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ABSTRACT 
This paper presents a structured P2P overlay SCAN that augments 
CAN overlay with long links based on Kleinberg's small-world 
model in a d-dimensional Cartesian space. The construction of 
long links does not require the estimate of network size. Queries 
in multi-dimensional data space can achieve O(log n) hops by 
equipping each node with O(log n) long links and O(d) short links. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Search process. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
P2P, small-world, multi-dimensional queries. 

1. INTRODUCTION 
Information retrieval in large-scale distributed environments often 
involves multi-dimensional data management and queries. CAN 
overlay supports data partition and query in a d-dimensional 
Cartesian space [4]. It achieves O(dn1/d) query hops. This paper 
introduces SCAN that builds long links in CAN overlays based on 
Kleinberg's small-world model [2]. It can achieve O(log n) hops 
by equipping each node with O(log n) long links. Compared with 
previous small-world solution Symphony [3], SCAN 
approximates Kleinberg's small-world network in multi-
dimensional data space without requiring estimate of network size. 
eCAN also achieves O(log n) hops [6] by building express ways in 
CAN overlay. Long link construction depends on the joining 
process of nodes. In [1], small-world long links are built in 
Delaunay-graph-based networks. It uses a piggy-backing method 
in node joining process to add long links. Long links in SCAN can 
be built during or after the construction of the underlying CAN. 

2. ARCHITECTURE OF SCAN 
In a d-dimensional SCAN, each node is identified by a vector 
v<x1, x2, ..., xd>. xi is drawn from a real interval R = [0, H] (H > 1). 
The first node holds the complete d-dimensional Space Rd. 
Forthcoming joining nodes split the zones of existing nodes in 
half along one dimension in a cyclic way. Data objects are 
identified by vector IDs drawn from Rd and are stored at the node 
the vector IDs of data objects fall in. To uniformly partition the d-

dimensional space, a joining node first draws a random ID v<x1, 
x2, ..., xd>, where xi follows the uniform distribution in [0, H]. 
Then, the node locates the existing node that holds this random ID 
and split it in one dimension. Nodes use the central point of the 
range they hold as their node IDs. Each node maintains O(d) short 
links to their neighboring nodes. Long links are added for nodes 
in a small-world way to speed up queries. Figure 1 shows a partial 
view of a 2-d SCAN topology. 

 
Figure 1. Topology of SCAN. 

2.1 Building long links in SCAN 
In space Rd, we define the Manhattan distance between two points 

v<x1, x2, ..., xd> and u<y1, y2, ..., yd> as 
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di(xi, yi) = min{abs(xi − yi), H − abs(xi − yi)} is the coordinate 
distance in the ith dimension. The maximum Manhattan distance 
Lmax is dH / 2 because in each dimension the maximum coordinate 
distance is H / 2.  
To build long links, a node v<x1, x2, ..., xd> first draws K real 
numbers r1, r2, ..., and rK following the harmonic distribution in 
real interval [0, Lmax]. Then, for each ri, a vector point 
li<y1, y2, ..., yd> is generated as a seed ID at distance ri from v. 
Finally, node v locates node vi that is responsible for li and 
connects vi as a long link. 

Since we do not know the network size, we set K = ⎣Clog2 N⎦ 
where N is a predefined large integer satisfying N >> dn1/d and 
C ≥ 1 is a predefined constant integer. r1, r2, ..., and rK are 
produced by a harmonic distribution generator in [0, Lmax]. ri = 
Lmax / 2x, where x is a real number randomly drawn from the real 
interval [0, log2 N] for i = 1, 2, ..., and K.  
Given a distance ri from v, there are multiple candidate points for 
li. We randomly generate a real vector τi<s1, s2, ..., sd> so that 
point li<x1 + s1, x2 + s2, ..., xd + sd> is at distance ri from v (plus is in 
wrap mode in [0, H]). We iteratively generate sk by regarding the 
remainder coordinates sk+1, sk+2, ..., sd as one coordinate. Initially, 
let M1 = Lmax, D1 = ri, and δ = Lmax / d. To get sk, following steps 
are repeated for k = 1, 2, ..., and d: 

(STEP 1): If Mk ≤  δ, let sk = Mk and return; 

(STEP 2): I = [0, δ] ∩ [Dk − Mk +δ, Dk]; 
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(STEP 3): Get a random real number from I as sk;  

(STEP 4): Mk+1 = Mk − δ; Dk+1 = Dk − sk. 
Long links from v can approach a remote node in two directions 
along one dimension. We randomly assign sk a positive or 
negative sign with probability 1/2. Then li<y1, y2, ..., yd> is 
obtained by yk = xk + sk (k = 1, 2, ..., d and plus is in wrap mode in 
[0, H]). Node v locates the remote node vi that holds li. After 
finding vi, v inserts it into the routing table.  

Although K = ⎣Clog2 N⎦ is larger than log n, many seed IDs are 
actually located in the same node and the expected number of 
distinct long links is O(Clog2 dn1/d). It is the harmonic distribution 
of ri in [0, Lmax] that makes the long links form a small-world 
overlay. 

2.2 Query routing in SCAN 
The size of ranges should be considered in a greedy routing 
process. Let Zv = <z1, z2, ..., zd> be the d-dimensional range that 
the remote node v currently holds, where zi = [zxi, zyi] is the real 
interval in the ith dimension that v occupies. The range Manhattan 
distance from node v to the target point t <y1, y2, ..., yd> is 
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in the ith dimension. qi(zi, yi) = 0 if yi ∈ zi. Else qi(zi, yi) = 
min{di(zxi, yi), di(zyi, yi)}. In each hop, node selects from its links 
the one with the shortest range Manhattan distance to the target 
point as the next hop. When the node at distance zero to the target 
point is reached, the target point is located. 
When C = 2d, the expected routing hops is bounded by 
O(log2 dn1/d) because each long link can help reduce the distance 
by half with probability 1/2d. When d is large, building 2dlog2 N 
long links is prohibitive. Fortunately, when d > log2 n, O(log n) 
query hops can be achieved without using long links. Moreover, 
we can use K = 4log2 N seed IDs to build long links and achieve 
O(log2 2n1/2) query hops in most cases as long as n > (d/2)(1/2-1/d), 
i.e., dn1/d < 2n1/2. It is because that when dn1/d < 2n1/2, d-
dimensional CAN overlays of size n have shorter longest query 
hops than 2-d CAN overlays of the same size n. Adding the same 
number of long links, the d-dimensional CAN overlays can still 
achieve shorter query hops than the 2-d CAN overlays. Using 
K = 4log2 N seed IDs can achieve O(log2 2n1/2) query hops in 2-d 
SCAN overlays. Thus, using the same number of seed IDs can 
also achieve O(log2 2n1/2) query hops in d-dimensional SCAN 
overlays of size n if dn1/d < 2n1/2. 

3. EXPERIMENTS AND CONCLUSIONS 
Figure 2 (a) depicts the distribution of query hops in a 2-d 
Kleinberg small-world mesh (Kleinberg 2D) and a 2-d SCAN 
with N = 220 (SCAN_2D). Both have 1024 nodes. Kleinberg's 2-d 
mesh is strictly regular, having shorter average query hops. Figure 
2 (b) shows that in a 2-d SCAN with K = 4log2 N, the average 
number of long links (curve 2_avg_rt) is bounded by 4log2(2n1/2) 
(curve 4LOG). The average query hops (curve 2_avg_qr) is 
bounded by log2(2n1/2) (curve LOG). Figure 2 (c) and (d) 
demonstrate that using K = 4log2 N seed IDs in SCAN overlays 
with d = 3, 4 and 5, the average query hops (curves d_avg_qr) and 
the maximum query hops (curves d_max_qr) are bounded by 
those of 2-d SCAN overlays. Figure 3 shows that as d increases, 
CAN overlays without long links can also achieve O(log n) query 
hops with routing table size of O(log n). Experiments demonstrate 
the effectiveness and the efficiency of SCAN. It can be extended 

to support multi-dimensional queries based on other distance 
metrics. Future work also includes applying the load balancing 
method in one-dimensional ring [7] to SCAN.  
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Figure 2. Topology properties of SCAN. 

 
Figure 3. CAN and SCAN overlays with different 

dimensionality. 
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