
SPath: A Path Language for XML Schema

Erik Wilde
UC Berkeley

Felix Michel
ETH Zürich

ABSTRACT
XML is increasingly being used as a typed data format, and
therefore it becomes more important to gain access to the
type system; very often this is an XML Schema. The XML
Schema Path Language (SPath) presented in this paper pro-
vides access to XML Schema components by extending the
well-known XPath language to also include the domain of
XML Schemas. Using SPath, XML developers gain access
to XML Schemas and thus can more easily develop software
which is type- or schema-aware, and thus more robust.
Categories and Subject Descriptors: D.3.3 [Programming
Languages]: Language Constructs and Features — Data types
and structures
General Terms: Design, Languages
Keywords: XML, XML Schema, XPath, SPath

1. INTRODUCTION
The XML Path Language (XPath) [1] is a language for

selecting parts of an XML document. XPath 2.0 extends
the data model of XPath 1.0 to not only be derived from a
document, but rather from a document being validated and
type-annotated by an XML Schema [3]. Thus, XPath 2.0
becomes a typed language because it provides functionality
for working with the typed content of an XML document.

Yet XPath 2.0 does not provide functionality for access-
ing types in the context of the schema. While the struc-
tures of an XML document are represented by a tree of
interconnected nodes (which can be navigated using loca-
tion paths), there is no such structure for types. Instead,
types are identified by their qualified names (QNames), and
a rather small number of functions is provided which work
with these type identifiers. This makes XPath 2.0 type-
aware, but not schema-aware.

This paper introduces the XML Schema Path Language
(SPath), which builds on XPath 2.0 in several ways. It
extends the data model to contain schema components as
navigable structures, and it introduces new axes to navigate
them, new node tests to work with them, and additional
functions. The goal of SPath is to extend XPath to become
a language which not only is well suited for working with
XML documents, but also with XML Schemas.

2. PROBLEM
The XML Information Set (Infoset) [2] is the data model

applications use when working with XML documents. XPath
1.0, which is based on the Infoset, is one of the most suc-

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

cessful technologies to provide access to XML structures.
It is reused in various contexts, for example XSL Transfor-
mations (XSLT), XML Schema, and the Document Object
Model (DOM). In all these cases, documents are considered
to be trees, and XPath provides access to these trees.

XML Schema turns XML documents into typed docu-
ments, with the type annotations being added by the valida-
tion process. XML Schema thus made XML more powerful
and more complex. XPath 2.0 adds types to its data model,
but only as an unstructured set of named items, and with
little functionality to use them.

3. SPATH DESIGN
The primary goal of SPath’s design is to remain as much

within the limits of XPath’s design principles and syntax as
possible. This is easier said than done, because XPath is
not a strict “design by rule” language, but has a lot of de-
sign decisions in it which instead are based on usability and
utility. For example, the seemingly simple question, what
an axis is, is not easy to answer. The most accurate answer
probably is “anything that is likely to be used frequently as
a way to explore relationships between nodes.”

For SPath’s design, the goal is to apply the design prin-
ciples behind XPath to schemas, while still maintaining a
dividing line between these two universes, so that they are
perceived as separate, but interconnected. The principles
of node kinds, navigating structures using axes, bidirec-
tional navigation, and node tests as predicate shorthands
have been adopted from XPath, but have been extended to
cover XML Schema structures as well.

SPath’s syntax reuses XPath’s syntax wherever possible,
and thus from the syntax point of view, SPath expressions
have the same structure as XPath expressions (but they can
contain different axes, node tests, and functions).

3.1 SPath Data Model
SPath introduces five new node kinds, schema, type, dec-

laration, occurrence, and constraint. The node kinds
are a different view of the structures defined by an XML
Schema, instead of being a subset of XML Schema’s com-
ponents. In part, one goal of the data model is to unify ele-
ments and attributes. Instead of replicating XML Schema’s
strong separation of these two concepts, declarations rep-
resent element as well as attribute declarations. The same
can be said about occurrences, which represent element as
well as attribute usages in types. If SPath users wish to
make the distinction between elements and attributes, they
can use node tests for doing so.

SPath has no direct representation of the model groups
of XML Schema, but it exposes this information through
axes which provide information about potential neighbors

WWW 2007 / Poster Paper Topic: XML

1343



of a node. This means that the grammar information of
a schema is preserved in SPath. However, it is not avail-
able as the actual grammar, but rather in terms of what
the language defined by the grammar is. Specifically, oc-
currences have the properties optional and unbounded and
refer to a declaration, and XML Schema’s content models
are mapped to this alternative representation of the gram-
mar. This maps the hierarchical structure of possibly nested
model groups to an expanded sequence of occurrences.

3.2 SPath Axes
SPath introduces new axes, which can be used to navigate

the schema structures represented by SPath’s node kinds.
Because a schema is structurally more complex than an
XML document, SPath needs more axes for navigating these
structures than XPath needs for navigating documents.

/descendant::*[42]/type::*

This SPath returns the type of the 42nd element in the
document, in the form of a type node. If it is necessary
to get this type’s name, SPath supports XPath’s name()
function to also work on type nodes:

/descendant::*[42]/type::*/name()

While the example so far takes nodes from the instance
universe and then selects associated nodes in the schema
universe, the following example uses another axis which then
selects associated node within the schema universe:

/descendant::*[42]/type::*/declaration::*

In this example, the SPath returns all declarations which
are using the type selected in the previous example. These
declarations can represent element or attribute declarations
(the latter only if the 42nd element has a simple type).

The last example shows how SPath axes help solving prob-
lems which would be hard to tackle without this kind of
language. The following SPath returns the element declara-
tions of all elements that, according to the Schema, possibly
can follow the 42nd element.

/descendant::*[42]/followed-by::*/declaration::*

It is important to mention that the followed-by axis
works on the effective model group, which also takes into
account particles from named groups and parent types. It
thus completely covers the range of allowed elements.

Generally speaking, some axes accept node kinds from
both universes (for example the type axis, which returns the
type of an element or attribute in an instance, or of a dec-
laration or occurrence in a schema), but all of them always
return node kinds only belonging to one of the universes.

As in XPath, axes navigating through hierarchical struc-
tures have variations, providing functionality for single steps
(basetype/derivedtype), recursive navigation (supertype/
subtype), and recursive navigation including the context
node (supertype-or-self/subtype-or-self).

3.3 SPath Node Tests
Node tests in XPath can either be name tests or kind

tests. SPath follows this principle. Since the data model of
XML Schema (and thus the data model of SPath) contains
unnamed nodes, the semantics of the wildcard have been

extended to select unnamed nodes as well. XPath defines
kind tests which cover all node kinds encountered in XPath.
Likewise, SPath provides a set of kind tests for each of the
SPath node kinds that are described in Section 3.1.

The kind tests for nodes that can be named (i.e., type(),
declaration(), and constraint()) accept a first argument
that can either be a QName or a wildcard. If the wildcard
is specified, anonymous nodes are returned as well.

3.4 SPath Predicates
SPath does not change the semantics of XPath predicates,

they are evaluated in the usual way: for each item in the
sequence produced by the expression preceding the predicate
list, each predicate is evaluated with this item as the context,
and only if all predicates evaluate to true, the item remains
in the final result sequence of the step.

This means that predicates in SPath expressions can use
the full set of XPath expressions as predicates. An impor-
tant task of predicates, however, is the filtering of nodes
based on certain criteria which in many cases are specific to
the node kind. Because SPath defines a number of new node
kinds, it also defines a number of functions which allow the
filtering of these node kinds in predicates.

3.5 SPath Functions
A wide range of the functionality required for working

with SPath is provided by the SPath axes as described in
Section 3.2, and by the node tests introduced in Section 3.3.
The extent to which such functionality should be covered by
functions or rather by dedicated syntax constructs like axes
is a question of language design.

SPath follows the principle of defining functions only for
information that is either a literal property (rather than a
structural) or where the function requires more or differ-
ent arguments other than the context node. Since many
functions like name() or namespace-uri() are semantically
equivalent to the corresponding XPath functions, the respec-
tive XPath functions are extended to polymorphic functions
accepting nodes from both universes.

4. CONCLUSIONS
The main contribution of SPath to the evolving landscape

of XML technologies is the integration of schemas into the
data model of XPath. Additionally, SPath’s expressive syn-
tax allows the easy navigation of the complex structure de-
fined by an XML Schema. Using SPath’s navigational fea-
tures, applications can explore schemas at runtime and thus
be programmed in a way which better supports loose cou-
pling scenarios of XML-oriented software components.

5. REFERENCES
[1] Anders Berglund, Scott Boag, Donald D. Cham-

berlin, Mary F. Fernández, Michael Kay, Jonathan
Robie, and Jérôme Siméon. XML Path Language (XPath)
2.0. World Wide Web Consortium, Recommendation REC-
xpath20-20070123, January 2007.

[2] John Cowan and Richard Tobin. XML Information Set
(Second Edition). World Wide Web Consortium, Recom-
mendation REC-xml-infoset-20040204, February 2004.

[3] Henry S. Thompson, David Beech, Murray Maloney,
and Noah Mendelsohn. XML Schema Part 1: Structures
Second Edition. World Wide Web Consortium, Recommen-
dation REC-xmlschema-1-20041028, October 2004.

WWW 2007 / Poster Paper Topic: XML

1344


	Introduction
	Problem
	SPath Design
	SPath Data Model
	SPath Axes
	SPath Node Tests
	SPath Predicates
	SPath Functions

	Conclusions
	References

