Naive Cache. This is because fastCLU can handle
such cases that a descendant axis in Basic Path of a view is
mapped to a child axis in Basic Path of a query, which algSM will
treat as a cache miss.
Query Processing Performance. Figure 3 shows the average
time to answer a query by the three algorithms to illustrate the
speedup gained by fastCLU and effiCQ. We cached 2,000 queries
and submitted 20,000 test queries and set z=1.75. Our strategy of
caching path nodes and effiCQ help to enlarge the answering
capacity of our semantic cache; consequently, a higher hit rate and
a shorter average processing time of one query is achieved.

0

200

400

600

800

fastCLU algSM Naive Cache

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)

Figure 2. Hit rate vs.
workload size

Figure 3. Average processing
time

5. CONCLUSION
In this paper, we propose algorithm fastCLU, which uses
equivalent sequential representation of XPath queries to accelerate
cache lookup, and agorithm effiCQ, which constructs
compensation queries efficiently with lower computational cost to
evaluate XPath queries. Experimental results demonstrate that our
algorithms can achieve high performance for query evaluation.

6. ACKNOWLEDGEMENT
This work is in part supported by the National Natural Science
Foundation of China under Grant No.60573094, the National
Grand Fundamental Research 973 Program of China under Grant
No.2006CB303103, the National High Technology Development
863 Program of China under Grant No.2006AA01A101, and
Tsinghua Basic Research Foundation under Grant No.
JCqn2005022.

7. REFERENCES
[1] Bhushan Mandhani, Dan Suciu. Query Caching and View

Selection for XML Databases. VLDB, 2005.

[2] A.R. Schmidt, F. Waas, M.L. Kersten, D. Florescu, I.
Manolescu, M.J. Carey and R. Busse. The XML Benchmark
Project. Technical Report INS-R0103, CWI, 2001.

[3] Wanhong Xu, Z. Meral Ozsoyoglu. Rewriting XPath Queries
Using Materialized Views. VLDB, 2005.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5
Workload size (Number of queries * 10000)

Hit Rate

Naive Cache

algSM

fastCLU

WWW 2007 / Poster Paper Topic: XML

1338

